Is the order of execution always the same in C/C++ - c++

Will this code always result in the same result?
return c * (t /= d) * t * t + b;
So I expect:
return ((c * (t / d) ^ 3) + b);
But I am not sure if the compiler can also interpret it as:
return ((c * t * t * (t / d)) + b)
I have searched in the C standard but could not find an answer,
I know that x = x++ is undefined but here I am not sure because of the () around the t /= d which I think force the compiler to first calculate that statement.

I have searched in the C standard but could not find an answer
The thing you're searching for is the sequence point.
Your expression
c * (t /= d) * t * t + b
doesn't contain any sequence points, so the sub-expressions may be evaluated in any relative order.
NOTE that this applies to C, since you mentioned that in the question. You've also tagged the related-but-very different language C++, which has different rules. Luckily, in this case, they give exactly the same result.
The relevant text from the 2014-11-19 working draft PDF:N4296 is
1.9 Program Execution [intro.execution]
...
14 Every value computation and side effect associated with a full-expression is sequenced before every value
computation and side effect associated with the next full-expression to be evaluated.
15 Except where noted, evaluations of operands of individual operators and of subexpressions of individual
expressions are unsequenced. [ Note: In an expression that is evaluated more than once during the execution
of a program, unsequenced and indeterminately sequenced evaluations of its subexpressions need not be
performed consistently in different evaluations. — end note ] The value computations of the operands of an
operator are sequenced before the value computation of the result of the operator. If a side effect on a scalar
object is unsequenced relative to either another side effect on the same scalar object or a value computation
using the value of the same scalar object, and they are not potentially concurrent (1.10), the behavior is
undefined. [ Note: The next section imposes similar, but more complex restrictions on potentially concurrent
computations. — end note ]
So the logic in C++ is that unless things are explicitly sequenced (eg, by a ; separating two full expressions), then they can happen in any order.
As the (second) highlighted section mentions, when two un-sequenced sub-expressions modify the same object (or one modifies and one reads), the behaviour is undefined.

The above expression, with parenthesis making the order of operations explicit, is as follows:
return ((((c * (t /= d)) * t) * t) + b);
The problem here, however, is that there is no sequence point in this expression. So any of the subexpressions can be evaluated in any order.
For example, the compiler may choose to evaluate the value of t once, then use the original value each place it appears. Conversely, it may first evaluate t /= d which modifies t, then use this modified value anyplace else it appears.
In short, because you are both reading and writing a variable in a single expression without a sequence point, you invoke undefined behavior.

The following statement:
return c * (t /= d) * t * t + b;
invokes undefined behaviour in C (and I believe in C++ too). This is because t is evaluated twice (counting the (t /= d) subexpression) despite of an unsequenced side effect (produced by the compound assignment operator), that is affecting object represented by t variable.
The moment when you encounter UB is the one you should stop thinking about "proper" value of the expression. There is none, because anything is possible, including turning off your PC.
The recent versions of gcc and clang with -Wall may tell you that expression is suspected of invoking UB. Here, the warnings are:
warning: operation on 't' may be undefined [-Wsequence-point]
warning: unsequenced modification and access to 't' [-Wunsequenced]

Related

Difference in Behavior between Incrementing Global vs Local variables in C++ [duplicate]

