Related
I created a Panel in a wxFrame and then created a FigureCanvas. I would like to fit the FigureCanvas into the panel completely, but somehow the FigureCanvas does not go into the panel2_2, but exactly on just the opposite side.
Following is my code.
import wx
from numpy import arange, sin, pi
import matplotlib
matplotlib.use('WXAgg')
from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas
from matplotlib.figure import Figure
class Frame1(wx.Frame):
def __init__(self, prnt):
wx.Frame.__init__(self, parent=prnt,
pos=wx.Point(0, 0), size=wx.Size(1340, 720),
style=wx.DEFAULT_FRAME_STYLE)
self.panel2_2 = wx.Panel(parent=self,
pos=wx.Point(940, 30), size=wx.Size(400, 690),
style=wx.TAB_TRAVERSAL)
self.figure = Figure()
self.axes = self.figure.add_subplot(111)
self.canvas = FigureCanvas(self.panel2_2, -1, self.figure)
sizer = wx.BoxSizer(wx.HORIZONTAL)
sizer.Add(self.canvas, 0, wx.EXPAND)
self.panel2_2.SetSizer(sizer)
self.panel2_2.Fit()
t = arange(0.0, 3.0, 0.01)
s = sin(2 * pi * t)
self.axes.plot(t, s)
#Every wxWidgets application must have a class derived from wxApp
class MyApp(wx.App):
# wxWidgets calls this method to initialize the application
def OnInit(self):
# Create an instance of our customized Frame class
self.frame = Frame1(None)
self.SetTopWindow(self.frame)
self.frame.Show()
return True
if __name__ == '__main__':
application = MyApp(0)
application.MainLoop()
and the result
I would like to have the image on the panel2_2 ( that is on the right hand side ) and not on the left hand side
I think the canvas is indeed going to panel2_2. The problem in your MWE is that you do not define a sizer for panel2_2. Therefore, panel2_2 is rendered from the upper left corner of the frame. This results in panel2_2 plus the canvas showing in the left of the frame. What you see to the right of the canvas is not panel2_2 but the rest of the frame since the size of the frame is larger than the size of panel2_2. If you add a blue panel1_1 and assign another wx.BoxSizer to the frame you get the canvas showing to the right.
import wx
from numpy import arange, sin, pi
import matplotlib
matplotlib.use('WXAgg')
from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas
from matplotlib.figure import Figure
class Frame1(wx.Frame):
def __init__(self, prnt):
wx.Frame.__init__(self, parent=prnt,
pos=wx.Point(0, 0), size=wx.Size(1340, 720),
style=wx.DEFAULT_FRAME_STYLE)
self.panel1_1 = wx.Panel(parent=self, size=(400, 690))
self.panel1_1.SetBackgroundColour('blue')
self.panel2_2 = wx.Panel(parent=self,
pos=wx.Point(940, 30), size=wx.Size(400, 690),
style=wx.TAB_TRAVERSAL)
self.figure = Figure()
self.axes = self.figure.add_subplot(111)
self.canvas = FigureCanvas(self.panel2_2, -1, self.figure)
sizer = wx.BoxSizer(wx.HORIZONTAL)
sizer.Add(self.canvas, 0, wx.EXPAND)
self.panel2_2.SetSizer(sizer)
self.panel2_2.Fit()
sizerPanels = wx.BoxSizer(wx.HORIZONTAL)
sizerPanels.Add(self.panel1_1)
sizerPanels.Add(self.panel2_2)
sizerPanels.Fit(self)
self.SetSizer(sizerPanels)
t = arange(0.0, 3.0, 0.01)
s = sin(2 * pi * t)
self.axes.plot(t, s)
self.Center()
#Every wxWidgets application must have a class derived from wxApp
class MyApp(wx.App):
# wxWidgets calls this method to initialize the application
def OnInit(self):
# Create an instance of our customized Frame class
self.frame = Frame1(None)
self.SetTopWindow(self.frame)
self.frame.Show()
return True
if __name__ == '__main__':
application = MyApp(0)
application.MainLoop()
So using tkinter I have made a simple program that changes the color of all shapes on the canvas to a random color every second ,what I am looking for is a way to register every screen change and write down the time between screen changes in a separate file.I also need to do it without the help of too many external libraries if possible.
