Need to reference and update value from nested class C++ - c++

Bear with me, I'm new to C++. I'm trying to update a value which is stored in a vector, but I'm getting this error:
non-const lvalue reference to type 'Node'
I'm using a simple wrapper around std::vector so I can share methods like contains and others (similar to how the ArrayList is in Java).
#include <vector>
using namespace std;
template <class T> class NewFrames {
public:
// truncated ...
bool contains(T data) {
for(int i = 0; i < this->vec->size(); i++) {
if(this->vec->at(i) == data) {
return true;
}
}
return false;
}
int indexOf(T data) {
for(int i = 0; i < this->vec->size(); i++) {
if(this->vec->at(i) == data) {
return i;
}
}
return -1;
}
T get(int index) {
if(index > this->vec->size()) {
throw std::out_of_range("Cannot get index that exceeds the capacity");
}
return this->vec->at(index);
}
private:
vector<T> *vec;
};
#endif // A2_NEWFRAMES_H
The class which utilizes this wrapper is defined as follows:
#include "Page.h"
#include "NewFrames.h"
class Algo {
private:
typedef struct Node {
unsigned reference:1;
int data;
unsigned long _time;
Node() { }
Node(int data) {
this->data = data;
this->reference = 0;
this->_time = (unsigned long) time(NULL);
}
} Node;
unsigned _faults;
Page page;
NewFrames<Node> *frames;
};
I'm at a point where I need to reference one of the Node objects inside of the vector, but I need to be able to change reference to a different value. From what I've found on SO, I need to do this:
const Node &n = this->frames->get(this->frames->indexOf(data));
I've tried just using:
Node n = this->frames->get(this->frames->indexOf(data));
n.reference = 1;
and then viewing the data in the debugger, but the value is not updated when I check later on. Consider this:
const int data = this->page.pages[i];
const bool contains = this->frames->contains(Node(data));
Node node = this->frames->get(index);
for(unsigned i = 0; i < this->page.pages.size(); i++) {
if(node == NULL && !contains) {
// add node
} else if(contains) {
Node n = this->frames->get(this->frames->indexOf(data));
if(n.reference == 0) {
n.reference = 1;
} else {
n.reference = 0;
}
} else {
// do other stuff
}
}
With subsequent passes of the loop, the node with that particular data value is somehow different.
But if I attempt to change n.reference, I'll get an error because const is preventing the object from changing. Is there a way I can get this node so I can change it? I'm coming from the friendly Java world where something like this would work, but I want to know/understand why this doesn't work in C++.

Node n = this->frames->get(this->frames->indexOf(data));
n.reference = 1;
This copies the Node from frames and stores the copy as the object n. Modifying the copy does not change the original node.
The simplest "fix" is to use a reference. That means changing the return type of get from T to T&, and changing the previous two lines to
Node& n = this->frames->get(this->frames->indexOf(data));
n.reference = 1;
That should get the code to work. But there is so much indirection in the code that there are likely to be other problems that haven't shown up yet. As #nwp said in a comment, using vector<T> instead of vector<T>* will save you many headaches.
And while I'm giving style advice, get rid of those this->s; they're just noise. And simplify the belt-and-suspenders validity checks: when you loop from 0 to vec.size() you don't need to check that the index is okay when you access the element; change vec.at(i) to vec[i]. And in get, note that vec.at(index) will throw an exception if index is out of bounds, so you can either skip the initial range check or keep the check (after fixing it so that it checks the actual range) and, again, use vec[index] instead of vec.at(index).