What are "sequence points"?
What is the relation between undefined behaviour and sequence points?
I often use funny and convoluted expressions like a[++i] = i;, to make myself feel better. Why should I stop using them?
If you've read this, be sure to visit the follow-up question Undefined behavior and sequence points reloaded.
(Note: This is meant to be an entry to Stack Overflow's C++ FAQ. If you want to critique the idea of providing an FAQ in this form, then the posting on meta that started all this would be the place to do that. Answers to that question are monitored in the C++ chatroom, where the FAQ idea started out in the first place, so your answer is very likely to get read by those who came up with the idea.)
C++98 and C++03
This answer is for the older versions of the C++ standard. The C++11 and C++14 versions of the standard do not formally contain 'sequence points'; operations are 'sequenced before' or 'unsequenced' or 'indeterminately sequenced' instead. The net effect is essentially the same, but the terminology is different.
Disclaimer : Okay. This answer is a bit long. So have patience while reading it. If you already know these things, reading them again won't make you crazy.
Pre-requisites : An elementary knowledge of C++ Standard
What are Sequence Points?
The Standard says
At certain specified points in the execution sequence called sequence points, all side effects of previous evaluations
shall be complete and no side effects of subsequent evaluations shall have taken place. (§1.9/7)
Side effects? What are side effects?
Evaluation of an expression produces something and if in addition there is a change in the state of the execution environment it is said that the expression (its evaluation) has some side effect(s).
For example:
int x = y++; //where y is also an int
In addition to the initialization operation the value of y gets changed due to the side effect of ++ operator.
So far so good. Moving on to sequence points. An alternation definition of seq-points given by the comp.lang.c author Steve Summit:
Sequence point is a point in time at which the dust has settled and all side effects which have been seen so far are guaranteed to be complete.
What are the common sequence points listed in the C++ Standard?
Those are:
at the end of the evaluation of full expression (§1.9/16) (A full-expression is an expression that is not a subexpression of another expression.)1
Example :
int a = 5; // ; is a sequence point here
in the evaluation of each of the following expressions after the evaluation of the first expression (§1.9/18) 2
a && b (§5.14)
a || b (§5.15)
a ? b : c (§5.16)
a , b (§5.18) (here a , b is a comma operator; in func(a,a++) , is not a comma operator, it's merely a separator between the arguments a and a++. Thus the behaviour is undefined in that case (if a is considered to be a primitive type))
at a function call (whether or not the function is inline), after the evaluation of all function arguments (if any) which
takes place before execution of any expressions or statements in the function body (§1.9/17).
1 : Note : the evaluation of a full-expression can include the evaluation of subexpressions that are not lexically
part of the full-expression. For example, subexpressions involved in evaluating default argument expressions (8.3.6) are considered to be created in the expression that calls the function, not the expression that defines the default argument
2 : The operators indicated are the built-in operators, as described in clause 5. When one of these operators is overloaded (clause 13) in a valid context, thus designating a user-defined operator function, the expression designates a function invocation and the operands form an argument list, without an implied sequence point between them.
What is Undefined Behaviour?
The Standard defines Undefined Behaviour in Section §1.3.12 as
behavior, such as might arise upon use of an erroneous program construct or erroneous data, for which this International Standard imposes no requirements 3.
Undefined behavior may also be expected when this
International Standard omits the description of any explicit definition of behavior.
3 : permissible undefined behavior ranges from ignoring the situation completely with unpredictable results, to behaving during translation or program execution in a documented manner characteristic of the environment (with or with-
out the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic message).
In short, undefined behaviour means anything can happen from daemons flying out of your nose to your girlfriend getting pregnant.
What is the relation between Undefined Behaviour and Sequence Points?
Before I get into that you must know the difference(s) between Undefined Behaviour, Unspecified Behaviour and Implementation Defined Behaviour.
You must also know that the order of evaluation of operands of individual operators and subexpressions of individual expressions, and the order in which side effects take place, is unspecified.
For example:
int x = 5, y = 6;
int z = x++ + y++; //it is unspecified whether x++ or y++ will be evaluated first.
Another example here.
Now the Standard in §5/4 says
Between the previous and next sequence point a scalar object shall have its stored value modified at most once by the evaluation of an expression.
What does it mean?
Informally it means that between two sequence points a variable must not be modified more than once.
In an expression statement, the next sequence point is usually at the terminating semicolon, and the previous sequence point is at the end of the previous statement. An expression may also contain intermediate sequence points.
From the above sentence the following expressions invoke Undefined Behaviour:
i++ * ++i; // UB, i is modified more than once btw two SPs
i = ++i; // UB, same as above
++i = 2; // UB, same as above
i = ++i + 1; // UB, same as above
++++++i; // UB, parsed as (++(++(++i)))
i = (i, ++i, ++i); // UB, there's no SP between `++i` (right most) and assignment to `i` (`i` is modified more than once btw two SPs)
But the following expressions are fine:
i = (i, ++i, 1) + 1; // well defined (AFAIK)
i = (++i, i++, i); // well defined
int j = i;
j = (++i, i++, j*i); // well defined
Furthermore, the prior value shall be accessed only to determine the value to be stored.
What does it mean? It means if an object is written to within a full expression, any and all accesses to it within the same expression must be directly involved in the computation of the value to be written.
For example in i = i + 1 all the access of i (in L.H.S and in R.H.S) are directly involved in computation of the value to be written. So it is fine.
This rule effectively constrains legal expressions to those in which the accesses demonstrably precede the modification.
Example 1:
std::printf("%d %d", i,++i); // invokes Undefined Behaviour because of Rule no 2
Example 2:
a[i] = i++ // or a[++i] = i or a[i++] = ++i etc