My code so far:
#!/usr/bin/python -W ignore::DeprecationWarning
import Tkinter
import tkMessageBox
import time
import random
colors = ['DarkOrchid1','chocolate3','gold2','khaki2','chartreuse2','deep pink','white','grey','orange']
top = Tkinter.Tk()
global b
b=0
C = Tkinter.Canvas(top, bg="blue", height=600, width=800)
bcg1=C.create_rectangle(0,0,800,100,fill=random.choice(colors))
bcg2=C.create_rectangle(0,100,800,200,fill=random.choice(colors))
bcg3=C.create_rectangle(0,200,800,300,fill=random.choice(colors))
bcg4=C.create_rectangle(0,300,800,400,fill=random.choice(colors))
bcg5=C.create_rectangle(0,400,800,500,fill=random.choice(colors))
bcg6=C.create_rectangle(0,500,800,600,fill=random.choice(colors))
bcgs=[bcg1,bcg2,bcg3,bcg4,bcg5,bcg6]
coord = 10, 50, 240, 210
rect1=C.create_rectangle(0,0,100,100,fill="green")
rect2=C.create_rectangle(700,500,800,600,fill="green")
rect3=C.create_rectangle(0,500,100,600,fill="green")
rect4=C.create_rectangle(700,0,800,100,fill="green")
def color():
global b
global bcgs
global color
if b==0:
C.itemconfig(rect1,fill='green')
C.itemconfig(rect2,fill='green')
C.itemconfig(rect3,fill='green')
C.itemconfig(rect4,fill='green')
b=1
count=0
for i in range(len(bcgs)):
C.itemconfig(bcgs[i],fill=random.choice(colors))
elif b==1:
C.itemconfig(rect1,fill='red')
C.itemconfig(rect2,fill='red')
C.itemconfig(rect3,fill='red')
C.itemconfig(rect4,fill='red')
b=0
for i in range(len(bcgs)):
C.itemconfig(bcgs[i],fill=random.choice(colors))
top.after(2000, color)
C.pack()
color()
top.mainloop()
Unless you use a real time OS, you will never get perfect timing. You can bank on being a few milliseconds off the mark. To see how much, you can calculate the difference in time.time(). For the best accuracy, move the after call to the first thing in the function.
That plus some other improvements:
#!/usr/bin/python -W ignore::DeprecationWarning
import Tkinter
import time
import random
from itertools import cycle
colors = ['DarkOrchid1','chocolate3','gold2','khaki2','chartreuse2','deep pink','white','grey','orange']
rect_colors = cycle(['green', 'red'])
top = Tkinter.Tk()
C = Tkinter.Canvas(top, bg="blue", height=600, width=800)
bcg1=C.create_rectangle(0,0,800,100,fill=random.choice(colors))
bcg2=C.create_rectangle(0,100,800,200,fill=random.choice(colors))
bcg3=C.create_rectangle(0,200,800,300,fill=random.choice(colors))
bcg4=C.create_rectangle(0,300,800,400,fill=random.choice(colors))
bcg5=C.create_rectangle(0,400,800,500,fill=random.choice(colors))
bcg6=C.create_rectangle(0,500,800,600,fill=random.choice(colors))
bcgs=[bcg1,bcg2,bcg3,bcg4,bcg5,bcg6]
coord = 10, 50, 240, 210
rect1=C.create_rectangle(0,0,100,100,fill="green")
rect2=C.create_rectangle(700,500,800,600,fill="green")
rect3=C.create_rectangle(0,500,100,600,fill="green")
rect4=C.create_rectangle(700,0,800,100,fill="green")
rects = [rect1,rect2,rect3,rect4]
last_time = time.time()
def color():
top.after(2000, color)
global last_time
rect_color = next(rect_colors)
for item in rects:
C.itemconfig(item, fill=rect_color)
for item in bcgs:
C.itemconfig(item, fill=random.choice(colors))
print("{} seconds since the last run".format(time.time() - last_time))
last_time = time.time()
C.pack()
color()
top.mainloop()
I have plotted a contour plot as background which represent the altitude of the area.
