Recently I want to reproduce the Fig.1(a) of Edge States and Topological Invariants of Non-Hermitian Systems.I used cgeev to solve eigenvalue of non-Hermitian Hamiltonian matrices,I found the solution become wired.
Here is my Fortran code,the result to Fig1.(a) correspond the abs.dat.
module pub
implicit none
complex,parameter::im = (0.0,1.0)
real,parameter::pi = 3.1415926535
integer xn,N,en,kn
parameter(xn = 100,N = xn*2,en = 100)
complex Ham(N,N)
real t1,t2,t3,gam
!-----------------
integer::lda = N
integer,parameter::lwmax=2*N + N**2
complex,allocatable::w(:) ! store eigenvalues
complex,allocatable::work(:)
real,allocatable::rwork(:)
integer lwork
integer info
integer LDVL, LDVR
parameter(LDVL = N, LDVR = N )
complex VL( LDVL, N ), VR( LDVR, N )
end module pub
!=====================================================
program sol
use pub
! Physics memory allocate
allocate(w(N))
allocate(work(lwmax))
allocate(rwork(2*N))
!-----------------
t2 = 1.0
t3 = 0.0
gam = 3.0/4.0
call band()
end program sol
!======================================================
subroutine band()
use pub
integer m1,i
open(11,file="real.dat")
open(12,file="imag.dat")
open(13,file="abs.dat")
do m1 = -en,en
t1 = 3.0*m1/en
call matset()
call eigsol()
write(11,999)t1,(real(w(i)),i = 1,N)
write(12,999)t1,(aimag(w(i)),i = 1,N)
write(13,999)t1,(abs(w(i)),i = 1,N)
end do
close(11)
close(12)
close(13)
999 format(201f11.6)
end subroutine band
!======================================================
subroutine matset()
use pub
real kx
complex sx(2,2),sy(2,2),sz(2,2)
integer k,m1,m2
sx(1,2) = 1.0
sx(2,1) = 1.0
sy(1,2) = -im
sy(2,1) = im
sz(1,1) = 1.0
sz(2,2) = -1.0
!--------
Ham = 0.0
do k = 0,xn-1
if(k == 0)then
do m1 = 1,2
do m2 = 1,2
ham(m1,m2) = t1*sx(m1,m2) + im*gam/2.0*sy(m1,m2)
ham(m1,m2 + 2) = (t2 + t3)/2.0*sx(m1,m2) - im*(t2 - t3)/2.0*sy(m1,m2)
end do
end do
elseif(k == xn-1)then
do m1 = 1,2
do m2 = 1,2
ham(k*2 + m1,k*2 + m2) = t1*sx(m1,m2) + im*gam/2.0*sy(m1,m2)
ham(k*2 + m1,k*2 + m2 - 2) = (t2 + t3)/2.0*sx(m1,m2) + im*(t2 - t3)/2.0*sy(m1,m2)
end do
end do
else
do m1 = 1,2
do m2 = 1,2
ham(k*2 + m1,k*2 + m2) = t1*sx(m1,m2) + im*gam/2.0*sy(m1,m2)
! right hopping
ham(k*2 + m1,k*2 + m2 + 2) = (t2 + t3)/2.0*sx(m1,m2) - im*(t2 - t3)/2.0*sy(m1,m2)
! left hopping
ham(k*2 + m1,k*2 + m2 - 2) = (t2 + t3)/2.0*sx(m1,m2) + im*(t2 - t3)/2.0*sy(m1,m2)
end do
end do
end if
end do
return
end subroutine matset
!==============================================================================
subroutine eigsol()
use pub
! Query the optimal workspace.
LWORK = -1
CALL cgeev( 'Vectors', 'Vectors', N, Ham, LDA, W, VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO)
LWORK = MIN( LWMAX, INT( WORK( 1 ) ) )
! Solve eigenproblem.
CALL cgeev( 'Vectors', 'Vectors', N, Ham, LDA, W, VL, LDVL,VR, LDVR, WORK, LWORK, RWORK, INFO)
! Check for convergence.
IF( INFO.GT.0 ) THEN
WRITE(*,*)'The algorithm failed to compute eigenvalues.'
STOP
END IF
! open(120,file="eigval.dat")
! do m = 1,N
! write(120,*)m,w(m)
! end do
! close(120)
return
end subroutine eigsol
If I used wrong function from Lapack or my code isn't correct.
I use intel fortran,complie command is
*ifort -mkl file.f90 -o a.out
Run program ./a.out&*
I am doing a multiple integral, there is a parameter M_D which I can modify. Both M_D=2.9d3 or M_D=3.1d3 works fine, but when I change it into M_D=3.0d0 it got an error
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
#0 0x7F831A103E08
#1 0x7F831A102F90
#2 0x7F83198344AF
#3 0x43587C in __mc_vegas_MOD_vegas
#4 0x400EBE in MAIN__ at MAINqq.f90:?
Segmentation fault (core dumped)
It's very unlikely there is a sigularity which out of range while progressing. From the answer to this kind of problem I found, I guess it's not about array dimension that is out of bounds.