Related

Correctly managing pointers in C++ Quadtree implementation

I'm working on a C++ quadtree implementation for collision detection. I tried to adapt this Java implementation to C++ by using pointers; namely, storing the child nodes of each node as Node pointers (code at the end). However, since my understanding of pointers is still rather lacking, I am struggling to understand why my Quadtree class produces the following two issues:
When splitting a Node in 4, the debugger tells me that all my childNodes entries are identical to the first one, i.e., same address and bounds.
Even if 1. is ignored, I get an Access violation reading location 0xFFFFFFFFFFFFFFFF, which I found out is a consequence of the childNode pointees being deleted after the first split, resulting in undefined behaviour.
My question is: what improvements should I make to my Quadtree.hpp so that each Node can contain 4 distinct child node pointers and have those references last until the quadtree is cleared?
What I have tried so far:
Modifying getChildNode according to this guide and using temporary variables in split() to avoid all 4 entries of childNodes to point to the same Node:
void split() {
for (int i = 0; i < 4; i++) {
Node temp = getChildNode(level, bounds, i + 1);
childNodes[i] = &(temp);
}
}
but this does not solve the problem.
This one is particularly confusing. My initial idea was to just store childNodes as Nodes themselves, but turns out that cannot be done while we're defining the Node class itself. Hence, it looks like the only way to store Nodes is by first creating them and then storing pointers to them as I tried to do in split(), yet it seems that those will not "last" until we've inserted all the objects since the pointees get deleted (run out of scope) and we get the aforementioned undefined behaviour. I also thought of using smart pointers, but that seems to only overcomplicate things.
The code:
Quadtree.hpp
#pragma once
#include <vector>
#include <algorithm>
#include "Box.hpp"
namespace quadtree {
class Node {
public:
Node(int p_level, quadtree::Box<float> p_bounds)
:level(p_level), bounds(p_bounds)
{
parentWorld = NULL;
}
// NOTE: mandatory upon Quadtree initialization
void setParentWorld(World* p_world_ptr) {
parentWorld = p_world_ptr;
}
/*
Clears the quadtree
*/
void clear() {
objects.clear();
for (int i = 0; i < 4; i++) {
if (childNodes[i] != nullptr) {
(*(childNodes[i])).clear();
childNodes[i] = nullptr;
}
}
}
/*
Splits the node into 4 subnodes
*/
void split() {
for (int i = 0; i < 4; i++) {
childNodes[i] = &getChildNode(level, bounds, i + 1);;
}
}
/*
Determine which node the object belongs to. -1 means
object cannot completely fit within a child node and is part
of the parent node
*/
int getIndex(Entity* p_ptr_entity) {
quadtree::Box<float> nodeBounds;
quadtree::Box<float> entityHitbox;
for (int i = 0; i < 4; i++) {
nodeBounds = childNodes[i]->bounds;
ComponentHandle<Hitbox> hitbox;
parentWorld->unpack(*p_ptr_entity, hitbox);
entityHitbox = hitbox->box;
if (nodeBounds.contains(entityHitbox)) {
return i;
}
}
return -1; // if no childNode completely contains Entity Hitbox
}
/*
Insert the object into the quadtree. If the node
exceeds the capacity, it will split and add all
objects to their corresponding nodes.
*/
void insertObject(Entity* p_ptr_entity) {
if (childNodes[0] != nullptr) {
int index = getIndex(p_ptr_entity);
if (index != -1) {
(*childNodes[index]).insertObject(p_ptr_entity); // insert in child node
return;
}
}
objects.push_back(p_ptr_entity); // add to parent node
if (objects.size() > MAX_OBJECTS && level < MAX_DEPTH) {
if (childNodes[0] == nullptr) {
split();
}
int i = 0;
while (i < objects.size()) {
int index = getIndex(objects[i]);
if (index != -1)
{
Entity* temp_entity = objects[i];
{
// remove i-th element of the vector
using std::swap;
swap(objects[i], objects.back());
objects.pop_back();
}
(*childNodes[index]).insertObject(temp_entity);
}
else
{
i++;
}
}
}
}
/*
Return all objects that could collide with the given object
*/
std::vector<Entity*> retrieve(Entity* p_ptr_entity, std::vector<Entity*> returnObjects) {
int index = getIndex(p_ptr_entity);
if (index != -1 && childNodes[0] == nullptr) {
(*childNodes[index]).retrieve(p_ptr_entity, returnObjects);
}
returnObjects.insert(returnObjects.end(), objects.begin(), objects.end());
return returnObjects;
}
World* getParentWorld() {
return parentWorld;
}
private:
int MAX_OBJECTS = 10;
int MAX_DEPTH = 5;
World* parentWorld; // used to unpack entities
int level; // depth of the node
quadtree::Box<float> bounds; // boundary of nodes in the game's map
std::vector<Entity*> objects; // list of objects contained in the node: pointers to Entitites in the game
Node* childNodes[4];
quadtree::Box<float> getQuadrantBounds(quadtree::Box<float> p_parentBounds, int p_quadrant_id) {
quadtree::Box<float> quadrantBounds;
quadrantBounds.width = p_parentBounds.width / 2;
quadrantBounds.height = p_parentBounds.height / 2;
switch (p_quadrant_id) {
case 1: // NE
quadrantBounds.top = p_parentBounds.top;
quadrantBounds.left = p_parentBounds.width / 2;
break;
case 2: // NW
quadrantBounds.top = p_parentBounds.top;
quadrantBounds.left = p_parentBounds.left;
break;
case 3: // SW
quadrantBounds.top = p_parentBounds.height / 2;
quadrantBounds.left = p_parentBounds.left;
break;
case 4: // SE
quadrantBounds.top = p_parentBounds.height / 2;
quadrantBounds.left = p_parentBounds.width / 2;
break;
}
return quadrantBounds;
}
Node& getChildNode(int parentLevel, Box<float> parentBounds, int quadrant) {
static Node temp = Node(parentLevel + 1, getQuadrantBounds(parentBounds, quadrant));
return temp;
}
};
}
Where Box is just a helper class that contains some helper methods for rectangular shapes and collision detection. Any help would be greatly appreciated!