And 100 scatter points were set represent the real pollutant emission source. Is there a method to obtain the altitude of each point?
This is my code:
%matplotlib inline
fig=plt.figure(figsize=(16,16))
ax=plt.subplot()
xi,yi = np.linspace(195.2260,391.2260,50),
np.linspace(4108.9341,4304.9341,50)
height=np.array(list(csv.reader(open("/Users/HYF/Documents/SJZ_vis/Concentration/work/terr_grd.csv","rb"),delimiter=','))).astype('float')
cmap = cm.get_cmap(name='terrain', lut=None)
terrf = plt.contourf(xi, yi, height,100, cmap=cmap)
terr = plt.contour(xi, yi, height, 100,
colors='k',alpha=0.5
)
plt.clabel(terr, fontsize=7, inline=20)
ax.autoscale(False)
point= plt.scatter(dat_so2["xp"], dat_so2["yp"], marker='o',c="grey",s=40)
ax.autoscale(False)
for i in range(0,len(dat_so2["xp"]),1):
plt.text(dat_so2["xp"][i], dat_so2["yp"][i],
str(i),color="White",fontsize=16)
ax.set_xlim(225,275)
ax.set_ylim(4200,4260)
plt.show()
You can do this with scipy.interpolate.interp2d
For example, you could add to your code:
from scipy import interpolate
hfunc = interpolate.interp2d(xi,yi,height)
pointheights = np.zeros(dat_so2["xp"].shape)
for i,(x,y) in enumerate(zip(dat_so2["xp"],dat_so2["yp"])):
pointheights[i]=hfunc(x,y)
Putting this together with the rest of your script, and some sample data, gives this (I've simplified a couple of things here, but you get the idea):
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
from scipy import interpolate
fig=plt.figure(figsize=(8,8))
ax=plt.subplot()
#xi,yi = np.linspace(195.2260,391.2260,50),np.linspace(4108.9341,4304.9341,50)
xi,yi = np.linspace(225,275,50),np.linspace(4200,4260,50)
# A made up function of height (in place of your data)
XI,YI = np.meshgrid(xi,yi)
height = (XI-230.)**2 + (YI-4220.)**2
#height=np.array(list(csv.reader(open("/Users/HYF/Documents/SJZ_vis/Concentration/work/terr_grd.csv","rb"),delimiter=','))).astype('float')
cmap = cm.get_cmap(name='terrain', lut=None)
terrf = plt.contourf(xi, yi, height,10, cmap=cmap)
terr = plt.contour(xi, yi, height, 10,
colors='k',alpha=0.5
)
plt.clabel(terr, fontsize=7, inline=20)
ax.autoscale(False)
# Some made up sample points
dat_so2 = np.array([(230,4210),(240,4220),(250,4230),(260,4240),(270,4250)],dtype=[("xp","f4"),("yp","f4")])
point= plt.scatter(dat_so2["xp"], dat_so2["yp"], marker='o',c="grey",s=40)
# The interpolation function
hfunc = interpolate.interp2d(xi,yi,height)
# Now, for each point, lets interpolate the height
pointheights = np.zeros(dat_so2["xp"].shape)
for i,(x,y) in enumerate(zip(dat_so2["xp"],dat_so2["yp"])):
pointheights[i]=hfunc(x,y)
print pointheights
ax.autoscale(False)
for i in range(0,len(dat_so2["xp"]),1):
plt.text(dat_so2["xp"][i], dat_so2["yp"][i],
str(i),color="White",fontsize=16)
# We can also add a height label to the plot
plt.text(dat_so2["xp"][i], dat_so2["yp"][i],
"{:4.1f}".format(pointheights[i]),color="black",fontsize=16,ha='right',va='top')
ax.set_xlim(225,275)
ax.set_ylim(4200,4260)
plt.show()
I have this code in which I simply display an image using OpenCV:
import numpy as np
import cv2
class LoadImage:
def loadImage(self):
self.img=cv2.imread('photo.png')
cv2.imshow('Test',self.img)
self.pressedkey=cv2.waitKey(0)
# Wait for ESC key to exit
if self.pressedkey==27:
cv2.destroyAllWindows()
# Start of the main program here
if __name__=="__main__":
LI=LoadImage()
LI.loadImage()
Once the window displayed with the photo in it, I want to display on the console (terminal) the position of the mouse when I click over the picture. I have no idea how to perform this. Any help please?