This time I didn't make it to simplify the problem which can demonstrate my question in order to write less amount of code . It's unpractical to post all the code here, so I post the segment which I think is relevant to the error.
module my_fxn
implicit none
private
public :: fxn_1
public :: cos_theta
real(kind(0d0)), parameter :: S=1.690d8
real(kind(0d0)), parameter :: g_s = 0.118d0
real(kind(0d0)), parameter :: M_D = 3.0d3 !!!
real(kind(0d0)), parameter :: m=172d0
real(kind(0d0)), parameter :: Q=2d0
real(kind(0d0)), parameter :: pi=3.14159d0
real(kind(0d0)), external :: CT14pdf
real(kind(0d0)) :: cos_theta
real(kind(0d0)) :: s12
integer :: i
contains
function jacobian( upper, lower) result(jfactor)
implicit none
real(kind(0d0)), dimension(1:6) :: upper, lower
real(kind(0d0)) :: jfactor
jfactor = 1d0
do i = 1, 6
jfactor = jfactor * (upper(i) - lower(i))
end do
end function jacobian
function dot_vec(p,q) result(fourvectordot)
implicit none
real(kind(0d0)) :: fourvectordot
real(kind(0d0)), dimension(0:3) :: p,q
fourvectordot = p(0) * q(0)
do i = 1, 3
fourvectordot = fourvectordot - p(i) * q(i)
end do
end function dot_vec
subroutine commonpart(p3_0, p4_0, eta, k_v,P3_v, p4_v, s13, s14, s23, s24)
implicit none
real(kind(0d0)), intent(in) :: p3_0, p4_0, eta, k_v, p3_v, p4_v
real(kind(0d0)), intent(out):: s13, s14, s23, s24
real(kind(0d0)) :: sin_theta, &
cos_eta, sin_eta, &
cos_ksi, sin_ksi
real(kind(0d0)), dimension(0:3) :: k1, k2, p3, p4, k
sin_theta = sqrt(1-cos_theta**2)
cos_eta = cos(eta)
sin_eta = sqrt(1-cos_eta**2)
cos_ksi = (k_v**2-p3_v**2-p4_v**2)/(2*p3_v*p4_v)
sin_ksi = sqrt(1-cos_ksi**2)
k1 = [sqrt(s12)/2d0,0d0,0d0, sqrt(s12)/2d0]
k2 = [sqrt(s12)/2d0,0d0,0d0, -sqrt(s12)/2d0]
p3 = [p3_0, p3_v*(cos_theta*cos_eta*sin_ksi+sin_theta*cos_ksi), &
p3_v* sin_eta*sin_ksi, p3_v*( cos_theta*cos_ksi-sin_theta*cos_eta*sin_ksi)]
p4 = [p4_0, p4_v*sin_theta, 0d0, p4_v*cos_theta]
do i = 1, 3
k(i) = 0 - p3(i) - p4(i)
end do
k(0) = sqrt(s12) - p3_0-p4_0
s13 = m**2- 2*dot_vec(k1,p3)
s14 = m**2- 2*dot_vec(k1,p4)
s23 = m**2- 2*dot_vec(k2,p3)
s24 = m**2- 2*dot_vec(k2,p3)
end subroutine commonpart
function fxn_1(z, wgt) result(fxn_qq)
implicit none
real(kind(0d0)), dimension(1:6) :: z
real(kind(0d0)) :: wgt
real(kind(0d0)) :: tau_0
real(kind(0d0)) :: sigma, tau, m_plus, m_minus, & ! intermediate var
p3_v, p4_v, k_v, phi
real(kind(0d0)) :: s13,s14,s23, s24, gm
real(kind(0d0)) :: part1_qq,part_qq,fxn_qq
real(kind(0d0)) :: p3_0_max, p4_0_max, eta_max, gm_max, x1_max, x2_max, &
p3_0_min, p4_0_min, eta_min, gm_min, x1_min, x2_min
real(kind(0d0)), dimension(1:6) :: upper, lower
real(kind(0d0)) :: jfactor
wgt = 0
gm_max = M_D
gm_min = 0.1d0
z(1)= (gm_max-gm_min)*z(1) + gm_min
tau_0 = (2*m)**2/S
eta_max = 2*pi
eta_min = 0
z(2) = (eta_max-eta_min)*z(2)+eta_min
x1_max = 1
x1_min = tau_0
z(3) = (x1_max-x1_min)*z(3) + x1_min
x2_max = 1
x2_min = tau_0/z(3)
z(4) = (x2_max-x2_min)*z(4)+x2_min
s12 = z(3)*z(4) * S