search function causes program to crash

I have been going through the debugger but can't seem to pinpoint exactly what is going wrong. I have come to my own conclusion i must be missing a nullptr check somewhere or something. If anyone can provide some help it would be greatly appreciated.
error message from debugger
error msg
which looks like makes the program crash on this line:
if (node->children_[index] == nullptr) {
search function
Node* search(const string& word, Node* node, int index) const {
Node* temp;
//same as recurssive lookup just difference is returns node weather terminal or not
if (index < word.length()) {
index = node->getIndex(word[index]);
if (node->children_[index] == nullptr) {
return nullptr;
}
else {
temp = search(word, node->children_[index], index++);
}
}
return temp; // this would give you ending node of partialWord
}
Node struct for reference
struct Node {
bool isTerminal_;
char ch_;
Node* children_[26];
Node(char c = '\0') {
isTerminal_ = false;
ch_ = c;
for (int i = 0; i < 26; i++) {
children_[i] = nullptr;
}
}
//given lower case alphabetic charachters ch, returns
//the associated index 'a' --> 0, 'b' --> 1...'z' --> 25
int getIndex(char ch) {
return ch - 'a';
}
};
Node* root_;
int suggest(const string& partialWord, string suggestions[]) const {
Node* temp;
temp = search(partialWord, root_, 0);
int count = 0;
suggest(partialWord, temp, suggestions, count);
return count;
}
Might be a very simple thing. Without digging I am not sure about the rank of the -> operator versus the == operator. I would take a second and try putting parenthesis around the "node->children_[index] == nullptr" part like this:
(node->children_[index]) == nullptr
just to make sure that the logic runs like you seem to intend.
Dr t
I believe the root cause is that you're using index for two distinct purposes: as an index into the word you're looking for, and as an index into the node's children.
When you get to the recursion, index has changed meaning, and it's all downhill from there.
You're also passing index++ to the recursion, but the value of index++ is the value it had before the increment.
You should pass index + 1.
[An issue in a different program would be that the order of evaluation of function parameters is unspecified, and you should never both modify a variable and use it in the same parameter list. (I would go so far as to say that you should never modify anything in a parameter list, but many disagree.)
But you shouldn't use the same variable here at all, so...]
I would personally restructure the code a little, something like this:
Node* search(const string& word, Node* node, int index) const {
// Return immediately on failure.
if (index >= word.length())
{
return nullptr;
}
int child_index = node->getIndex(word[index]);
// The two interesting cases: we either have this child or we don't.
if (node->children_[child_index] == nullptr) {
return nullptr;
}
else {
return search(word, node->children_[child_index], index + 1);
}
}
(Side note: returning a pointer to a non-const internal Node from a const function is questionable.)

