Amazon KCL Checkpoints and Trim Horizon - amazon-web-services

How are checkpoints and trimming related in AWS KCL library?
The documentation page Handling Startup, Shutdown, and Throttling says:
By default, the KCL begins reading records from the tip of the
stream;, which is the most recently added record. In this
configuration, if a data-producing application adds records to the
stream before any receiving record processors are running, the records
are not read by the record processors after they start up.
To change the behavior of the record processors so that it always
reads data from the beginning of the stream, set the following value
in the properties file for your Amazon Kinesis Streams application:
initialPositionInStream = TRIM_HORIZON
The documentation page Developing an Amazon Kinesis Client Library Consumer in Java says:
Streams requires the record processor to keep track of the records
that have already been processed in a shard. The KCL takes care of
this tracking for you by passing a checkpointer
(IRecordProcessorCheckpointer) to processRecords. The record processor
calls the checkpoint method on this interface to inform the KCL of how
far it has progressed in processing the records in the shard. In the
event that the worker fails, the KCL uses this information to restart
the processing of the shard at the last known processed record.
The first page seems to say that the KCL resumes at the tip of the stream, the second page at the last known processed record (that was marked as processed by the RecordProcessor using the checkpointer). In my case, I definitely need to restart at the last known processed record. Do I need to set the initialPositionInStream to TRIM_HORIZON?

With kinesis stream you have two options, you can read the newest records, or start from the oldest (TRIM_HORIZON).
But, once you started your application it just reads from the position it stopped using its checkpoints.
You can see those checkpoints in dynamodb (Usually the table name is as the app name).
So if you restart your app it will usually continue from where it stopped.
The answer is no, you don't need to set the initialPositionInStream to TRIM_HORIZON.

When you are reading events from a kinesis stream, you have 4 options:
TRIM_HORIZON - the oldest events that are still in the stream shards before they are automatically trimmed (default 1 day, but can be extended up to 7 days). You will use this option if you want to start a new application that will process all the records that are available in the stream, but it will take a while until it is able to catch up and start processing the events in real-time.
LATEST - the newest events in the stream, and ignore all the past events. You will use this option if you start a new application that you want to process in teal time immediately.
AT/AFTER_SEQUENCE_NUMBER - the sequence number is usually the checkpoint that you are keeping while you are processing the events. These checkpoints are allowing you to reliably process the events, even in cases of reader failure or when you want to update its version and continue processing all the events and not lose any of them. The difference between AT/AFTER is based on the time of your checkpoint, before or after you processed the events successfully.
Please note that this is the only shard specific option, as all the other options are global to the stream. When you are using the KCL it is managing a DynamoDB table for that application with a record for each shard with the "current" sequence number for that shard.
AT_TIMESTAMP - the estimate time of the event put into the stream. You will use this option if you want to find specific events to process based on their timestamp. For example, when you know that you had a real life event in your service at a specific time, you can develop an application that will process these specific events, even if you don't have the sequence number.
See more details in Kinesis documentation here: https://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html

You should use the "TRIM_HORIZON". It will only have effect on the first time your application starts to read records from the stream.
After that, it will continue from last known position.

Related

Reprocess or Re-Read Event hub data that read successfully

I am new to an event hub, I try to integrate using .Net Core. I am able to read the incoming event data successfully but for some reason, I want to re-read the data so is it possible?
Yes - assuming that the data hasn't passed the retention period.
Events are not removed from the stream when read; they remain available for any consumer who wishes to read them until they pass the configured retention period and age out of the stream.
When connecting, Event Hub consumers request a position in the stream to start reading from, which allows them to specify any event with a known offset or sequence number. Consumers may also begin reading at a specific point in time or request to begin at the first available event.
More information can be found in the Reading Events sample for the Azure.Messaging.EventHubs package.

What happens to the events in Dyanamo DB Stream once its received by AWS Lambda

I have a DynamoDB Table and it is linked with one Stream, and that stream is linked with one lambda function which processed it.
Question - With above set up if an event comes to the stream and is ingested in Lambda, does that event still resides in that stream or it gets POPPED out as soon as it got ingested in Lambda just like a Queue?
Question 2 Can someone kindly tell me about the inner working of DDB Stream and how it passes the data to Lambda? Like are there any states for the stream events?
P.S: AWS Documentation says that events stay in stream for 24 hour window.
There are two concepts to understand here
Streams
Triggers
Whenever there is a change in the table like an addition, update or deletion, the Kinesis Stream feature of AWS stores that change for a period of 24 hrs. It does this through 4 methods:-
Keys only:- only the keys are stored after the change
New image:- The entire item on which the change is performed is stored
Old image:- When a change is performed on an item, the old item is stored instead of the new one
New and old:- self-explanatory
To associate a lambda function with your streams, a feature called Triggers are used. The changes invoke the Trigger which in-turn performs the lambda function associated with the change.
Part 1 of your question:-
By default, Lambda invokes your function as soon as records are available in the stream. If the batch it reads from the stream only has one record in it, Lambda only sends one record to the function. To avoid invoking the function with a small number of records, you can tell the event source to buffer records for up to 5 minutes by configuring a batch window. Before invoking the function, Lambda continues to read records from the stream until it has gathered a full batch, or until the batch window expires. If the Lambda fails it will try and process that message indefinitely (or until it expires), keeping other messages from being processed as a result. To avoid stalled shards(I'll talk about this later), you can configure the event source mapping to retry with smaller batch size, limit the number of retries, or discard records that are too old(you can set the age of the record that lambda can read).
Part 2 of your question:-
The streams which we are talking about are Kinesis Streams It is a feature to be used by multiple producers and consumers. Here the producer is DynamoDb and the consumer is lambda. Consumers have dedicated read throughput so they don't have to compete with other consumers of the same data. With consumers, Kinesis pushes records to Lambda over an HTTP/2 connection, which can also reduce latency between adding a record and function invocation.
The capacity of the streams is determined by the number of shards it contains. Shards are small units of capacity in the Stream. Hence higher the shard value, higher the capacity.
I guess I have explained the working in the part1 of this answer. Feel free to ask follow up questions.