is disallowed because one of the accesses of i (the one in a[i]) has nothing to do with the value which ends up being stored in i (which happens over in i++), and so there's no good way to define--either for our understanding or the compiler's--whether the access should take place before or after the incremented value is stored. So the behaviour is undefined.
Example 3 :
int x = i + i++ ;// Similar to above
Follow up answer for C++11 here.
This is a follow up to my previous answer and contains C++11 related material..
Pre-requisites : An elementary knowledge of Relations (Mathematics).
Is it true that there are no Sequence Points in C++11?
Yes! This is very true.
Sequence Points have been replaced by Sequenced Before and Sequenced After (and Unsequenced and Indeterminately Sequenced) relations in C++11.
What exactly is this 'Sequenced before' thing?
Sequenced Before(§1.9/13) is a relation which is:
Asymmetric
Transitive
between evaluations executed by a single thread and induces a strict partial order1
Formally it means given any two evaluations(See below) A and B, if A is sequenced before B, then the execution of A shall precede the execution of B. If A is not sequenced before B and B is not sequenced before A, then A and B are unsequenced 2.
Evaluations A and B are indeterminately sequenced when either A is sequenced before B or B is sequenced before A, but it is unspecified which3.
[NOTES]
1 : A strict partial order is a binary relation "<" over a set P which is asymmetric, and transitive, i.e., for all a, b, and c in P, we have that:
........(i). if a < b then ¬ (b < a) (asymmetry);
........(ii). if a < b and b < c then a < c (transitivity).
2 : The execution of unsequenced evaluations can overlap.
3 : Indeterminately sequenced evaluations cannot overlap, but either could be executed first.
What is the meaning of the word 'evaluation' in context of C++11?
In C++11, evaluation of an expression (or a sub-expression) in general includes:
value computations (including determining the identity of an object for glvalue evaluation and fetching a value previously assigned to an object for prvalue evaluation) and
initiation of side effects.
Now (§1.9/14) says:
Every value computation and side effect associated with a full-expression is sequenced before every value computation and side effect associated with the next full-expression to be evaluated.
Trivial example:
int x;
x = 10;
++x;
Value computation and side effect associated with ++x is sequenced after the value computation and side effect of x = 10;
So there must be some relation between Undefined Behaviour and the above-mentioned things, right?
Yes! Right.
In (§1.9/15) it has been mentioned that
Except where noted, evaluations of operands of individual operators and of subexpressions of individual expressions are unsequenced4.
For example :
int main()
{
int num = 19 ;
num = (num << 3) + (num >> 3);
}
Evaluation of operands of + operator are unsequenced relative to each other.
Evaluation of operands of << and >> operators are unsequenced relative to each other.
4: In an expression that is evaluated more than once during the execution
of a program, unsequenced and indeterminately sequenced evaluations of its subexpressions need not be performed consistently in different evaluations.
(§1.9/15)
The value computations of the operands of an
operator are sequenced before the value computation of the result of the operator.
That means in x + y the value computation of x and y are sequenced before the value computation of (x + y).
More importantly
(§1.9/15) If a side effect on a scalar object is unsequenced relative to either
(a) another side effect on the same scalar object
or
(b) a value computation using the value of the same scalar object.
the behaviour is undefined.
Examples:
int i = 5, v[10] = { };
void f(int, int);
i = i++ * ++i; // Undefined Behaviour
i = ++i + i++; // Undefined Behaviour
i = ++i + ++i; // Undefined Behaviour
i = v[i++]; // Undefined Behaviour
i = v[++i]: // Well-defined Behavior
i = i++ + 1; // Undefined Behaviour
i = ++i + 1; // Well-defined Behaviour
++++i; // Well-defined Behaviour
f(i = -1, i = -1); // Undefined Behaviour (see below)
When calling a function (whether or not the function is inline), every value computation and side effect associated with any argument expression, or with the postfix expression designating the called function, is sequenced before execution of every expression or statement in the body of the called function. [Note: Value computations and side effects associated with different argument expressions are unsequenced. — end note]
Expressions (5), (7) and (8) do not invoke undefined behaviour. Check out the following answers for a more detailed explanation.
Multiple preincrement operations on a variable in C++0x
Unsequenced Value Computations
Final Note :
If you find any flaw in the post please leave a comment. Power-users (With rep >20000) please do not hesitate to edit the post for correcting typos and other mistakes.
C++17 (N4659) includes a proposal Refining Expression Evaluation Order for Idiomatic C++
which defines a stricter order of expression evaluation.
In particular, the following sentence
8.18 Assignment and compound assignment operators:....
In all cases, the assignment is sequenced after the value
computation of the right and left operands, and before the value computation of the assignment expression.
The right operand is sequenced before the left operand.
together with the following clarification
An expression X is said to be sequenced before an expression Y if every
value computation and every side effect associated with the expression X is sequenced before every value
computation and every side effect associated with the expression Y.
make several cases of previously undefined behavior valid, including the one in question:
a[++i] = i;
However several other similar cases still lead to undefined behavior.
In N4140:
i = i++ + 1; // the behavior is undefined
But in N4659
i = i++ + 1; // the value of i is incremented
i = i++ + i; // the behavior is undefined
Of course, using a C++17 compliant compiler does not necessarily mean that one should start writing such expressions.
I am guessing there is a fundamental reason for the change, it isn't merely cosmetic to make the old interpretation clearer: that reason is concurrency. Unspecified order of elaboration is merely selection of one of several possible serial orderings, this is quite different to before and after orderings, because if there is no specified ordering, concurrent evaluation is possible: not so with the old rules. For example in:
f (a,b)
previously either a then b, or, b then a. Now, a and b can be evaluated with instructions interleaved or even on different cores.
In C99(ISO/IEC 9899:TC3) which seems absent from this discussion thus far the following steteents are made regarding order of evaluaiton.
[...]the order of evaluation of subexpressions and the order in which
side effects take place are both unspecified. (Section 6.5 pp 67)
The order of evaluation of the operands is unspecified. If an attempt
is made to modify the result of an assignment operator or to access it
after the next sequence point, the behavior[sic] is undefined.(Section
6.5.16 pp 91)

Swap without temp var, warning error, why? [duplicate]

