Get the location of a blob in OpenCV using C++ - c++

enter image description here
The image shown is the difference between two images. All I want to do is get the location of the white part. I want to do this because I want to be able to highlight the place where the difference is on the original image.
I am thinking about using clustering or blob detection or maybe just locating the brightest or whitest pixel in the image.
What method do you think would be the easiest? Is there another method I haven't though of?

Use the findContour method to find the closed contour in the image.
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
findContours( BinaryImage, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0) );
And you can draw that contours using drawContours .
And the variable contours contains the coordinates making that particular contour. You can display it by the following command
for(double i=0; i<contours.size(); i++)
{
cout << contours[i];
drawContours( OutputImage, contours, i, Scalar(0,255,0), 2, 8, hierarchy, 0, Point() );
}

Related

How to straighten curved line using OpenCV?

I have image with curved line like this :
I couldn't find a technique to straighten curved line using OpenCV. It is similar to this post Straightening a curved contour, but my question is specific to coding using opencv (in C++ is better).
So far, I'm only able to find the contour of the curved line.
int main()
{
Mat src; Mat src_gray;
src = imread("D:/2.jpg");
cvtColor(src, src_gray, COLOR_BGR2GRAY);
cv::blur(src_gray, src_gray, Size(1, 15));
Canny(src_gray, src_gray, 100, 200, 3);
/// Find contours
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
RNG rng(12345);
findContours(src_gray, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
/// Draw contours
Mat drawing = Mat::zeros(src_gray.size(), CV_8UC3);
for (int i = 0; i < contours.size(); i++)
{
drawContours(drawing, contours, i, (255), 1, 8, hierarchy, 0, Point());
}
imshow("Result window", drawing);
imwrite("D:/C_Backup_Folder/Ivan_codes/VideoStitcher/result/2_res.jpg", drawing);
cv::waitKey();
return 0;
}
But I have no idea how to determine which line is curved and not, and how to straighten it. Is it possible? Any help would be appreciated.
Here is my suggestion:
Before everything, resize your image into a much bigger image (for example 5 times bigger). Then do what you did before, and get the contours. Find the right-most pixel of each contour, and then survey all pixel of that contour and count the horizontal distance of each pixels to the right-most pixel and make a shift for that row (entire row). This method makes a right shift to some rows and left shift to the others.
If you have multiple contours, calculate this shift value for every one of them in every single row and compute their "mean" value, and do the shift according to that mean value for each row.
At the end resize back your image. This is the simplest and fastest thing I could think of.

Get color of contour

I'm using openCV + C++ to extract the contours of an image.
See these lines:
vector<vector<cv::Point>> contours;
vector<Vec4i> hierarchy;
cvtColor(image, image, CV_BGR2GRAY);
findContours( image, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, cv::Point(0, 0) );
for( int i = 0; i < contours.size(); i++ ) {
// do stuff with contours[i];
}
I was wondering if there is a way to extract the extract the main-color of the image.
From this image --> extract color "blue" as RGB;
Any help how to implement this in C++ would be very appreciated.
Note: This question (Finding contour color using opencv c++) was all I've found during my research but it looks like 1.the question is Off-Topic & 2.the question didn't get answered.

OpenCV: Is it possible to detect rectangle from corners?

I have a photo where a person holds a sheet of paper. I'd like to detect the rectangle of that sheet of paper.
I have tried following different tutorials from OpenCV and various SO answers and sample code for detecting squares / rectangles, but the problem is that they all rely on contours of some kind.
If I follow the squares.cpp example, I get the following results from contours:
As you can see, the fingers are part of the contour, so the algorithm does not find the square.
I, also, tried using HoughLines() approach, but I get similar results to above:
I can detect the corners, reliably though:
There are other corners in the image, but I'm limiting total corners found to < 50 and the corners for the sheet of paper are always found.
Is there some algorithm for finding a rectangle from multiple corners in an image? I can't seem to find an existing approach.
You can apply a morphological filter to close the gaps in your edge image. Then if you find the contours, you can detect an inner closed contour as shown below. Then find the convexhull of this contour to get the rectangle.
Closed edges:
Contour:
Convexhull:
In the code below I've just used an arbitrary kernel size for morphological filter and filtered out the contour of interest using an area ratio threshold. You can use your own criteria instead of those.
Code
Mat im = imread("Sh1Vp.png", 0); // the edge image
Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(11, 11));
Mat morph;
morphologyEx(im, morph, CV_MOP_CLOSE, kernel);
int rectIdx = 0;
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
findContours(morph, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
for (size_t idx = 0; idx < contours.size(); idx++)
{
RotatedRect rect = minAreaRect(contours[idx]);
double areaRatio = abs(contourArea(contours[idx])) / (rect.size.width * rect.size.height);
if (areaRatio > .95)
{
rectIdx = idx;
break;
}
}
// get the convexhull of the contour
vector<Point> hull;
convexHull(contours[rectIdx], hull, false, true);
// visualization
Mat rgb;
cvtColor(im, rgb, CV_GRAY2BGR);
drawContours(rgb, contours, rectIdx, Scalar(0, 0, 255), 2);
for(size_t i = 0; i < hull.size(); i++)
{
line(rgb, hull[i], hull[(i + 1)%hull.size()], Scalar(0, 255, 0), 2);
}

How to find points of drawcontour of a detected image?