if (sqrt(s12) < (2*m+z(1)))then
fxn_qq = 0d0
return
else
end if
p4_0_max = sqrt(s12)/2 - ((m+z(1))**2-m**2)/(2*sqrt(s12))
p4_0_min = m
z(5) = (p4_0_max-p4_0_min)*z(5)+p4_0_min
p4_v = sqrt(z(5)**2-m**2)
sigma = sqrt(s12)-z(5)
tau = sigma**2 - p4_v**2
m_plus = m + z(1)
m_minus = m - z(1)
p3_0_max = 1/(2*tau)*(sigma*(tau+m_plus*m_minus)+p4_v*sqrt((tau-m_plus**2)*(tau-m_minus**2)))
p3_0_min = 1/(2*tau)*(sigma*(tau+m_plus*m_minus)-p4_v-sqrt((tau-m_plus**2)*(tau-m_minus**2)))
z(6) = (p3_0_max-p3_0_min)*z(6)+p3_0_min
p3_v = sqrt(z(6)**2-m**2)
k_v = sqrt((sqrt(s12)-z(5)-z(6))**2-z(1)**2)
gm = z(1)
upper = [gm_max, eta_max, x1_max, x2_max, p4_0_max, p3_0_max]
lower = [gm_min, eta_min, x1_min, x2_min, p4_0_min, p3_0_min]
jfactor = jacobian(upper, lower)
call commonpart(z(6),z(5),z(2), k_v,p3_v, p4_v, s13, s14, s23, s24)
include "juicy.m"
part1_qq = 0d0
do i = 1, 5
part1_qq = part1_qq+CT14Pdf(i, z(3), Q)*CT14Pdf(-i, z(4), Q)*part_qq
end do
phi = 1/(8*(2*pi)**4) * 1/(2*s12)
fxn_qq = jfactor * g_s**4/M_D**5*pi*z(1)**2*phi*part1_qq
end function fxn_1
end module my_fxn
MC_VEGAS
MODULE MC_VEGAS
!*****************************************************************
! This module is a modification f95 version of VEGA_ALPHA.for
! by G.P. LEPAGE SEPT 1976/(REV)AUG 1979.
!*****************************************************************
IMPLICIT NONE
SAVE
INTEGER,PARAMETER :: MAX_SIZE=20 ! The max dimensions of the integrals
INTEGER,PRIVATE :: i_vegas
REAL(KIND(1d0)),DIMENSION(MAX_SIZE),PUBLIC:: XL=(/(0d0,i_vegas=1,MAX_SIZE)/),&
XU=(/(1d0,i_vegas=1,MAX_SIZE)/)
INTEGER,PUBLIC :: NCALL=50000,& ! The number of integrand evaluations per iteration
!+++++++++++++++++++++++++++++++++++++++++++++++++++++
! You can change NCALL to change the precision
!+++++++++++++++++++++++++++++++++++++++++++++++++++++
ITMX=5,& ! The maximum number of iterations
NPRN=5,& ! printed or not
NDEV=6,& ! device number for output
IT=0,& ! number of iterations completed
NDO=1,& ! number of subdivisions on an axis
NDMX=50,& ! determines the maximum number of increments along each axis
MDS=1 ! =0 use importance sampling only
! =\0 use importance sampling and stratified sampling
! increments are concentrated either wehre the
! integrand is largest in magnitude (MDS=1), or
! where the contribution to the error is largest(MDS=-1)
INTEGER,PUBLIC :: IINIP
REAL(KIND(1d0)),PUBLIC :: ACC=-1d0 ! Algorithm stops when the relative accuracy,
! |SD/AVGI|, is less than ACC; accuracy is not
! cheched when ACC<0
REAL(KIND(1d0)),PUBLIC :: MC_SI=0d0,& ! sum(AVGI_i/SD_i^2,i=1,IT)
SWGT=0d0,& ! sum(1/SD_i^2,i=1,IT)
SCHI=0d0,& ! sum(AVGI_i^2/SD_i^2,i=1,IT)
ALPH=1.5d0 ! controls the rate which the grid is modified from
! iteration to iteration; decreasing ALPH slows
! modification of the grid
! (ALPH=0 implies no modification)
REAL(KIND(1d0)),PUBLIC :: DSEED=1234567d0 ! seed of
! location of the I-th division on the J-th axi, normalized to lie between 0 and 1.