What are "sequence points"?
What is the relation between undefined behaviour and sequence points?
I often use funny and convoluted expressions like a[++i] = i;, to make myself feel better. Why should I stop using them?
If you've read this, be sure to visit the follow-up question Undefined behavior and sequence points reloaded.
(Note: This is meant to be an entry to Stack Overflow's C++ FAQ. If you want to critique the idea of providing an FAQ in this form, then the posting on meta that started all this would be the place to do that. Answers to that question are monitored in the C++ chatroom, where the FAQ idea started out in the first place, so your answer is very likely to get read by those who came up with the idea.)
C++98 and C++03
This answer is for the older versions of the C++ standard. The C++11 and C++14 versions of the standard do not formally contain 'sequence points'; operations are 'sequenced before' or 'unsequenced' or 'indeterminately sequenced' instead. The net effect is essentially the same, but the terminology is different.
Disclaimer : Okay. This answer is a bit long. So have patience while reading it. If you already know these things, reading them again won't make you crazy.
Pre-requisites : An elementary knowledge of C++ Standard
What are Sequence Points?
The Standard says
At certain specified points in the execution sequence called sequence points, all side effects of previous evaluations
shall be complete and no side effects of subsequent evaluations shall have taken place. (§1.9/7)
Side effects? What are side effects?
Evaluation of an expression produces something and if in addition there is a change in the state of the execution environment it is said that the expression (its evaluation) has some side effect(s).
For example:
int x = y++; //where y is also an int
In addition to the initialization operation the value of y gets changed due to the side effect of ++ operator.
So far so good. Moving on to sequence points. An alternation definition of seq-points given by the comp.lang.c author Steve Summit:
Sequence point is a point in time at which the dust has settled and all side effects which have been seen so far are guaranteed to be complete.
What are the common sequence points listed in the C++ Standard?
Those are:
at the end of the evaluation of full expression (§1.9/16) (A full-expression is an expression that is not a subexpression of another expression.)1
Example :
int a = 5; // ; is a sequence point here
in the evaluation of each of the following expressions after the evaluation of the first expression (§1.9/18) 2
a && b (§5.14)
a || b (§5.15)
a ? b : c (§5.16)
a , b (§5.18) (here a , b is a comma operator; in func(a,a++) , is not a comma operator, it's merely a separator between the arguments a and a++. Thus the behaviour is undefined in that case (if a is considered to be a primitive type))
at a function call (whether or not the function is inline), after the evaluation of all function arguments (if any) which
takes place before execution of any expressions or statements in the function body (§1.9/17).
1 : Note : the evaluation of a full-expression can include the evaluation of subexpressions that are not lexically
part of the full-expression. For example, subexpressions involved in evaluating default argument expressions (8.3.6) are considered to be created in the expression that calls the function, not the expression that defines the default argument
2 : The operators indicated are the built-in operators, as described in clause 5. When one of these operators is overloaded (clause 13) in a valid context, thus designating a user-defined operator function, the expression designates a function invocation and the operands form an argument list, without an implied sequence point between them.
What is Undefined Behaviour?
The Standard defines Undefined Behaviour in Section §1.3.12 as
behavior, such as might arise upon use of an erroneous program construct or erroneous data, for which this International Standard imposes no requirements 3.
Undefined behavior may also be expected when this
International Standard omits the description of any explicit definition of behavior.
3 : permissible undefined behavior ranges from ignoring the situation completely with unpredictable results, to behaving during translation or program execution in a documented manner characteristic of the environment (with or with-
out the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic message).
In short, undefined behaviour means anything can happen from daemons flying out of your nose to your girlfriend getting pregnant.
What is the relation between Undefined Behaviour and Sequence Points?
Before I get into that you must know the difference(s) between Undefined Behaviour, Unspecified Behaviour and Implementation Defined Behaviour.
You must also know that the order of evaluation of operands of individual operators and subexpressions of individual expressions, and the order in which side effects take place, is unspecified.
For example:
int x = 5, y = 6;
int z = x++ + y++; //it is unspecified whether x++ or y++ will be evaluated first.
Another example here.
Now the Standard in §5/4 says
Between the previous and next sequence point a scalar object shall have its stored value modified at most once by the evaluation of an expression.
What does it mean?
Informally it means that between two sequence points a variable must not be modified more than once.
In an expression statement, the next sequence point is usually at the terminating semicolon, and the previous sequence point is at the end of the previous statement. An expression may also contain intermediate sequence points.
From the above sentence the following expressions invoke Undefined Behaviour:
i++ * ++i; // UB, i is modified more than once btw two SPs
i = ++i; // UB, same as above
++i = 2; // UB, same as above
i = ++i + 1; // UB, same as above
++++++i; // UB, parsed as (++(++(++i)))
i = (i, ++i, ++i); // UB, there's no SP between `++i` (right most) and assignment to `i` (`i` is modified more than once btw two SPs)
But the following expressions are fine:
i = (i, ++i, 1) + 1; // well defined (AFAIK)
i = (++i, i++, i); // well defined
int j = i;
j = (++i, i++, j*i); // well defined
Furthermore, the prior value shall be accessed only to determine the value to be stored.
What does it mean? It means if an object is written to within a full expression, any and all accesses to it within the same expression must be directly involved in the computation of the value to be written.
For example in i = i + 1 all the access of i (in L.H.S and in R.H.S) are directly involved in computation of the value to be written. So it is fine.
This rule effectively constrains legal expressions to those in which the accesses demonstrably precede the modification.
Example 1:
std::printf("%d %d", i,++i); // invokes Undefined Behaviour because of Rule no 2
Example 2:
a[i] = i++ // or a[++i] = i or a[i++] = ++i etc
is disallowed because one of the accesses of i (the one in a[i]) has nothing to do with the value which ends up being stored in i (which happens over in i++), and so there's no good way to define--either for our understanding or the compiler's--whether the access should take place before or after the incremented value is stored. So the behaviour is undefined.
Example 3 :
int x = i + i++ ;// Similar to above
Follow up answer for C++11 here.
This is a follow up to my previous answer and contains C++11 related material..
Pre-requisites : An elementary knowledge of Relations (Mathematics).
Is it true that there are no Sequence Points in C++11?
Yes! This is very true.
Sequence Points have been replaced by Sequenced Before and Sequenced After (and Unsequenced and Indeterminately Sequenced) relations in C++11.
What exactly is this 'Sequenced before' thing?
Sequenced Before(§1.9/13) is a relation which is:
Asymmetric
Transitive
between evaluations executed by a single thread and induces a strict partial order1
Formally it means given any two evaluations(See below) A and B, if A is sequenced before B, then the execution of A shall precede the execution of B. If A is not sequenced before B and B is not sequenced before A, then A and B are unsequenced 2.
Evaluations A and B are indeterminately sequenced when either A is sequenced before B or B is sequenced before A, but it is unspecified which3.
[NOTES]
1 : A strict partial order is a binary relation "<" over a set P which is asymmetric, and transitive, i.e., for all a, b, and c in P, we have that:
........(i). if a < b then ¬ (b < a) (asymmetry);
........(ii). if a < b and b < c then a < c (transitivity).
2 : The execution of unsequenced evaluations can overlap.
3 : Indeterminately sequenced evaluations cannot overlap, but either could be executed first.
What is the meaning of the word 'evaluation' in context of C++11?
In C++11, evaluation of an expression (or a sub-expression) in general includes:
value computations (including determining the identity of an object for glvalue evaluation and fetching a value previously assigned to an object for prvalue evaluation) and
initiation of side effects.
Now (§1.9/14) says:
Every value computation and side effect associated with a full-expression is sequenced before every value computation and side effect associated with the next full-expression to be evaluated.
Trivial example:
int x;
x = 10;
++x;
Value computation and side effect associated with ++x is sequenced after the value computation and side effect of x = 10;
So there must be some relation between Undefined Behaviour and the above-mentioned things, right?
Yes! Right.
In (§1.9/15) it has been mentioned that
Except where noted, evaluations of operands of individual operators and of subexpressions of individual expressions are unsequenced4.
For example :
int main()
{
int num = 19 ;
num = (num << 3) + (num >> 3);
}
Evaluation of operands of + operator are unsequenced relative to each other.
Evaluation of operands of << and >> operators are unsequenced relative to each other.
4: In an expression that is evaluated more than once during the execution
of a program, unsequenced and indeterminately sequenced evaluations of its subexpressions need not be performed consistently in different evaluations.
(§1.9/15)
The value computations of the operands of an
operator are sequenced before the value computation of the result of the operator.
That means in x + y the value computation of x and y are sequenced before the value computation of (x + y).
More importantly
(§1.9/15) If a side effect on a scalar object is unsequenced relative to either
(a) another side effect on the same scalar object
or
(b) a value computation using the value of the same scalar object.
the behaviour is undefined.
Examples:
int i = 5, v[10] = { };
void f(int, int);
i = i++ * ++i; // Undefined Behaviour
i = ++i + i++; // Undefined Behaviour
i = ++i + ++i; // Undefined Behaviour
i = v[i++]; // Undefined Behaviour
i = v[++i]: // Well-defined Behavior
i = i++ + 1; // Undefined Behaviour
i = ++i + 1; // Well-defined Behaviour
++++i; // Well-defined Behaviour
f(i = -1, i = -1); // Undefined Behaviour (see below)
When calling a function (whether or not the function is inline), every value computation and side effect associated with any argument expression, or with the postfix expression designating the called function, is sequenced before execution of every expression or statement in the body of the called function. [Note: Value computations and side effects associated with different argument expressions are unsequenced. — end note]
Expressions (5), (7) and (8) do not invoke undefined behaviour. Check out the following answers for a more detailed explanation.
Multiple preincrement operations on a variable in C++0x
Unsequenced Value Computations
Final Note :
If you find any flaw in the post please leave a comment. Power-users (With rep >20000) please do not hesitate to edit the post for correcting typos and other mistakes.
C++17 (N4659) includes a proposal Refining Expression Evaluation Order for Idiomatic C++
which defines a stricter order of expression evaluation.
In particular, the following sentence
8.18 Assignment and compound assignment operators:....
In all cases, the assignment is sequenced after the value
computation of the right and left operands, and before the value computation of the assignment expression.
The right operand is sequenced before the left operand.
together with the following clarification
An expression X is said to be sequenced before an expression Y if every
value computation and every side effect associated with the expression X is sequenced before every value
computation and every side effect associated with the expression Y.
make several cases of previously undefined behavior valid, including the one in question:
a[++i] = i;
However several other similar cases still lead to undefined behavior.
In N4140:
i = i++ + 1; // the behavior is undefined
But in N4659
i = i++ + 1; // the value of i is incremented
i = i++ + i; // the behavior is undefined
Of course, using a C++17 compliant compiler does not necessarily mean that one should start writing such expressions.
I am guessing there is a fundamental reason for the change, it isn't merely cosmetic to make the old interpretation clearer: that reason is concurrency. Unspecified order of elaboration is merely selection of one of several possible serial orderings, this is quite different to before and after orderings, because if there is no specified ordering, concurrent evaluation is possible: not so with the old rules. For example in:
f (a,b)
previously either a then b, or, b then a. Now, a and b can be evaluated with instructions interleaved or even on different cores.
In C99(ISO/IEC 9899:TC3) which seems absent from this discussion thus far the following steteents are made regarding order of evaluaiton.
[...]the order of evaluation of subexpressions and the order in which
side effects take place are both unspecified. (Section 6.5 pp 67)
The order of evaluation of the operands is unspecified. If an attempt
is made to modify the result of an assignment operator or to access it
after the next sequence point, the behavior[sic] is undefined.(Section
6.5.16 pp 91)