Here is an example mouse callback function, that captures the left button double-click
def draw_circle(event,x,y,flags,param):
global mouseX,mouseY
if event == cv2.EVENT_LBUTTONDBLCLK:
cv2.circle(img,(x,y),100,(255,0,0),-1)
mouseX,mouseY = x,y
You then need to bind that function to a window that will capture the mouse click
img = np.zeros((512,512,3), np.uint8)
cv2.namedWindow('image')
cv2.setMouseCallback('image',draw_circle)
then, in a infinite processing loop (or whatever you want)
while(1):
cv2.imshow('image',img)
k = cv2.waitKey(20) & 0xFF
if k == 27:
break
elif k == ord('a'):
print mouseX,mouseY
What Does This Code Do?
It stores the mouse position in global variables mouseX & mouseY every time you double click inside the black window and press the a key that will be created.
elif k == ord('a'):
print mouseX,mouseY
will print the current stored mouse click location every time you press the a button.
Code "Borrowed" from here.
Below is my implementation:
No need to store the click position, ONLY display it:
def onMouse(event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
# draw circle here (etc...)
print('x = %d, y = %d'%(x, y))
cv2.setMouseCallback('WindowName', onMouse)
If you want to use the positions in other places of your code, you can use below way to obtain the coordinates:
posList = []
def onMouse(event, x, y, flags, param):
global posList
if event == cv2.EVENT_LBUTTONDOWN:
posList.append((x, y))
cv2.setMouseCallback('WindowName', onMouse)
posNp = np.array(posList) # convert to NumPy for later use
import cv2
cv2.imshow("image", img)
cv2.namedWindow('image')
cv2.setMouseCallback('image', on_click)
def on_click(event, x, y, p1, p2):
if event == cv2.EVENT_LBUTTONDOWN:
cv2.circle(lastImage, (x, y), 3, (255, 0, 0), -1)
You can detect mouse position clicking over a picture via performing the various mouse click events.
You just to remember one thing while performing the mouse clicks events is that, you should have to use the same window name at all places wherever you are using the cv2.imshow or cv2.namedWindow
I given the working code in answer that uses python 3.x and opencv in the following the stackoverflow post:
https://stackoverflow.com/a/60445099/11493115
You can refer the above link for better explanation.
Code:
import cv2
import numpy as np
#This will display all the available mouse click events
events = [i for i in dir(cv2) if 'EVENT' in i]
print(events)
#This variable we use to store the pixel location
refPt = []
#click event function
def click_event(event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
print(x,",",y)
refPt.append([x,y])
font = cv2.FONT_HERSHEY_SIMPLEX
strXY = str(x)+", "+str(y)
cv2.putText(img, strXY, (x,y), font, 0.5, (255,255,0), 2)
cv2.imshow("image", img)
if event == cv2.EVENT_RBUTTONDOWN:
blue = img[y, x, 0]
green = img[y, x, 1]
red = img[y, x, 2]
font = cv2.FONT_HERSHEY_SIMPLEX
strBGR = str(blue)+", "+str(green)+","+str(red)
cv2.putText(img, strBGR, (x,y), font, 0.5, (0,255,255), 2)
cv2.imshow("image", img)
#Here, you need to change the image name and it's path according to your directory
img = cv2.imread("D:/pictures/abc.jpg")
cv2.imshow("image", img)
#calling the mouse click event
cv2.setMouseCallback("image", click_event)
cv2.waitKey(0)
cv2.destroyAllWindows()
Here is class based implementation of OpenCV mouse call back for getting point on an image,
import cv2
import numpy as np
#events = [i for i in dir(cv2) if 'EVENT' in i]
#print (events)
class MousePts:
def __init__(self,windowname,img):
self.windowname = windowname
self.img1 = img.copy()
self.img = self.img1.copy()
cv2.namedWindow(windowname,cv2.WINDOW_NORMAL)