REAL(KIND(1d0)),DIMENSION(50,MAX_SIZE),PUBLIC::XI=1d0
REAL(KIND(1d0)),PUBLIC :: CALLS,TI,TSI
CONTAINS
SUBROUTINE RANDA(NR,R)
IMPLICIT NONE
INTEGER,INTENT(IN) :: NR
REAL(KIND(1d0)),DIMENSION(NR),INTENT(OUT) :: R
INTEGER :: I
! D2P31M=(2**31) - 1 D2P31 =(2**31)(OR AN ADJUSTED VALUE)
REAL(KIND(1d0))::D2P31M=2147483647.d0,D2P31=2147483711.d0
!FIRST EXECUTABLE STATEMENT
DO I=1,NR
DSEED = DMOD(16807.d0*DSEED,D2P31M)
R(I) = DSEED / D2P31
ENDDO
END SUBROUTINE RANDA
SUBROUTINE VEGAS(NDIM,FXN,AVGI,SD,CHI2A,INIT)
!***************************************************************
! SUBROUTINE PERFORMS NDIM-DIMENSIONAL MONTE CARLO INTEG'N
! - BY G.P. LEPAGE SEPT 1976/(REV)AUG 1979
! - ALGORITHM DESCRIBED IN J COMP PHYS 27,192(1978)
!***************************************************************
! Without INIT or INIT=0, CALL VEGAS
! INIT=1 CALL VEGAS1
! INIT=2 CALL VEGAS2
! INIT=3 CALL VEGAS3
!***************************************************************
IMPLICIT NONE
INTEGER,INTENT(IN) :: NDIM
REAL(KIND(1d0)),EXTERNAL :: FXN
INTEGER,INTENT(IN),OPTIONAL :: INIT
REAL(KIND(1d0)),INTENT(INOUT) :: AVGI,SD,CHI2A
REAL(KIND(1d0)),DIMENSION(50,MAX_SIZE):: D,DI
REAL(KIND(1d0)),DIMENSION(50) :: XIN,R
REAL(KIND(1d0)),DIMENSION(MAX_SIZE) :: DX,X,DT,RAND
INTEGER,DIMENSION(MAX_SIZE) :: IA,KG
INTEGER :: initflag
REAL(KIND(1d0)),PARAMETER :: ONE=1.d0
INTEGER :: I, J, K, NPG, NG, ND, NDM, LABEL = 0
REAL(KIND(1d0)) :: DXG, DV2G, XND, XJAC, RC, XN, DR, XO, TI2, WGT, FB, F2B, F, F2
!***************************
!SAVE AVGI,SD,CHI2A
!SQRT(A)=DSQRT(A)
!ALOG(A)=DLOG(A)
!ABS(A)=DABS(A)
!***************************
IF(PRESENT(INIT))THEN
initflag=INIT
ELSE
initflag=0
ENDIF
! INIT=0 - INITIALIZES CUMULATIVE VARIABLES AND GRID
ini0:IF(initflag.LT.1) THEN
NDO=1
DO J=1,NDIM
XI(1,J)=ONE
ENDDO
ENDIF ini0
! INIT=1 - INITIALIZES CUMULATIVE VARIABLES, BUT NOT GRID
ini1:IF(initflag.LT.2) THEN
IT=0
MC_SI=0.d0
SWGT=MC_SI
SCHI=MC_SI
ENDIF ini1
! INIT=2 - NO INITIALIZATION
ini2:IF(initflag.LE.2)THEN
ND=NDMX
NG=1
IF(MDS.NE.0) THEN
NG=(NCALL/2.d0)**(1.d0/NDIM)
MDS=1
IF((2*NG-NDMX).GE.0) THEN
MDS=-1
NPG=NG/NDMX+1
ND=NG/NPG
NG=NPG*ND
ENDIF
ENDIF
K=NG**NDIM ! K sub volumes
NPG=NCALL/K ! The number of random numbers in per sub volumes Ms
IF(NPG.LT.2) NPG=2
CALLS=DBLE(NPG*K) ! The total number of random numbers M
DXG=ONE/NG
DV2G=(CALLS*DXG**NDIM)**2/NPG/NPG/(NPG-ONE) ! 1/(Ms-1)
XND=ND ! ~NDMX!
! determines the number of increments along each axis
NDM=ND-1 ! ~NDMX-1
DXG=DXG*XND ! determines the number of increments along each axis per sub-v
XJAC=ONE/CALLS
DO J=1,NDIM
DX(J)=XU(J)-XL(J)
XJAC=XJAC*DX(J) ! XJAC=Volume/M
ENDDO
! REBIN, PRESERVING BIN DENSITY
IF(ND.NE.NDO) THEN
RC=NDO/XND ! XND=ND
outer:DO J=1, NDIM ! Set the new division
K=0
XN=0.d0
DR=XN
I=K
LABEL=0
inner5:DO
IF(LABEL.EQ.0) THEN
inner4:DO
K=K+1
DR=DR+ONE
XO=XN
XN=XI(K,J)
IF(RC.LE.DR) EXIT
ENDDO inner4
ENDIF
I=I+1
DR=DR-RC
XIN(I)=XN-(XN-XO)*DR
IF(I.GE.NDM) THEN
EXIT
ELSEIF(RC.LE.DR) THEN
LABEL=1
ELSE
LABEL=0
ENDIF