C++ Memory Leak With STL Vector

I am building a templated Max Heap class in C++ for a datastructures class. The implementation demonstrates a Max Heap with a vector under the hood. There is an online submission associated with the assignment and when I submit mine, all the tests (push, pop, top, and size) pass and work (for the online unknown unit tests as well as all the ones I wrote) and I have no memory leaks with any of my tests, however I am failing the memory leak section with the online submission, indicating to me that my Bubble Up (Reheap Up) or Bubble Down (Reheap Down) algorithms are doing something funny with vector indices.
I noticed that I used the bracket operator a lot to mess with the vector, so I went through and changed all the brackets to .at() so I could see any suppressed out of bounds errors. Flying colors again, except for the memory leaks allegedly. I then figured well maybe one of the unit tests is adding sooo many values the vector fails to clear them all for some unknown reason...wasn't the case because I added so many values to a vector in my max heap class in my unit tests it took 90 seconds to finish and after all 52K allocations were made 52K deallocations were made as well and valgrind reported no errors.
Below is some of the main code for the class, if anyone could decide where some code is written that in some situation may warrant a memory leak that would be great!
template <class T>
class MaxHeap {
public:
MaxHeap(){
// TODO: Fill me in
}
~MaxHeap() {
data.clear();
}
void push(T value){
data.push_back(value);
bubbleUp(data.size()-1, value);
}
void pop(){
if(!size()) {
return;
}
T val = data.at(size()-1);
data.pop_back();
if(!size()) {
return;
}
data.at(0) = val;
bubbleDown(0, val);
}
T top(){
if(!data.size()) throw logic_error("Empty Heap");
return data.at(0);
}
unsigned int size(){
return data.size();
}
void print_vec() {
for (int i = 0; i < size(); ++i) {
cout << data.at(i) << " ";
}
cout << endl;
}
vector<T> getVec() {
return data;
}
private:
vector<T> data;
void bubbleUp(int idx, T value) {
int position = idx;
int parent_idx = parent(position);
while (data.at(parent_idx) < value) {
data.at(position) = data.at(parent_idx);
data.at(parent_idx) = value;
position = parent_idx;
parent_idx = parent(position);
}
}
void bubbleDown(int idx, T value) {
int left_child_idx = left_child(idx);
int right_child_idx = right_child(idx);
int max_child_idx;
if(left_child_idx <= size()-1) { // left child (consequently right child) in bounds of vector
if(left_child_idx == size()-1) { // no right child, left is maxchild
max_child_idx = left_child_idx;
} else {
max_child_idx = (data.at(left_child_idx) <= data.at(right_child_idx)) ? right_child_idx : left_child_idx;
}
if(data.at(idx) < data.at(max_child_idx)) {
data.at(idx) = data.at(max_child_idx);
data.at(max_child_idx) = value;
bubbleDown(max_child_idx, value);
}
}
}
int left_child(int idx) {return (idx*2+1);}
int right_child(int idx) {return (idx*2+2);}
int parent(int idx) {return ((idx-1)/2);}
};
Warning: this is only a theory, since it is improbable that the source of leak is in the code shown here.
If T is a malformed type, that does not release it's memory when using the assignment operator, then this might be the part that trigger this bad behvior:
T swap; // initialized to something. perhaps using new
while (data.at(parent_idx) < value) {
swap = data.at(parent_idx); //assume no delete in T.operator=()
data.at(parent_idx) = value;
data.at(position) = swap;
position = parent_idx;
parent_idx = parent(position);
}
This is not a problem in this code. However, you might still be able to patch it here. Why is T defined outside the loop?
while (data.at(parent_idx) < value) {
T swap = data.at(parent_idx); // no assignment here
data.at(parent_idx) = value;
data.at(position) = swap;
position = parent_idx;
parent_idx = parent(position);
}
===
Unrelated but better - don't use the unnecessary intermediate variable, and mix in move semantics:
while (data.at(parent_idx) < value) {
data.at(position) = std::move(data.at(parent_idx));
data.at(parent_idx) = value;
position = parent_idx;
parent_idx = parent(position);
}