Kinesis client library record processor failure

According to AWS docs:
The worker invokes record processor methods using Java ExecutorService tasks. If a task fails, the worker retains control of the shard that the record processor was processing. The worker starts a new record processor task to process that shard. For more information, see Read Throttling.
According to another page on AWS docs:
The Kinesis Client Library (KCL) relies on your processRecords code to
handle any exceptions that arise from processing the data records. Any
exception thrown from processRecords is absorbed by the KCL. To avoid
infinite retries on a recurring failure, the KCL does not resend the
batch of records processed at the time of the exception. The KCL then
calls processRecords for the next batch of data records without
restarting the record processor. This effectively results in consumer
applications observing skipped records. To prevent skipped records,
handle all exceptions within processRecords appropriately.
Aren't these 2 contradictory statements? One says that record processor restarts and another says that the shard is skipped.
What does KCL exactly do when a record processor fails? How does a KCL worker comes to know if a record processor failed?
Based on my experience writing, debugging, and supporting KCL-based applications, the second statement is more clear/accurate/useful for describing how you should consider error handling.
First, a bit of background:
KCL record processing is designed to run from multiple hosts. Say you have 3 hosts and 12 shards to process - each host runs a single worker, and will own processing for 4 shards.
If, during processing for one of those shards, an exception is thrown, KCL will absorb the exception and treat it as if all records were processed - effectively "skipping" any records that weren't processed.
Remember, this is your code that threw the exception, so you can handle it before it escapes to KCL
When KCL worker itself fails/is stopped, those shards are transferred to another worker. For example, if you scale down to two hosts, the 4 shards that were being worked by that third worker are transferred to the other two.
The first statement is trying (not very clearly) to say that when a KCL task fails, that instance of the worker will keep control of the shards it's processing (and not transfer them to another worker).

AWS Kinesis Stream as FIFO queue

We currently have an application that receives a large amount of sensor data. Each sensor has its own unique sensor id (eg '5834f7718273f92cc326f620') and emits its status at different intervals. The processing order of the messages that come in is not important, for example a newer message of one sensor can be processed before an older message of another sensor. What does matter though, is that each message for a given sensor must be processed sequentially; in the order that that they arrived in the stream.
I have taken a look at the Kinesis Client Library and understand that KCL pushes messages to a single processor per shard. Does this mean that if a stream has only one shard it will have only one processor and couldn't this create a bottleneck? Or does KCL have more than one processor, and somehow, perhaps using the partition key ensures messages with the same partition key are never processed concurrently?
Note: We have taken a look at sqs fifo, but ruled it out as the 300 messages per second limit would soon become an issue.
Yes, each shard can only have one processor at a given moment (per application).
But, you can use the sensor id as the partition key for your kinesis put record request. (see here)
This will make sure that all of this sensor events will get into the same shard and processor.
If you will do that you'll be able to scale your processes and shards and still get each sensor events processed in a single processor

Status of kinesis stream reader

How do I tell what percentage of the data in a Kinesis stream a reader has already processed? I know each reader has a per-shard checkpoint sequence number, and I can also get the StartingSequenceNumber of each shard from describe-stream, however, I don't know how far along in my data the reader currently is (I don't know the latest sequence number of the shard).
I was thinking of getting a LATEST iterator for each shard and getting the last record's sequence number, however that doesn't seem to work if there's no new data since I got the LATEST iterator.
Any ideas or tools for doing this out there?
Thanks!
I suggest you implement a custom metric or metrics in your applications to track this.
For example, you could append a message send time within your Kinesis message, and on processing the message, record the time difference as an AWS CloudWatch custom metric. This would indicate how close your consumer is to the front of the stream.
You could also record the number of messages pushed (at the pushing application) and messages received at the Kinesis consumer. If you compare these in a chart on CloudWatch, you could see that the curves roughly follow each other indicating that the consumer is doing a good job at keeping up with the workload.
You could also try monitoring your Kinesis consumer, to see how often it idly waits for records (i.e, no results are returned by Kinesis, suggesting it is at the front of the stream and all records are processed)
Also note there is not a way to track a "percent" processed in the stream, since Kinesis messages expire after 24 hours (so the total number of messages is constantly rolling). There is also not a direct (API) function to count the number of messages inside your stream (unless you have recorded this as above).
If you use KCL you can do that by comparing IncomingRecords from the cloudwatch built-in metrics of Kinesis with RecordsProcessed which is a custom metric published by the KCL.
Then you select a time range and interval of say 1 day.
You would then get the following type of graphs:
As you can see there were much more records added than processed. By looking at the values in each point you will know exactly if your processor is behind or not.