ENDDO inner5
inner:DO I=1,NDM
XI(I,J)=XIN(I)
ENDDO inner
XI(ND,J)=ONE
ENDDO outer
NDO=ND
ENDIF
IF(NPRN.GE.0) WRITE(NDEV,200) NDIM,CALLS,IT,ITMX,ACC,NPRN,&
ALPH,MDS,ND,(XL(J),XU(J),J=1,NDIM)
ENDIF ini2
!ENTRY VEGAS3(NDIM,FXN,AVGI,SD,CHI2A) INIT=3 - MAIN INTEGRATION LOOP
mainloop:DO
IT=IT+1
TI=0.d0
TSI=TI
DO J=1,NDIM
KG(J)=1
DO I=1,ND
D(I,J)=TI
DI(I,J)=TI
ENDDO
ENDDO
LABEL=0
level1:DO
level2:DO
ifla:IF(LABEL.EQ.0)THEN
FB=0.d0
F2B=FB
level3:DO K=1,NPG
CALL RANDA(NDIM,RAND)
WGT=XJAC
DO J=1,NDIM
XN=(KG(J)-RAND(J))*DXG+ONE
IA(J)=XN
IF(IA(J).LE.1) THEN
XO=XI(IA(J),J)
RC=(XN-IA(J))*XO
ELSE
XO=XI(IA(J),J)-XI(IA(J)-1,J)
RC=XI(IA(J)-1,J)+(XN-IA(J))*XO
ENDIF
X(J)=XL(J)+RC*DX(J)
WGT=WGT*XO*XND
ENDDO
F=WGT
F=F*FXN(X,WGT)
F2=F*F
FB=FB+F
F2B=F2B+F2
DO J=1,NDIM
DI(IA(J),J)=DI(IA(J),J)+F
IF(MDS.GE.0) D(IA(J),J)=D(IA(J),J)+F2
ENDDO
ENDDO level3
! K=K-1 !K=NPG
F2B=DSQRT(F2B*DBLE(NPG))
F2B=(F2B-FB)*(F2B+FB)
TI=TI+FB
TSI=TSI+F2B
IF(MDS.LT.0) THEN
DO J=1,NDIM
D(IA(J),J)=D(IA(J),J)+F2B
ENDDO
ENDIF
K=NDIM
ENDIF ifla
KG(K)=MOD(KG(K),NG)+1
IF(KG(K).EQ.1) THEN
EXIT
ELSE
LABEL=0
ENDIF
ENDDO level2
K=K-1
IF(K.GT.0) THEN
LABEL=1
ELSE
EXIT
ENDIF
ENDDO level1
! COMPUTE FINAL RESULTS FOR THIS ITERATION
TSI=TSI*DV2G
TI2=TI*TI
WGT=ONE/TSI
MC_SI=MC_SI+TI*WGT
SWGT=SWGT+WGT
SCHI=SCHI+TI2*WGT
AVGI=MC_SI/SWGT
CHI2A=(SCHI-MC_SI*AVGI)/(IT-0.9999d0)
SD=DSQRT(ONE/SWGT)
IF(NPRN.GE.0) THEN
TSI=DSQRT(TSI)
WRITE(NDEV,201) IT,TI,TSI,AVGI,SD,CHI2A
ENDIF
IF(NPRN.GT.0) THEN
DO J=1,NDIM
WRITE(NDEV,202) J,(XI(I,J),DI(I,J),I=1+NPRN/2,ND,NPRN)
ENDDO
ENDIF
!*************************************************************************************
! REFINE GRID
! XI(k,j)=XI(k,j)-(XI(k,j)-XI(k-1,j))*(sum(R(i),i=1,k)-s*sum(R(i),i=1,ND)/M)/R(k)
! divides the original k-th interval into s parts
!*************************************************************************************
outer2:DO J=1,NDIM
XO=D(1,J)
XN=D(2,J)
D(1,J)=(XO+XN)/2.d0
DT(J)=D(1,J)
inner2:DO I=2,NDM
D(I,J)=XO+XN
XO=XN
XN=D(I+1,J)
D(I,J)=(D(I,J)+XN)/3.d0
DT(J)=DT(J)+D(I,J)
ENDDO inner2
D(ND,J)=(XN+XO)/2.d0
DT(J)=DT(J)+D(ND,J)
ENDDO outer2
le1:DO J=1,NDIM
RC=0.d0
DO I=1,ND
R(I)=0.d0
IF(D(I,J).GT.0.) THEN
XO=DT(J)/D(I,J)
R(I)=((XO-ONE)/XO/DLOG(XO))**ALPH
ENDIF
RC=RC+R(I)
ENDDO
RC=RC/XND
K=0
XN=0.d0
DR=XN
I=K
LABEL=0
le2:DO
le3:DO
IF(LABEL.EQ.0)THEN
K=K+1
DR=DR+R(K)
XO=XN
XN=XI(K,J)
ENDIF
IF(RC.LE.DR) THEN
EXIT
ELSE
LABEL=0
ENDIF
ENDDO le3
I=I+1
DR=DR-RC
XIN(I)=XN-(XN-XO)*DR/R(K)
IF(I.GE.NDM) THEN
EXIT
ELSE
LABEL=1
ENDIF
ENDDO le2
DO I=1,NDM
XI(I,J)=XIN(I)
ENDDO
XI(ND,J)=ONE
ENDDO le1
IF(IT.GE.ITMX.OR.ACC*ABS(AVGI).GE.SD) EXIT
ENDDO mainloop
200 FORMAT(/," INPUT PARAMETERS FOR MC_VEGAS: ",/," NDIM=",I3," NCALL=",F8.0,&
" IT=",I3,/," ITMX=",I3," ACC= ",G9.3,&
" NPRN=",I3,/," ALPH=",F5.2," MDS=",I3," ND=",I4,/,&
"(XL,XU)=",(T10,"(" G12.6,",",G12.6 ")"))
201 FORMAT(/," INTEGRATION BY MC_VEGAS ", " ITERATION NO. ",I3, /,&
" INTEGRAL = ",G14.8, /," SQURE DEV = ",G10.4,/,&
" ACCUMULATED RESULTS: INTEGRAL = ",G14.8,/,&