Is value of x*f(x) unspecified if f modifies x?

I've looked at a bunch of questions regarding sequence points, and haven't been able to figure out if the order of evaluation for x*f(x) is guaranteed if f modifies x, and is this different for f(x)*x.
Consider this code:
#include <iostream>
int fx(int &x) {
x = x + 1;
return x;
}
int f1(int &x) {
return fx(x)*x; // Line A
}
int f2(int &x) {
return x*fx(x); // Line B
}
int main(void) {
int a = 6, b = 6;
std::cout << f1(a) << " " << f2(b) << std::endl;
}
This prints 49 42 on g++ 4.8.4 (Ubuntu 14.04).
I'm wondering whether this is guaranteed behavior or unspecified.
Specifically, in this program, fx gets called twice, with x=6 both times, and returns 7 both times. The difference is that Line A computes 7*7 (taking the value of x after fx returns) while Line B computes 6*7 (taking the value of x before fx returns).
Is this guaranteed behavior? If yes, what part of the standard specifies this?
Also: If I change all the functions to use int *x instead of int &x and make corresponding changes to places they're called from, I get C code which has the same issues. Is the answer any different for C?
In terms of evaluation sequence, it is easier to think of x*f(x) as if it was:
operator*(x, f(x));
so that there are no mathematical preconceptions on how multiplication is supposed to work.
As #dan04 helpfully pointed out, the standard says:
Section 1.9.15: “Except where noted, evaluations of operands of individual operators and of subexpressions of individual expressions are unsequenced.”
This means that the compiler is free to evaluate these arguments in any order, the sequence point being operator* call. The only guarantee is that before the operator* is called, both arguments have to be evaluated.
In your example, conceptually, you could be certain that at least one of the arguments will be 7, but you cannot be certain that both of them will. To me, this would be enough to label this behaviour as undefined; however, #user2079303 answer explains well why it is not technically the case.
Regardless of whether the behaviour is undefined or indeterminate, you cannot use such an expression in a well-behaved program.
The evaluation order of arguments is not specified by the standard, so the behaviour that you see is not guaranteed.
Since you mention sequence points, I'll consider the c++03 standard which uses that term while the later standards have changed wording and abandoned the term.
ISO/IEC 14882:2003(E) §5 /4:
Except where noted, the order of evaluation of operands of individual operators and subexpressions of individual expressions, and the order in which side effects take place, is unspecified...
There is also discussion on whether this is undefined behaviour or is the order merely unspecified. The rest of that paragraph sheds some light (or doubt) on that.
ISO/IEC 14882:2003(E) §5 /4:
... Between the previous and next sequence point a scalar object shall have its stored value modified at most once by the evaluation of an expression. Furthermore, the prior value shall be accessed only to determine the value to be stored. The requirements of this paragraph shall be met for each allowable ordering of the subexpressions of a full expression; otherwise the behavior is undefined.
x is indeed modified in f and it's value is read as an operand in the same expression where f is called. And it's not specified whether x reads the modified or non-modified value. That might scream Undefined Behaviour! to you, but hold your horses, because the standard also states:
ISO/IEC 14882:2003(E) §1.9 /17:
... When calling a function (whether or not the function is inline), there is a sequence point after the evaluation of all function arguments (if any) which takes place before execution of any expressions or statements in the function body. There is also a sequence point after the copying of a returned value and before the execution of any expressions outside the function 11) ...
So, if f(x) is evaluated first, then there is a sequence point after copying the returned value. So the above rule about UB does not apply because the read of x is not between the next and previous sequence point. The x operand will have the modified value.
If x is evaluated first, then there is a sequence point after evaluating the arguments of f(x) Again, the rule about UB does not apply. In this case x operand will have the non-modified value.
In summary, the order is unspecified but there is no undefined behaviour. It's a bug, but the outcome is predictable to some degree. The behaviour is the same in the later standards, even though the wording changed. I'll not delve into those since it's already covered well in other good answers.
Since you ask about similar situation in C
C89 (draft) 3.3/3:
Except as indicated by the syntax 27 or otherwise specified later (for the function-call operator () , && , || , ?: , and comma operators), the order of evaluation of subexpressions and the order in which side effects take place are both unspecified.
The function call exception is already mentioned here. Following is the paragraph that implies the undefined behaviour if there were no sequence points:
C89 (draft) 3.3/2:
Between the previous and next sequence point an object shall have its stored value modified at most once by the evaluation of an expression. Furthermore, the prior value shall be accessed only to determine the value to be stored.26
And here are the sequence points defined:
C89 (draft) A.2
The following are the sequence points described in 2.1.2.3
The call to a function, after the arguments have been evaluated (3.3.2.2).
...
... the expression in a return statement (3.6.6.4).
The conclusions are the same as in C++.
A quick note on something I don't see covered explicitly by the other answers:
if the order of evaluation for x*f(x) is guaranteed if f modifies x, and is this different for f(x)*x.
Consider, as in Maksim's answer
operator*(x, f(x));
now there are only two ways of evaluating both arguments before the call as required:
auto lhs = x; // or auto rhs = f(x);
auto rhs = f(x); // or auto lhs = x;
return lhs * rhs
So, when you ask
I'm wondering whether this is guaranteed behavior or unspecified.
the standard doesn't specify which of those two behaviours the compiler must choose, but it does specify those are the only valid behaviours.
So, it's neither guaranteed nor entirely unspecified.
Oh, and:
I've looked at a bunch of questions regarding sequence points, and haven't been able to figure out if the order of evaluation ...
sequence points are a used in the C language standard's treatment of this, but not in the C++ standard.
In the expression x * y, the terms x and y are unsequenced. This is one of the three possible sequencing relations, which are:
A sequenced-before B: A must be evaluated, with all side-effects complete, before B begins evaluationg
A and B indeterminately-sequenced: one of the two following cases is true: A is sequenced-before B, or B is sequenced-before A. It is unspecified which of those two cases holds.
A and B unsequenced: There is no sequencing relation defined between A and B.
It is important to note that these are pair-wise relations. We cannot say "x is unsequenced". We can only say that two operations are unsequenced with respect to each other.
Also important is that these relations are transitive; and the latter two relations are symmetric.
unspecified is a technical term which means that the Standard specifies a set number of possible results. This is different to undefined behaviour which means that the Standard does not cover the behaviour at all. See here for further reading.
Moving onto the code x * f(x). This is identical to f(x) * x, because as discussed above, x and f(x) are unsequenced, with respect to each other, in both cases.
Now we come to the point where several people seem to be coming unstuck. Evaluating the expression f(x) is unsequenced with respect to x. However, it does not follow that any statements inside the function body of f are also unsequenced with respect to x. In fact, there are sequencing relations surrounding any function call, and those relations cannot be ignored.
Here is the text from C++14:
When calling a function (whether or not the function is inline), every value computation and side effect associated with any argument expression, or with the postfix expression designating the called function, is sequenced before execution of every expression or statement in the body of the called function. [Note: Value computations and side effects associated with different argument expressions are unsequenced. —end note ]
Every evaluation in the calling function (including other function calls) that is not otherwise specifically sequenced before or after the execution of the body of the called function is indeterminately sequenced with
respect to the execution of the called function.
with footnote:
In other words, function executions do not interleave with each other.
The bolded text clearly states that for the two expressions:
A: x = x + 1; inside f(x)
B: evaluating the first x in the expression x * f(x)
their relationship is: indeterminately sequenced.
The text regarding undefined behaviour and sequencing is:
If a side effect on a scalar object is unsequenced relative to either another side effect on the same scalar object or a value computation using the value of the same scalar object, and they are not potentially concurrent (1.10), the behavior is undefined.
In this case, the relation is indeterminately sequenced, not unsequenced. So there is no undefined behaviour.
The result is instead unspecified according to whether x is sequenced before x = x + 1 or the other way around. So there are only two possible outcomes, 42 and 49.
In case anyone had qualms about the x in f(x), the following text applies:
When calling a function (whether or not the function is inline), every value computation and side effect associated with any argument expression, or with the postfix expression designating the called function, is sequenced before execution of every expression or statement in the body of the called function.
So the evaluation of that x is sequenced before x = x + 1. This is an example of an evlauation that falls under the case of "specifically sequenced before" in the bolded quote above.
Footnote: the behaviour was exactly the same in C++03, but the terminology was different. In C++03 we say that there is a sequence point upon entry and exit of every function call, therefore the write to x inside the function is separated from the read of x outside the function by at least one sequence point.
You need to distinguish:
a) Operator precedence and associativity, which controls the order in which the values of subexpressions are combined by their operators.
b) The sequence of subexpression evaluation. E.g. in the expression f(x)/g(x), the compiler can evaluate g(x) first and f(x) afterwards. Nonetheless, the resulting value must be computed by dividing respective sub-values in the right order, of course.
c) The sequence of side-effects of the subexpressions. Roughly speaking, for example, the compiler might, for sake of optimization, decide to write values to the affected variables only at the end of the expression or any other suitable place.
As a very rough approximation, you can say, that within a single expression, the order of evaluation (not associativity etc.) is more or less unspecified. If you need a specific order of evaluation, break down the expression into series of statements like this:
int a = f(x);
int b = g(x);
return a/b;
instead of
return f(x)/g(x);
For exact rules, see http://en.cppreference.com/w/cpp/language/eval_order
Order of evaluation of the operands of almost all C++ operators is
unspecified. The compiler can evaluate operands in any order, and may
choose another order when the same expression is evaluated again
As the order of evaluation is not always the same hence you may get unexpected results.
Order of evaluation

Multiple increment operator in Visual C++ [duplicate]