cv2.imshow(windowname,img)
self.curr_pt = []
self.point = []
def select_point(self,event,x,y,flags,param):
if event == cv2.EVENT_LBUTTONDOWN:
self.point.append([x,y])
#print(self.point)
cv2.circle(self.img,(x,y),5,(0,255,0),-1)
elif event == cv2.EVENT_MOUSEMOVE:
self.curr_pt = [x,y]
#print(self.point)
def getpt(self,count=1,img=None):
if img is not None:
self.img = img
else:
self.img = self.img1.copy()
cv2.namedWindow(self.windowname,cv2.WINDOW_NORMAL)
cv2.imshow(self.windowname,self.img)
cv2.setMouseCallback(self.windowname,self.select_point)
self.point = []
while(1):
cv2.imshow(self.windowname,self.img)
k = cv2.waitKey(20) & 0xFF
if k == 27 or len(self.point)>=count:
break
#print(self.point)
cv2.setMouseCallback(self.windowname, lambda *args : None)
#cv2.destroyAllWindows()
return self.point, self.img
if __name__=='__main__':
img = np.zeros((512,512,3), np.uint8)
windowname = 'image'
coordinateStore = MousePts(windowname,img)
pts,img = coordinateStore.getpt(3)
print(pts)
pts,img = coordinateStore.getpt(3,img)
print(pts)
cv2.imshow(windowname,img)
cv2.waitKey(0)
I have ported the PyIgnition library from Pygame to opencv2. Find the code at https://github.com/bunkahle/particlescv2
There also several examples on how to use the particle engine for Python.
In case, you want to get the coordinates by hovering over the image in Python 3, you could try this:
import numpy as np
import cv2 as cv
import os
import sys
# Reduce the size of image by this number to show completely in screen
descalingFactor = 2
# mouse callback function, which will print the coordinates in console
def print_coord(event,x,y,flags,param):
if event == cv.EVENT_MOUSEMOVE:
print(f'{x*descalingFactor, y*descalingFactor}\r', end="")
img = cv.imread(cv.samples.findFile('TestImage.png'))
imgheight, imgwidth = img.shape[:2]
resizedImg = cv.resize(img,(int(imgwidth/descalingFactor), int(imgheight/descalingFactor)), interpolation = cv.INTER_AREA)
cv.namedWindow('Get Coordinates')
cv.setMouseCallback('Get Coordinates',print_coord)
cv.imshow('Get Coordinates',resizedImg)
cv.waitKey(0)
If anyone wants a multi-process-based GUI for drawing points and dragging to move them, here is a single file script for same.
I currently have a Django project, with a view function, with code like the following (code copied from this post):
from pylab import figure, axes, pie, title
from matplotlib.backends.backend_agg import FigureCanvasAgg
def test_matplotlib(request):
f = figure(1, figsize=(6,6))
ax = axes([0.1, 0.1, 0.8, 0.8])
labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
fracs = [15,30,45, 10]
explode=(0, 0.05, 0, 0)
pie(fracs, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True)
title('Raining Hogs and Dogs', bbox={'facecolor':'0.8', 'pad':5})
canvas = FigureCanvasAgg(f)
response = HttpResponse(content_type='image/png')
canvas.print_png(response)
return response
It creates a png from a graph and serves it directly. How can I make the background of the graph transparent in this png?
Untested, but this should work. You don't have to write to an (actual) file, a file-like object should work. This code saves the image into the response.
def test_matplotlib(request):
f = figure(1, figsize=(6,6))
ax = axes([0.1, 0.1, 0.8, 0.8])
labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
fracs = [15,30,45, 10]
explode=(0, 0.05, 0, 0)
pie(fracs, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True)
title('Raining Hogs and Dogs', bbox={'facecolor':'0.8', 'pad':5})
#canvas = FigureCanvasAgg(f)
response = HttpResponse(content_type='image/png')
f.savefig(response, transparent=True, format='png')
#canvas.print_png(response)
return response