" DEV = ",G10.4, /," CHI**2 PER IT'N = ",G10.4)
! X is the division of the coordinate
! DELTA I is the sum of F in this interval
202 FORMAT(/,"DATA FOR AXIS ",I2,/," X DELTA I ", &
24H X DELTA I ,18H X DELTA I, &
/(1H ,F7.6,1X,G11.4,5X,F7.6,1X,G11.4,5X,F7.6,1X,G11.4))
END SUBROUTINE VEGAS
END MODULE MC_VEGAS
Main.f90
program main
use my_fxn
use MC_VEGAS
implicit none
integer, parameter :: NDIM = 6
real(kind(0d0)) :: avgi, sd, chi2a
Character(len=40) :: Tablefile
data Tablefile/'CT14LL.pds'/
Call SetCT14(Tablefile)
call vegas(NDIM,fxn_1,avgi,sd,chi2a)
print *, avgi
end program main
After running build.sh
#!/bin/sh
rm -rf *.mod
rm -rf *.o
rm -rf ./calc
rm DATAqq.txt
gfortran -c CT14Pdf.for
gfortran -c FXNqq.f90
gfortran -c MC_VEGAS.f90
gfortran -c MAINqq.f90
gfortran -g -fbacktrace -fcheck=all -Wall -o calc MAINqq.o CT14Pdf.o FXNqq.o MC_VEGAS.o
./calc
rm -rf *.mod
rm -rf *.o
rm -rf ./calc
The whole output has not changed
rm: cannot remove 'DATAqq.txt': No such file or directory
INPUT PARAMETERS FOR MC_VEGAS:
NDIM= 6 NCALL= 46875. IT= 0
ITMX= 5 ACC= -1.00 NPRN= 5
ALPH= 1.50 MDS= 1 ND= 50
(XL,XU)= ( 0.00000 , 1.00000 )
( 0.00000 , 1.00000 )
( 0.00000 , 1.00000 )
( 0.00000 , 1.00000 )
( 0.00000 , 1.00000 )
( 0.00000 , 1.00000 )
INTEGRATION BY MC_VEGAS ITERATION NO. 1
INTEGRAL = NaN
SQURE DEV = NaN
ACCUMULATED RESULTS: INTEGRAL = NaN
DEV = NaN
CHI**2 PER IT'N = NaN
DATA FOR AXIS 1
X DELTA I X DELTA I X DELTA I
.060000 0.2431E-14 .160000 0.5475E-15 .260000 0.8216E-14
.360000 0.3641E-14 .460000 0.6229E-12 .560000 0.6692E-13
.660000 0.9681E-15 .760000 0.9121E-15 .860000 0.2753E-13
.960000 -0.9269E-16
DATA FOR AXIS 2
X DELTA I X DELTA I X DELTA I
.060000 0.1658E-13 .160000 0.5011E-14 .260000 0.8006E-12
.360000 0.1135E-14 .460000 0.9218E-13 .560000 0.7337E-15
.660000 0.6192E-12 .760000 0.3676E-14 .860000 0.2315E-14
.960000 0.5426E-13
DATA FOR AXIS 3
X DELTA I X DELTA I X DELTA I
.060000 0.3197E-14 .160000 0.1096E-12 .260000 0.5996E-14
.360000 0.5695E-13 .460000 0.3240E-14 .560000 0.5504E-13
.660000 0.9276E-15 .760000 0.6193E-12 .860000 0.1151E-13
.960000 0.7968E-17
DATA FOR AXIS 4
X DELTA I X DELTA I X DELTA I
.060000 0.3605E-13 .160000 0.1656E-14 .260000 0.7266E-12
.360000 0.2149E-13 .460000 0.8086E-13 .560000 0.9119E-14
.660000 0.3692E-15 .760000 0.6499E-15 .860000 0.1906E-17
.960000 0.1542E-19
DATA FOR AXIS 5
X DELTA I X DELTA I X DELTA I
.060000 -0.4229E-15 .160000 -0.4056E-14 .260000 -0.1121E-14
.360000 0.6757E-15 .460000 0.7460E-14 .560000 0.9331E-15
.660000 0.8301E-14 .760000 0.6595E-14 .860000 -0.5203E-11
.960000 0.6361E-12
DATA FOR AXIS 6
X DELTA I X DELTA I X DELTA I
.060000 0.2111E-12 .160000 0.5410E-13 .260000 0.1418E-12
.360000 0.1103E-13 .460000 0.8338E-14 .560000 -0.5840E-14
.660000 0.1263E-14 .760000 -0.1501E-15 .860000 0.4647E-14
.960000 0.3134E-15
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
#0 0x7F9D828B0E08
#1 0x7F9D828AFF90
#2 0x7F9D81FE24AF
#3 0x43586C in __mc_vegas_MOD_vegas
#4 0x400EAE in MAIN__ at MAINqq.f90:?