No Appropriate Default Constructor Available despite default constructor made?

Trying to make my own Map struct to store my own-created 'Strings,' and after 8 hours or so finally got it down to only a few compiler errors (six of them). I've spent the last hour and forty minutes searching the web for answers, only to find people forgot default constructors, and tried mixing things up in my own program. Since I'm not really sure where the problem is in advance, I apologize for posting all this code...I put what I thought were the most relevant files first; I think only the first 3 are necessary. The error is
"SubdomainPart' : No appropriate default constructor available" for lines 12 and 20 of the Map.h file.
Map.h
// Map.h - Map template class declaration
// Written by -----
#pragma once
template<typename KEY_TYPE, typename VALUE_TYPE>
struct Map
{
public:
// Default / initial constructor hybrid
Map(int initialCapacity = 10)
{
Size = 0;
Capacity = initialCapacity;
Key;
MappedValue;
//Allocate the C-Array elements using HEAP
Data = new VALUE_TYPE[Capacity];
}
struct iterator
{
KEY_TYPE * current;
KEY_TYPE * prev;
KEY_TYPE * next;
iterator operator ++ ()
{
iterator it = this;
iterator itNext = it.next;
it.next = itNext.next; // pushes iterator forward.
it.prev = it.current;
it.current = it.next;
}
iterator operator -- ()
{
iterator it = this;
iterator itPrev = it.prev;
it.prev = itPrev.prev; // pushes iterator backward.
it.next = it.current;
it.current = it.prev;
}
};
Map(const Map& copyFrom)
{
// Necessary to prevent the delete[] Data; statement in the assignment operator from
// freezing because Data has some garbage address in it.
Data = NULL;
*this = copyFrom; //'this' points to the current instance of the object. (in this case, 'Map')
}
// Destructor: MUST HAVE because we allocate memory
~Map()
{
delete[] Data;
}
Map& operator = (const Map& copyFrom)
{
// 0) delete the old one!
delete[] Data;
// 1) copy Size and Capacity
Size = copyFrom.Size;
Capacity = copyFrom.Capacity;
// 2) Allocate Memory
Map* Data = new Map[Capacity];
// 3) Copy the Map Elements
for(int i = 0; i<Size; i++)
Data[i] = copyFrom.Data[i];
return *this;
}
// Index Operator
VALUE_TYPE& operator[] (KEY_TYPE key) const
{
return Data[key];
}
// Accessor functions: read-only access to Size and Capacity
int GetSize() const //const does not modify ANY data members of the class (size, capacity, or data)
{
return Size;
}
int GetCapacity() const
{
return Capacity;
}
void PushBack(const VALUE_TYPE& newElement) //adds value to end of Map as default
{
if(Size >= Capacity)
increaseCapacity(2 * Capacity);
Data[Size] = newElement;
Size++; // increases size of the array so it can be used later.
}
// Overloaded Add function, inserts a value at specified index, calls in "Insert" to do so.
void Add(const VALUE_TYPE& newElement, int index)
{
if( (index<0) || (index > Size))
{
throw ("Index to insert is out of range");
}
//Make sure there's space!
if (Size >= Capacity)
increaseCapacity(2*Capacity); //increase size of array if too small!
Insert(index, newElement);
}
void Remove(int index) // index = index to be removed.
{
// Make sure it's inside the bounds
if( (index<0) || (index > Size))
{
throw ("Index to Remove is out of range.");
}
// it's going to remove the unneeded space by having its capacity one above the Size.
Map* new_Data = new Map[Size];
//Copy data onto new pointer section.
for(int x = 0; x<Size; x++)
new_Data[x] = Data[x];
delete[] Data; //deallocates old memory and uneeded capacity slots.
for(int x = index; x < (Size - 1); x++) //removes the value at index 'index.' Now Data has a capacity of the amount of slots used and one more for a NULL value.
new_Data[x] = new_Data[x+1];
Data = new_Data;
Data[Size-1] = NULL;
Size--;
}
void increaseCapacity(int new_capacity)
{
if(new_capacity>Capacity)
{
if(new_capacity> 2* Capacity)
Capacity = new_capacity;
else
Capacity *= 2;
//create Map with a new capacity!
Map* new_Map = new Map[Capacity];
for(int x = 0; x<Size; x++)
{
new_Map[x] = Data[x];
}
//clear out old memory
delete[] Data;
//set data pointer to the new Map
Data = new_Map;
}
}
KEY_TYPE * Key; // Used to identify mapped values.
VALUE_TYPE MappedValue; // The value actually contained.
private:
int Size; // The count of actual C-Array elements used
int Capacity; // The count of C-array elements allocated