I want to find points of a contour which is draw on object after following operation like background subtraction , findcontour ,drawcontour.
My object is moving so that my contour is also not proper . and i want to find of maximum and minimum points on contour which is draw on object.
Can anyone tell me how to find?
My object is moving car and camera view is top.
vector<vector<Point>> allContours;
vector<Vec4i> hierarchy;
Mat _temp = image.clone();
findContours(_temp, allContours, RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
allContours is contour's vector.
you can access points of each contours.
============================================================================
all points of contous will be draw by below code.
vector<vector<Point>> allContours;
vector<Vec4i> hierarchy;
Mat _temp = imageGray.clone();
Mat ptDraw = Mat::zeros(image.rows,image.cols,CV_8UC3);
findContours(_temp, allContours, RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
for(int i=0;i<allContours.size();i++)
{
drawContours(image, allContours, i, Scalar(0,0,255), 2, 8, hierarchy, 0, Point() );
for(int j=0;j<allContours.at(i).size();j++)
{
Point pt = allContours.at(i).at(j);
circle(ptDraw,pt,1,Scalar(0,0,255),CV_FILLED);
}
}

Search for contours within a contour / OpenCV c++

I am trying to track a custom circular marker in an image, and I need to check that a circle contains a minimum number of other circles/objects. My code for finding circles is below:
void findMarkerContours( int, void* )
{
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
vector<Point> approx;
cv::Mat dst = src.clone();
cv::Mat src_gray;
cv::cvtColor(src, src_gray, CV_BGR2GRAY);
//Reduce noise with a 3x3 kernel
blur( src_gray, src_gray, Size(3,3));
//Convert to binary using canny
cv::Mat bw;
cv::Canny(src_gray, bw, thresh, 3*thresh, 3);
imshow("bw", bw);
findContours(bw.clone(), contours, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE);
Mat drawing = Mat::zeros( bw.size(), CV_8UC3 );
for (int i = 0; i < contours.size(); i++)
{
Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
// contour
drawContours( drawing, contours, i, color, 1, 8, vector<Vec4i>(), 0, Point() );
//Approximate the contour with accuracy proportional to contour perimeter
cv::approxPolyDP(cv::Mat(contours[i]), approx, cv::arcLength(cv::Mat(contours[i]), true) *0.02, true);
//Skip small or non-convex objects
if(fabs(cv::contourArea(contours[i])) < 100 || !cv::isContourConvex(approx))
continue;
if (approx.size() >= 8) //More than 6-8 vertices means its likely a circle
{
drawContours( dst, contours, i, Scalar(0,255,0), 2, 8);
}
imshow("Hopefully we should have circles! Yay!", dst);
}
namedWindow( "Contours", CV_WINDOW_AUTOSIZE );
imshow( "Contours", drawing );
}
As you can see the code to detect circles works quite well:
But now I need to filter out markers that I do not want. My marker is the bottom one. So once I have found a contour that is a circle, I want to check if there are other circular contours that exist within the region of the first circle and finally check the color of the smallest circle.
What method can I take to say if (circle contains 3+ smaller circles || smallest circle is [color] ) -> do stuff?
Take a look at the documentation for
findContours(InputOutputArray image, OutputArrayOfArrays contours, OutputArray hierarchy, int mode, int method, Point offset=Point())
You'll see that there's an optional hierarchy output vector which should be handy for your problem.
hierarchy – Optional output vector, containing information about the image topology. It has as many elements as the number of contours.
For each i-th contour contours[i] , the elements hierarchy[i][0] ,
hiearchyi , hiearchyi , and hiearchyi are set to
0-based indices in contours of the next and previous contours at the
same hierarchical level, the first child contour and the parent
contour, respectively. If for the contour i there are no next,
previous, parent, or nested contours, the corresponding elements of
hierarchy[i] will be negative.
When calling findCountours using CV_RETR_TREE you'll be getting the full hierarchy of each contour that was found.
This doc explains the hierarchy format pretty well.
You are already searching for circles of a certain size
//Skip small or non-convex objects
if(fabs(cv::contourArea(contours[i])) < 100 || !cv::isContourConvex(approx))
continue;
So you can use that to look for smaller circles than the one youve got, instead of looking for < 100 look for contours.size
I imagine there is the same for color also...