Segmentation fault (core dumped)
I was writing code to use Fortran Eispack routines (compute eigenvalues and eigenvectors, just to check if the values would be different from the ones I got from Matlab), but every time it calls the qzhes subroutine the program hangs.
I load matrixes from files.
Tried commenting the call, and it works without an issue.
I just learned Fortran, and with the help of the internet I wrote this code (which compiles and run):
program qz
IMPLICIT NONE
INTEGER:: divm, i, divg
INTEGER(kind=4) :: dimen
LOGICAL :: matz
REAL(kind = 8), DIMENSION(:,:), ALLOCATABLE:: ma
REAL(kind = 8), DIMENSION(:), ALLOCATABLE:: tabm
REAL(kind = 8), DIMENSION(:,:), ALLOCATABLE:: ga
REAL(kind = 8), DIMENSION(:), ALLOCATABLE:: tabg
REAL(kind = 8), DIMENSION(:,:), ALLOCATABLE:: zet
divm = 1
divg = 2
dimen = 20
matz = .TRUE.
ALLOCATE(ma(1:dimen,1:dimen))
ALLOCATE(tabm(1:dimen))
ALLOCATE(ga(1:dimen,1:dimen))
ALLOCATE(tabg(1:dimen))
OPEN(divm, FILE='Em.txt')
DO i=1,dimen
READ (divm,*) tabm
ma(1:dimen,i)=tabm
END DO
CLOSE(divm)
OPEN(divg, FILE='Gje.txt')
DO i=1,dimen
READ (divg,*) tabg
ga(1:dimen,i)=tabg
END DO
CLOSE(divg)
call qzhes(dimen, ma, ga, matz, zet)
OPEN(divm, FILE='Em2.txt')
DO i=1,dimen
tabm = ma(1:dimen,i)
WRITE (divm,*) tabm
END DO
CLOSE(divm)
OPEN(divg, FILE='Gje2.txt')
DO i=1,dimen
tabg = ga(1:dimen,i)
WRITE (divg,*) tabg
END DO
CLOSE(divg)
end program qz
...//EISPACK subrotines//...
Matrixes:
Gje.txt:https://drive.google.com/file/d/0BxH3QOkswLy_c2hmTGpGVUI3NzQ/view?usp=sharing
Em.txt:https://drive.google.com/file/d/0BxH3QOkswLy_OEtJUGQwN3ZXX2M/view?usp=sharing
Edit:
subroutine qzhes ( n, a, b, matz, z )
!*****************************************************************************80
!
!! QZHES carries out transformations for a generalized eigenvalue problem.
!
! Discussion:
!
! This subroutine is the first step of the QZ algorithm
! for solving generalized matrix eigenvalue problems.
!
! This subroutine accepts a pair of real general matrices and
! reduces one of them to upper Hessenberg form and the other
! to upper triangular form using orthogonal transformations.
! it is usually followed by QZIT, QZVAL and, possibly, QZVEC.
!
! Licensing:
!
! This code is distributed under the GNU LGPL license.
!
! Modified:
!
! 18 October 2009
!
! Author:
!
! Original FORTRAN77 version by Smith, Boyle, Dongarra, Garbow, Ikebe,
! Klema, Moler.
! FORTRAN90 version by John Burkardt.
!
! Reference:
!
! James Wilkinson, Christian Reinsch,
! Handbook for Automatic Computation,
! Volume II, Linear Algebra, Part 2,
! Springer, 1971,
! ISBN: 0387054146,
! LC: QA251.W67.
!
! Brian Smith, James Boyle, Jack Dongarra, Burton Garbow,
! Yasuhiko Ikebe, Virginia Klema, Cleve Moler,
! Matrix Eigensystem Routines, EISPACK Guide,
! Lecture Notes in Computer Science, Volume 6,
! Springer Verlag, 1976,
! ISBN13: 978-3540075462,
! LC: QA193.M37.
!
! Parameters:
!
! Input, integer ( kind = 4 ) N, the order of the matrices.
!
! Input/output, real ( kind = 8 ) A(N,N). On input, the first real general
! matrix. On output, A has been reduced to upper Hessenberg form. The
! elements below the first subdiagonal have been set to zero.
!
! Input/output, real ( kind = 8 ) B(N,N). On input, a real general matrix.
! On output, B has been reduced to upper triangular form. The elements
! below the main diagonal have been set to zero.
!
! Input, logical MATZ, should be TRUE if the right hand transformations
! are to be accumulated for later use in computing eigenvectors.
!
! Output, real ( kind = 8 ) Z(N,N), contains the product of the right hand
! transformations if MATZ is TRUE.