// The encapsulated C-array
VALUE_TYPE * Data; // pointer of type 'DATA_TYPE' called data (will be name of our array).
void Insert(const int index, const VALUE_TYPE& insertValue)
{
if( (index<0) || (index > Size))
{
throw out_of_range ("Index to insert is out of range");
}
//Time to shuffle the array down!
for(int x = Size; x>index; x--)
{
Data[x] = Data[x-1];
}
//Insert the new item at index 'Index!'
Data[index] = insertValue;
Size++;
}
};
SubdomainPart.h
// SubdomainPart.h - SubdomainPart validation class declaration
// Written by -------
#pragma once
#include "String.h"
using namespace std;
class SubdomainPart
{
public:
// Takes the address and stores into the Address data member
SubdomainPart(const String& address);
// Returns true when the Address is valid or false otherwise
virtual bool IsValid();
private:
String Address;
};
SubdomainPart.cpp
// SubdomainPart.cpp - Subdomain validation class implementation
// Written by ---------
#pragma once
#include "SubdomainPart.h"
// Takes the address and stores into the Address data member
SubdomainPart::SubdomainPart(const String& address)
{
Address = address;
}
// Returns true when the Address is valid or false otherwise
bool SubdomainPart::IsValid()
{
int currentDotIndex = 0;
int nextDotIndex = 0;
int found = 0; // first index of a found invalid character
int hyphenIndex = 0; // used to check hyphen rule
// 1. Check the size, 255 total characters
if(Address.GetLength() < 1 || Address.GetLength() > 255)
return false;
// Checks for valid amount of 1-63 characters between dots
currentDotIndex = Address.FindFirstOf('.');
if(currentDotIndex == 0 || currentDotIndex == Address.GetLength()-1)
return false;
else if(currentDotIndex!=(-1))
nextDotIndex = Address.Find('.', currentDotIndex+1);
else
nextDotIndex = (-1); // if no '.' is found, ensures the following loop doesn't run.
while(nextDotIndex!=(-1))
{
if((nextDotIndex-currentDotIndex) == 1 || (nextDotIndex-currentDotIndex) > 63)
return false;
currentDotIndex = nextDotIndex;
nextDotIndex = Address.Find('.', currentDotIndex+1);
}
// 2. Check for valid characters
found = Address.FindFirstNotOf("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz1234567890-.");
if(found!=(-1)) // if a character not listed above is found.
return false;
// 3. Check for dash rule
// Making sure hyphens aren't located at the first or last index of a subdomain.
hyphenIndex = Address.FindFirstOf('-');
if(hyphenIndex == 0)
return false;
hyphenIndex = Address.FindLastOf('-');
if(hyphenIndex == Address.GetLength()-1)
return false;
// Makes sure two hyphens aren't in a row.
for(int x = 1; x<Address.GetLength(); x++)
if(Address[x] == '-' && Address[x] == Address[x-1])
return false;
return true;
}
I don't see a default constructor in this class:
class SubdomainPart
{
public:
// Takes the address and stores into the Address data member
SubdomainPart(const String& address);
// Returns true when the Address is valid or false otherwise
virtual bool IsValid();
private:
String Address;
};
Keep in mind that this map constructor is default-constructing every member rather than initializing them:
Map(int initialCapacity = 10)
{
Size = 0;
Capacity = initialCapacity;
Key;
MappedValue;
//Allocate the C-Array elements using HEAP
Data = new VALUE_TYPE[Capacity];
}
You don't have a default constructor for SubdomainPart you have only provided a copy constructor. A default constructor takes no argument.
The compiler is complaining that SubdomainPart doesn't have a default constructor, and indeed it doesn't. It's required because your Map contains an object of type VALUE_TYPE:
VALUE_TYPE MappedValue;
Also, your Map constructor contains very weird code. I assume you actually wanted to use an initialiser list:
Map(int initialCapacity = 10)
: Key()
, MappedValue()
, Size(0)
, Capacity(initialCapacity)
, Data(new VALUE_TYPE[Capacity])
{}
The problem is with Data = new VALUE_TYPE[Capacity]; part.
The compiler generates code to allocate the array and instantiate each element by calling the parameterless constructor for VALUE_TYPE. As SubdomainPart doesn't have one (since you have defined a custom one), the compiler throws an error.
The reason that compiler reports error in map.h is that it is exactly the place where the constructor is called from. It is not used in SubdomainPart code, it is just defined there.