What are "sequence points"?
What is the relation between undefined behaviour and sequence points?
I often use funny and convoluted expressions like a[++i] = i;, to make myself feel better. Why should I stop using them?
If you've read this, be sure to visit the follow-up question Undefined behavior and sequence points reloaded.
(Note: This is meant to be an entry to Stack Overflow's C++ FAQ. If you want to critique the idea of providing an FAQ in this form, then the posting on meta that started all this would be the place to do that. Answers to that question are monitored in the C++ chatroom, where the FAQ idea started out in the first place, so your answer is very likely to get read by those who came up with the idea.)
C++98 and C++03
This answer is for the older versions of the C++ standard. The C++11 and C++14 versions of the standard do not formally contain 'sequence points'; operations are 'sequenced before' or 'unsequenced' or 'indeterminately sequenced' instead. The net effect is essentially the same, but the terminology is different.
Disclaimer : Okay. This answer is a bit long. So have patience while reading it. If you already know these things, reading them again won't make you crazy.
Pre-requisites : An elementary knowledge of C++ Standard
What are Sequence Points?
The Standard says
At certain specified points in the execution sequence called sequence points, all side effects of previous evaluations
shall be complete and no side effects of subsequent evaluations shall have taken place. (§1.9/7)
Side effects? What are side effects?
Evaluation of an expression produces something and if in addition there is a change in the state of the execution environment it is said that the expression (its evaluation) has some side effect(s).
For example:
int x = y++; //where y is also an int
In addition to the initialization operation the value of y gets changed due to the side effect of ++ operator.
So far so good. Moving on to sequence points. An alternation definition of seq-points given by the comp.lang.c author Steve Summit:
Sequence point is a point in time at which the dust has settled and all side effects which have been seen so far are guaranteed to be complete.
What are the common sequence points listed in the C++ Standard?
Those are:
at the end of the evaluation of full expression (§1.9/16) (A full-expression is an expression that is not a subexpression of another expression.)1
Example :
int a = 5; // ; is a sequence point here
in the evaluation of each of the following expressions after the evaluation of the first expression (§1.9/18) 2
a && b (§5.14)
a || b (§5.15)
a ? b : c (§5.16)
a , b (§5.18) (here a , b is a comma operator; in func(a,a++) , is not a comma operator, it's merely a separator between the arguments a and a++. Thus the behaviour is undefined in that case (if a is considered to be a primitive type))
at a function call (whether or not the function is inline), after the evaluation of all function arguments (if any) which
takes place before execution of any expressions or statements in the function body (§1.9/17).
1 : Note : the evaluation of a full-expression can include the evaluation of subexpressions that are not lexically
part of the full-expression. For example, subexpressions involved in evaluating default argument expressions (8.3.6) are considered to be created in the expression that calls the function, not the expression that defines the default argument
2 : The operators indicated are the built-in operators, as described in clause 5. When one of these operators is overloaded (clause 13) in a valid context, thus designating a user-defined operator function, the expression designates a function invocation and the operands form an argument list, without an implied sequence point between them.
What is Undefined Behaviour?
The Standard defines Undefined Behaviour in Section §1.3.12 as
behavior, such as might arise upon use of an erroneous program construct or erroneous data, for which this International Standard imposes no requirements 3.
Undefined behavior may also be expected when this
International Standard omits the description of any explicit definition of behavior.
3 : permissible undefined behavior ranges from ignoring the situation completely with unpredictable results, to behaving during translation or program execution in a documented manner characteristic of the environment (with or with-
out the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic message).
In short, undefined behaviour means anything can happen from daemons flying out of your nose to your girlfriend getting pregnant.
What is the relation between Undefined Behaviour and Sequence Points?
Before I get into that you must know the difference(s) between Undefined Behaviour, Unspecified Behaviour and Implementation Defined Behaviour.
You must also know that the order of evaluation of operands of individual operators and subexpressions of individual expressions, and the order in which side effects take place, is unspecified.
For example:
int x = 5, y = 6;
int z = x++ + y++; //it is unspecified whether x++ or y++ will be evaluated first.
Another example here.
Now the Standard in §5/4 says
Between the previous and next sequence point a scalar object shall have its stored value modified at most once by the evaluation of an expression.
What does it mean?
Informally it means that between two sequence points a variable must not be modified more than once.
In an expression statement, the next sequence point is usually at the terminating semicolon, and the previous sequence point is at the end of the previous statement. An expression may also contain intermediate sequence points.
From the above sentence the following expressions invoke Undefined Behaviour:
i++ * ++i; // UB, i is modified more than once btw two SPs
i = ++i; // UB, same as above
++i = 2; // UB, same as above
i = ++i + 1; // UB, same as above
++++++i; // UB, parsed as (++(++(++i)))
i = (i, ++i, ++i); // UB, there's no SP between `++i` (right most) and assignment to `i` (`i` is modified more than once btw two SPs)
But the following expressions are fine:
i = (i, ++i, 1) + 1; // well defined (AFAIK)
i = (++i, i++, i); // well defined
int j = i;
j = (++i, i++, j*i); // well defined
Furthermore, the prior value shall be accessed only to determine the value to be stored.
What does it mean? It means if an object is written to within a full expression, any and all accesses to it within the same expression must be directly involved in the computation of the value to be written.
For example in i = i + 1 all the access of i (in L.H.S and in R.H.S) are directly involved in computation of the value to be written. So it is fine.
This rule effectively constrains legal expressions to those in which the accesses demonstrably precede the modification.
Example 1:
std::printf("%d %d", i,++i); // invokes Undefined Behaviour because of Rule no 2
Example 2:
a[i] = i++ // or a[++i] = i or a[i++] = ++i etc
is disallowed because one of the accesses of i (the one in a[i]) has nothing to do with the value which ends up being stored in i (which happens over in i++), and so there's no good way to define--either for our understanding or the compiler's--whether the access should take place before or after the incremented value is stored. So the behaviour is undefined.
Example 3 :
int x = i + i++ ;// Similar to above
Follow up answer for C++11 here.
This is a follow up to my previous answer and contains C++11 related material..
Pre-requisites : An elementary knowledge of Relations (Mathematics).
Is it true that there are no Sequence Points in C++11?
Yes! This is very true.
Sequence Points have been replaced by Sequenced Before and Sequenced After (and Unsequenced and Indeterminately Sequenced) relations in C++11.
What exactly is this 'Sequenced before' thing?
Sequenced Before(§1.9/13) is a relation which is:
Asymmetric
Transitive
between evaluations executed by a single thread and induces a strict partial order1
Formally it means given any two evaluations(See below) A and B, if A is sequenced before B, then the execution of A shall precede the execution of B. If A is not sequenced before B and B is not sequenced before A, then A and B are unsequenced 2.
Evaluations A and B are indeterminately sequenced when either A is sequenced before B or B is sequenced before A, but it is unspecified which3.
[NOTES]
1 : A strict partial order is a binary relation "<" over a set P which is asymmetric, and transitive, i.e., for all a, b, and c in P, we have that:
........(i). if a < b then ¬ (b < a) (asymmetry);
........(ii). if a < b and b < c then a < c (transitivity).
2 : The execution of unsequenced evaluations can overlap.
3 : Indeterminately sequenced evaluations cannot overlap, but either could be executed first.
What is the meaning of the word 'evaluation' in context of C++11?
In C++11, evaluation of an expression (or a sub-expression) in general includes:
value computations (including determining the identity of an object for glvalue evaluation and fetching a value previously assigned to an object for prvalue evaluation) and
initiation of side effects.
Now (§1.9/14) says:
Every value computation and side effect associated with a full-expression is sequenced before every value computation and side effect associated with the next full-expression to be evaluated.
Trivial example:
int x;
x = 10;
++x;
Value computation and side effect associated with ++x is sequenced after the value computation and side effect of x = 10;
So there must be some relation between Undefined Behaviour and the above-mentioned things, right?
Yes! Right.
In (§1.9/15) it has been mentioned that
Except where noted, evaluations of operands of individual operators and of subexpressions of individual expressions are unsequenced4.
For example :
int main()
{
int num = 19 ;
num = (num << 3) + (num >> 3);
}
Evaluation of operands of + operator are unsequenced relative to each other.
Evaluation of operands of << and >> operators are unsequenced relative to each other.
4: In an expression that is evaluated more than once during the execution
of a program, unsequenced and indeterminately sequenced evaluations of its subexpressions need not be performed consistently in different evaluations.
(§1.9/15)
The value computations of the operands of an
operator are sequenced before the value computation of the result of the operator.
That means in x + y the value computation of x and y are sequenced before the value computation of (x + y).
More importantly
(§1.9/15) If a side effect on a scalar object is unsequenced relative to either
(a) another side effect on the same scalar object
or
(b) a value computation using the value of the same scalar object.
the behaviour is undefined.
Examples:
int i = 5, v[10] = { };
void f(int, int);
i = i++ * ++i; // Undefined Behaviour
i = ++i + i++; // Undefined Behaviour
i = ++i + ++i; // Undefined Behaviour
i = v[i++]; // Undefined Behaviour
i = v[++i]: // Well-defined Behavior
i = i++ + 1; // Undefined Behaviour
i = ++i + 1; // Well-defined Behaviour
++++i; // Well-defined Behaviour
f(i = -1, i = -1); // Undefined Behaviour (see below)
When calling a function (whether or not the function is inline), every value computation and side effect associated with any argument expression, or with the postfix expression designating the called function, is sequenced before execution of every expression or statement in the body of the called function. [Note: Value computations and side effects associated with different argument expressions are unsequenced. — end note]
Expressions (5), (7) and (8) do not invoke undefined behaviour. Check out the following answers for a more detailed explanation.
Multiple preincrement operations on a variable in C++0x
Unsequenced Value Computations
Final Note :
If you find any flaw in the post please leave a comment. Power-users (With rep >20000) please do not hesitate to edit the post for correcting typos and other mistakes.
C++17 (N4659) includes a proposal Refining Expression Evaluation Order for Idiomatic C++
which defines a stricter order of expression evaluation.
In particular, the following sentence
8.18 Assignment and compound assignment operators:....
In all cases, the assignment is sequenced after the value
computation of the right and left operands, and before the value computation of the assignment expression.
The right operand is sequenced before the left operand.
together with the following clarification
An expression X is said to be sequenced before an expression Y if every
value computation and every side effect associated with the expression X is sequenced before every value
computation and every side effect associated with the expression Y.
make several cases of previously undefined behavior valid, including the one in question:
a[++i] = i;
However several other similar cases still lead to undefined behavior.
In N4140:
i = i++ + 1; // the behavior is undefined
But in N4659
i = i++ + 1; // the value of i is incremented
i = i++ + i; // the behavior is undefined
Of course, using a C++17 compliant compiler does not necessarily mean that one should start writing such expressions.
I am guessing there is a fundamental reason for the change, it isn't merely cosmetic to make the old interpretation clearer: that reason is concurrency. Unspecified order of elaboration is merely selection of one of several possible serial orderings, this is quite different to before and after orderings, because if there is no specified ordering, concurrent evaluation is possible: not so with the old rules. For example in:
f (a,b)
previously either a then b, or, b then a. Now, a and b can be evaluated with instructions interleaved or even on different cores.
In C99(ISO/IEC 9899:TC3) which seems absent from this discussion thus far the following steteents are made regarding order of evaluaiton.
[...]the order of evaluation of subexpressions and the order in which
side effects take place are both unspecified. (Section 6.5 pp 67)
The order of evaluation of the operands is unspecified. If an attempt
is made to modify the result of an assignment operator or to access it
after the next sequence point, the behavior[sic] is undefined.(Section
6.5.16 pp 91)