!
implicit none
integer ( kind = 4 ) n
real ( kind = 8 ) a(n,n)
real ( kind = 8 ) b(n,n)
integer ( kind = 4 ) i
integer ( kind = 4 ) j
integer ( kind = 4 ) k
integer ( kind = 4 ) l
integer ( kind = 4 ) l1
integer ( kind = 4 ) lb
logical matz
integer ( kind = 4 ) nk1
integer ( kind = 4 ) nm1
real ( kind = 8 ) r
real ( kind = 8 ) rho
real ( kind = 8 ) s
real ( kind = 8 ) t
real ( kind = 8 ) u1
real ( kind = 8 ) u2
real ( kind = 8 ) v1
real ( kind = 8 ) v2
real ( kind = 8 ) z(n,n)
!
! Set Z to the identity matrix.
!
if ( matz ) then
z(1:n,1:n) = 0.0D+00
do i = 1, n
z(i,i) = 1.0D+00
end do
end if
!
! Reduce B to upper triangular form.
!
if ( n <= 1 ) then
return
end if
nm1 = n - 1
do l = 1, n - 1
l1 = l + 1
s = sum ( abs ( b(l+1:n,l) ) )
if ( s /= 0.0D+00 ) then
s = s + abs ( b(l,l) )
b(l:n,l) = b(l:n,l) / s
r = sqrt ( sum ( b(l:n,l)**2 ) )
r = sign ( r, b(l,l) )
b(l,l) = b(l,l) + r
rho = r * b(l,l)
do j = l + 1, n
t = dot_product ( b(l:n,l), b(l:n,j) )
b(l:n,j) = b(l:n,j) - t * b(l:n,l) / rho
end do
do j = 1, n
t = dot_product ( b(l:n,l), a(l:n,j) )
a(l:n,j) = a(l:n,j) - t * b(l:n,l) / rho
end do
b(l,l) = - s * r
b(l+1:n,l) = 0.0D+00
end if
end do
!
! Reduce A to upper Hessenberg form, while keeping B triangular.
!
if ( n == 2 ) then
return
end if
do k = 1, n - 2
nk1 = nm1 - k
do lb = 1, nk1
l = n - lb
l1 = l + 1
!
! Zero A(l+1,k).
!
s = abs ( a(l,k) ) + abs ( a(l1,k) )
if ( s /= 0.0D+00 ) then
u1 = a(l,k) / s
u2 = a(l1,k) / s
r = sign ( sqrt ( u1**2 + u2**2 ), u1 )
v1 = - ( u1 + r) / r
v2 = - u2 / r
u2 = v2 / v1
do j = k, n
t = a(l,j) + u2 * a(l1,j)
a(l,j) = a(l,j) + t * v1
a(l1,j) = a(l1,j) + t * v2
end do
a(l1,k) = 0.0D+00
do j = l, n
t = b(l,j) + u2 * b(l1,j)
b(l,j) = b(l,j) + t * v1
b(l1,j) = b(l1,j) + t * v2
end do
!
! Zero B(l+1,l).
!
s = abs ( b(l1,l1) ) + abs ( b(l1,l) )
if ( s /= 0.0 ) then
u1 = b(l1,l1) / s
u2 = b(l1,l) / s
r = sign ( sqrt ( u1**2 + u2**2 ), u1 )
v1 = -( u1 + r ) / r
v2 = -u2 / r
u2 = v2 / v1
do i = 1, l1
t = b(i,l1) + u2 * b(i,l)
b(i,l1) = b(i,l1) + t * v1
b(i,l) = b(i,l) + t * v2
end do
b(l1,l) = 0.0D+00
do i = 1, n
t = a(i,l1) + u2 * a(i,l)
a(i,l1) = a(i,l1) + t * v1
a(i,l) = a(i,l) + t * v2
end do
if ( matz ) then
do i = 1, n
t = z(i,l1) + u2 * z(i,l)
z(i,l1) = z(i,l1) + t * v1
z(i,l) = z(i,l) + t * v2
end do
end if
end if
end if
end do
end do
return
end
I would expand the allocation Process
integer :: status1, status2, status3, status4, status5
! check the allocation, returnvalue 0 means ok
ALLOCATE(ma(1:dimen,1:dimen), stat=status1)
ALLOCATE(tabm(1:dimen), stat=status2)
ALLOCATE(ga(1:dimen,1:dimen), stat=status3)
ALLOCATE(tabg(1:dimen), stat=status4)
ALLOCATE(zet(1:dimen,1:dimen), stat=status5)
And at the end of the Program deallocate all arrays, because, you maybe have no memoryleak now, but if you put this program into a subroutine and use it several time with big matricies during a programrun, the program could leak some serious memory.
....
DO i=1,dimen
tabg = ga(1:dimen,i)
WRITE (divg,*) tabg
END DO
CLOSE(divg)
DEALLOCATE(ma, stat=status1)
DEALLOCATE(tabm, stat=status2)
DEALLOCATE(ga, stat=status3)
DEALLOCATE(tabg, stat=status4)
DEALLOCATE(zet, stat=status5)
You can check again with the status integer, if the deallocation was ok, returnvalue again 0.