dynamic memory allocation with arrays in c++

I am trying to insert an int into an array that is in a class object, and I cannot figure out what I am doing wrong. The current state of my code never inserts the int into the array.
Basically what I am trying to do is when i call insert(int) it will check to to see if there is any room left in the array, and if there is it will add it, otherwise it would reallocate with 8 more spaces in the array.
here is some relevant class info
private:
unsigned Cap; // Current capacity of the set
unsigned Num; // Current count of items in the set
int * Pool; // Pointer to array holding the items
public:
// Return information about the set
//
bool is_empty() const { return Num == 0; }
unsigned size() const { return Num; }
unsigned capacity() const { return Cap; }
// Initialize the set to empty
//
Set()
{
Cap = Num = 0;
Pool = NULL;
}
here is the code i am working on
bool Set::insert(int X)
{
bool Flag = false;
if (Num == Cap)
{
//reallocate
const unsigned Inc = 8;
int * Temp = new int[Cap+Inc];
for (unsigned J=0;J<Num;J++)
{
Temp[J] = Pool[J];
}
delete [] Pool;
Pool = Temp;
Cap = Cap+Inc;
}
if(Num < Cap)
{
Pool[Num+1] = X;
Flag = true;
}
return Flag;
}
Your insert function never updates Num. Try Pool[Num++] = X; or something like that.
You probably want to increment the number of element but only after copying the new element in: the first element should have index 0. Basically, your insert() function should look something like this:
bool Set::insert(int X)
{
if (Num == Cap)
{
const unsigned Inc(std::max(8, 2 * Cap));
std::unique_ptr<int[]> Temp(new int[Cap+Inc]);
std::copy(Pool.get(), Pool.get() + Num, Temp.get());
Pool.swap(Temp);
Cap += Inc;
}
Pool[Num] = X;
++Num;
return true;
}
Of course, this assumes that Pool is reasonably declared as std::unique_ptr<int[]> (or something with similar functionality which is easy to write if necessary). The reason to use std::unique_ptr<int[]> rather than raw pointers is that they automatically clean up resources when they are destroyed. Copying a sequence of ints won't throw an exception but if int get's replaced by a std::string or a template parameters there is potential to throw exceptions.