Pointer arithmetics in two dimensional array (C++) [duplicate]

What are "sequence points"?
What is the relation between undefined behaviour and sequence points?
I often use funny and convoluted expressions like a[++i] = i;, to make myself feel better. Why should I stop using them?
If you've read this, be sure to visit the follow-up question Undefined behavior and sequence points reloaded.
(Note: This is meant to be an entry to Stack Overflow's C++ FAQ. If you want to critique the idea of providing an FAQ in this form, then the posting on meta that started all this would be the place to do that. Answers to that question are monitored in the C++ chatroom, where the FAQ idea started out in the first place, so your answer is very likely to get read by those who came up with the idea.)
C++98 and C++03
This answer is for the older versions of the C++ standard. The C++11 and C++14 versions of the standard do not formally contain 'sequence points'; operations are 'sequenced before' or 'unsequenced' or 'indeterminately sequenced' instead. The net effect is essentially the same, but the terminology is different.
Disclaimer : Okay. This answer is a bit long. So have patience while reading it. If you already know these things, reading them again won't make you crazy.
Pre-requisites : An elementary knowledge of C++ Standard
What are Sequence Points?
The Standard says
At certain specified points in the execution sequence called sequence points, all side effects of previous evaluations
shall be complete and no side effects of subsequent evaluations shall have taken place. (§1.9/7)
Side effects? What are side effects?
Evaluation of an expression produces something and if in addition there is a change in the state of the execution environment it is said that the expression (its evaluation) has some side effect(s).
For example:
int x = y++; //where y is also an int
In addition to the initialization operation the value of y gets changed due to the side effect of ++ operator.
So far so good. Moving on to sequence points. An alternation definition of seq-points given by the comp.lang.c author Steve Summit:
Sequence point is a point in time at which the dust has settled and all side effects which have been seen so far are guaranteed to be complete.
What are the common sequence points listed in the C++ Standard?
Those are:
at the end of the evaluation of full expression (§1.9/16) (A full-expression is an expression that is not a subexpression of another expression.)1
Example :
int a = 5; // ; is a sequence point here
in the evaluation of each of the following expressions after the evaluation of the first expression (§1.9/18) 2
a && b (§5.14)
a || b (§5.15)
a ? b : c (§5.16)
a , b (§5.18) (here a , b is a comma operator; in func(a,a++) , is not a comma operator, it's merely a separator between the arguments a and a++. Thus the behaviour is undefined in that case (if a is considered to be a primitive type))
at a function call (whether or not the function is inline), after the evaluation of all function arguments (if any) which
takes place before execution of any expressions or statements in the function body (§1.9/17).
1 : Note : the evaluation of a full-expression can include the evaluation of subexpressions that are not lexically
part of the full-expression. For example, subexpressions involved in evaluating default argument expressions (8.3.6) are considered to be created in the expression that calls the function, not the expression that defines the default argument
2 : The operators indicated are the built-in operators, as described in clause 5. When one of these operators is overloaded (clause 13) in a valid context, thus designating a user-defined operator function, the expression designates a function invocation and the operands form an argument list, without an implied sequence point between them.
What is Undefined Behaviour?
The Standard defines Undefined Behaviour in Section §1.3.12 as
behavior, such as might arise upon use of an erroneous program construct or erroneous data, for which this International Standard imposes no requirements 3.
Undefined behavior may also be expected when this
International Standard omits the description of any explicit definition of behavior.
3 : permissible undefined behavior ranges from ignoring the situation completely with unpredictable results, to behaving during translation or program execution in a documented manner characteristic of the environment (with or with-
out the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic message).
In short, undefined behaviour means anything can happen from daemons flying out of your nose to your girlfriend getting pregnant.
What is the relation between Undefined Behaviour and Sequence Points?
Before I get into that you must know the difference(s) between Undefined Behaviour, Unspecified Behaviour and Implementation Defined Behaviour.
You must also know that the order of evaluation of operands of individual operators and subexpressions of individual expressions, and the order in which side effects take place, is unspecified.
For example:
int x = 5, y = 6;
int z = x++ + y++; //it is unspecified whether x++ or y++ will be evaluated first.
Another example here.
Now the Standard in §5/4 says
Between the previous and next sequence point a scalar object shall have its stored value modified at most once by the evaluation of an expression.
What does it mean?
Informally it means that between two sequence points a variable must not be modified more than once.
In an expression statement, the next sequence point is usually at the terminating semicolon, and the previous sequence point is at the end of the previous statement. An expression may also contain intermediate sequence points.
From the above sentence the following expressions invoke Undefined Behaviour:
i++ * ++i; // UB, i is modified more than once btw two SPs
i = ++i; // UB, same as above
++i = 2; // UB, same as above
i = ++i + 1; // UB, same as above
++++++i; // UB, parsed as (++(++(++i)))
i = (i, ++i, ++i); // UB, there's no SP between `++i` (right most) and assignment to `i` (`i` is modified more than once btw two SPs)
But the following expressions are fine:
i = (i, ++i, 1) + 1; // well defined (AFAIK)
i = (++i, i++, i); // well defined
int j = i;
j = (++i, i++, j*i); // well defined
Furthermore, the prior value shall be accessed only to determine the value to be stored.
What does it mean? It means if an object is written to within a full expression, any and all accesses to it within the same expression must be directly involved in the computation of the value to be written.
For example in i = i + 1 all the access of i (in L.H.S and in R.H.S) are directly involved in computation of the value to be written. So it is fine.
This rule effectively constrains legal expressions to those in which the accesses demonstrably precede the modification.
Example 1:
std::printf("%d %d", i,++i); // invokes Undefined Behaviour because of Rule no 2
Example 2:
a[i] = i++ // or a[++i] = i or a[i++] = ++i etc
is disallowed because one of the accesses of i (the one in a[i]) has nothing to do with the value which ends up being stored in i (which happens over in i++), and so there's no good way to define--either for our understanding or the compiler's--whether the access should take place before or after the incremented value is stored. So the behaviour is undefined.
Example 3 :
int x = i + i++ ;// Similar to above
Follow up answer for C++11 here.
This is a follow up to my previous answer and contains C++11 related material..
Pre-requisites : An elementary knowledge of Relations (Mathematics).
Is it true that there are no Sequence Points in C++11?
Yes! This is very true.
Sequence Points have been replaced by Sequenced Before and Sequenced After (and Unsequenced and Indeterminately Sequenced) relations in C++11.
What exactly is this 'Sequenced before' thing?
Sequenced Before(§1.9/13) is a relation which is:
Asymmetric
Transitive
between evaluations executed by a single thread and induces a strict partial order1
Formally it means given any two evaluations(See below) A and B, if A is sequenced before B, then the execution of A shall precede the execution of B. If A is not sequenced before B and B is not sequenced before A, then A and B are unsequenced 2.
Evaluations A and B are indeterminately sequenced when either A is sequenced before B or B is sequenced before A, but it is unspecified which3.
[NOTES]
1 : A strict partial order is a binary relation "<" over a set P which is asymmetric, and transitive, i.e., for all a, b, and c in P, we have that:
........(i). if a < b then ¬ (b < a) (asymmetry);
........(ii). if a < b and b < c then a < c (transitivity).
2 : The execution of unsequenced evaluations can overlap.
3 : Indeterminately sequenced evaluations cannot overlap, but either could be executed first.
What is the meaning of the word 'evaluation' in context of C++11?
In C++11, evaluation of an expression (or a sub-expression) in general includes:
value computations (including determining the identity of an object for glvalue evaluation and fetching a value previously assigned to an object for prvalue evaluation) and
initiation of side effects.
Now (§1.9/14) says:
Every value computation and side effect associated with a full-expression is sequenced before every value computation and side effect associated with the next full-expression to be evaluated.
Trivial example:
int x;
x = 10;
++x;
Value computation and side effect associated with ++x is sequenced after the value computation and side effect of x = 10;
So there must be some relation between Undefined Behaviour and the above-mentioned things, right?
Yes! Right.
In (§1.9/15) it has been mentioned that
Except where noted, evaluations of operands of individual operators and of subexpressions of individual expressions are unsequenced4.
For example :
int main()
{
int num = 19 ;
num = (num << 3) + (num >> 3);
}
Evaluation of operands of + operator are unsequenced relative to each other.
Evaluation of operands of << and >> operators are unsequenced relative to each other.
4: In an expression that is evaluated more than once during the execution
of a program, unsequenced and indeterminately sequenced evaluations of its subexpressions need not be performed consistently in different evaluations.
(§1.9/15)
The value computations of the operands of an
operator are sequenced before the value computation of the result of the operator.
That means in x + y the value computation of x and y are sequenced before the value computation of (x + y).
More importantly
(§1.9/15) If a side effect on a scalar object is unsequenced relative to either
(a) another side effect on the same scalar object
or
(b) a value computation using the value of the same scalar object.
the behaviour is undefined.
Examples:
int i = 5, v[10] = { };
void f(int, int);
i = i++ * ++i; // Undefined Behaviour
i = ++i + i++; // Undefined Behaviour
i = ++i + ++i; // Undefined Behaviour
i = v[i++]; // Undefined Behaviour
i = v[++i]: // Well-defined Behavior
i = i++ + 1; // Undefined Behaviour
i = ++i + 1; // Well-defined Behaviour
++++i; // Well-defined Behaviour
f(i = -1, i = -1); // Undefined Behaviour (see below)
When calling a function (whether or not the function is inline), every value computation and side effect associated with any argument expression, or with the postfix expression designating the called function, is sequenced before execution of every expression or statement in the body of the called function. [Note: Value computations and side effects associated with different argument expressions are unsequenced. — end note]
Expressions (5), (7) and (8) do not invoke undefined behaviour. Check out the following answers for a more detailed explanation.
Multiple preincrement operations on a variable in C++0x
Unsequenced Value Computations
Final Note :
If you find any flaw in the post please leave a comment. Power-users (With rep >20000) please do not hesitate to edit the post for correcting typos and other mistakes.
C++17 (N4659) includes a proposal Refining Expression Evaluation Order for Idiomatic C++
which defines a stricter order of expression evaluation.
In particular, the following sentence
8.18 Assignment and compound assignment operators:....
In all cases, the assignment is sequenced after the value
computation of the right and left operands, and before the value computation of the assignment expression.
The right operand is sequenced before the left operand.
together with the following clarification
An expression X is said to be sequenced before an expression Y if every
value computation and every side effect associated with the expression X is sequenced before every value
computation and every side effect associated with the expression Y.
make several cases of previously undefined behavior valid, including the one in question:
a[++i] = i;
However several other similar cases still lead to undefined behavior.
In N4140:
i = i++ + 1; // the behavior is undefined
But in N4659
i = i++ + 1; // the value of i is incremented
i = i++ + i; // the behavior is undefined
Of course, using a C++17 compliant compiler does not necessarily mean that one should start writing such expressions.
I am guessing there is a fundamental reason for the change, it isn't merely cosmetic to make the old interpretation clearer: that reason is concurrency. Unspecified order of elaboration is merely selection of one of several possible serial orderings, this is quite different to before and after orderings, because if there is no specified ordering, concurrent evaluation is possible: not so with the old rules. For example in:
f (a,b)
previously either a then b, or, b then a. Now, a and b can be evaluated with instructions interleaved or even on different cores.
In C99(ISO/IEC 9899:TC3) which seems absent from this discussion thus far the following steteents are made regarding order of evaluaiton.
[...]the order of evaluation of subexpressions and the order in which
side effects take place are both unspecified. (Section 6.5 pp 67)
The order of evaluation of the operands is unspecified. If an attempt
is made to modify the result of an assignment operator or to access it
after the next sequence point, the behavior[sic] is undefined.(Section
6.5.16 pp 91)