In many C++ source codes I see that while designing a class that might be sub-classed there's a forward declaration or reference to another similarly named class with a private or Private appended to the end of the original class name. For example in Qt there's a class named QGraphicsItem and in the beginning of the header file there's a forward declaration of QGraphicsItemPrivate. I tried looking in design pattern names and searched google trying to see if I can find what such design technique or method is called but It didn't yield any results. What's the name of this approach? What is / are the benefit(s)?
Sounds like the pimpl idiom. It goes by other names too, e.g., cheshire cat.
e.g.,
class FooPrivate;
class Foo
{
public:
Foo();
~Foo();
int GetInt();
private:
FooPrivate* implPtr;
};
in implementation file,
class FooPrivate
{
public:
int x = 0;
};
Foo::Foo() : implPtr(new FooPrivate()) {}
Foo::~Foo() { delete implPtr; }
int Foo::GetInt()
{
return implPtr->x;
}
It is used to hide implementation details of Foo. All data members and private methods are stored in Private. This means a change in the implementation does not need a recompile of every cpp file using Foo.
In the Qt source it is in qgraphicsitem_p.h. You can see it only stores data members and other implementation details.
I think there's a lot of your questions explained here: The Pimpl Idiom in practice.
But well, as you're explicitly asking for another answer:
"What's the name of this approach?"
It's widely called the Pimpl idiom, there are other (maybe more serious) equivalent terms in use, like e.g. opaque pointer).
The pattern generally looks like this:
A.h:
class AImpl;
class A {
public:
A();
~A();
void foo();
void bar();
private:
AImpl* pimpl;
};
A.cpp:
// Changing the following code won't have impact for need to recompile
// external dependants
// *******************************************************************
// * Closed black box *
// *******************************************************************
struct AImpl {
void foo();
void bar();
};
// *******************************************************************
// * lengthy implementation likely to change internally goes *
// * here *
// *******************************************************************
void AImpl::foo() {
}
void AImpl::bar() {
}
// * /Closed black box *
// *******************************************************************
// The public interface implementation just delegates to the
// internal one:
A::A() : pimpl(new AImpl()) {
}
A::~A() {
delete pimpl;
}
void A::foo() {
pimpl->foo();
}
void A::bar() {
pimpl->bar();
}
"What is / are the benefit(s)?"
Any code including A.h will just refer to the public interface, and doesn't need to be recompiled due to changes made in the internal implementation of AImpl.
That's a big improvement, to achieve modularization and implementation privacy.
I have a class (let's call it A) the inherits an interface defining several abstract methods and another class there to factor in some code (let's call it B).
The question is, I have an abstract method in the interface that A implements just to call the B version. Is there a way to use the keyword using to avoid writing a dull method like:
int A::method() override
{
return B::method();
}
I tried writing in A using B::method, but I still get an error that A doesn't implement the abstract method from the interface.
Is there a special technique to use in the case or am I just out of luck? (and if so, is there a specific reason why it should be that way?).
Thanks.
edit:
To clarify, the question is, why isn't it possible to just do this:
class A: public Interface, public B {
using B::method;
};
Let's make this clear. You basically have the following problem, right?
struct Interface
{
virtual void method() = 0;
};
struct B
{
void method()
{
// implementation of Interface::method
}
};
struct A : Interface, B
{
// some magic here to automatically
// override Interface::method and
// call B::method
};
This is simply impossible, because the fact that the methods have the same names is irrelevant from a technical point view. In other word's, Interface::method and B::method are simply not related to each other, and their identical names are not more than a coincidence, just like someone else called "Julien" doesn't have anything to do with you just because you share the same first name.
You are basically left with the following options:
1.) Just write the call manually:
struct A : Interface, B
{
virtual void method()
{
B::method();
}
};
2.) Minimise writing work with a macro, so that you can write:
struct A : Interface, B
{
OVERRIDE(method)
};
But I would strongly recommend against this solution. Less writing work for you = more reading work for everyone else.
3.) Change the class hierarchy, so that B implements Interface:
struct Interface
{
virtual void method() = 0;
};
struct B : Interface
{
virtual void method()
{
// implementation of Interface::method
}
};
struct A : B
{
};
if B::method is abstract you cannot call it because is not implemented... has no code.
An example:
class A
{
public:
virtual void method1( ) = 0;
virtual void method2( ){ }
};
class B : public A
{
public:
virtual void method1( ) override
{ return A::method1( ); } // Error. A::method1 is abstract
virtual method2( ) override
{ return A::method2( ); } // OK. A::method2 is an implemented method
}
Even if there were a way to do what you want, in the name of the readability of your code, I would not recommend that.
If you do not put the "B::" before "method" call, when I read that, I would say it is a recursive call.
Browsing in a code base I found something on the line of:
class Interface{
public:
virtual void func() = 0;
};
class Implementation : public Interface{
protected:
void func() override {};
};
I thought that would have been a compilation error, but it seems it is not. What sense does it make?
In C++:
accessibility is a “static” notion (checked at compile-time), whereas
virtual dispatch is a “dynamic” notion (the implementation to call is chosen at run-time).
We can say that C++ keeps those two notions “orthogonal”.
So with your example, this will compile (not realistic code, just illustration):
Implementation obj;
Interface& ref = obj;
ref.func(); // (will call obj.func())
but this won't:
Implementation obj;
obj.func(); // error: Implementation::func is protected
effectively “forcing” you to only use the interface (which maybe was the intent). — Edit: see Dieter Lücking's answer for a maybe better design.
Freedom. Sometimes it may be kind of useful (for example if you want to hide a member you want to discourage to be used). At least when they access through derived class.
See it as kind of "explicit implementation". Let's say, for example, you have a base interface List like this (very simplified code for illustration purposes):
class List {
public:
virtual void add(std::string item) = 0;
virtual std::string at(int index) = 0;
};
You create your ReadOnlyList concrete class which implements List interface, in this case you would discourage users of your class to call add() method, just change its visibility. Unless they're accessing it through List interface it'll be hidden.
Another example? If you want to provide an interface for some specific tasks but it's an implementation detail and it's not part of class contract. In this case you make them protected or private and they won't be accessible.
That said it's so weak and confusing that I would avoid to do it, besides very few, commented and well controlled exceptions.
What sense does it make?
Yes, it makes sense. If you try to create object of Derived type, you will not be able to call that method. So the idea is to always access the object through it's interface.
The idea is to enforce the Interface segregation principle.
#include <iostream>
#include <vector>
#include <memory>
struct Base
{
public:
virtual ~Base(){}
virtual void foo() = 0;
};
struct Derived1 : Base
{
protected:
virtual void foo(){
std::cout << "foo 1" << std::endl;
}
};
struct Derived2 : Base
{
protected:
virtual void foo(){
std::cout << "foo 2" << std::endl;
}
};
void wouldFail()
{
Derived1 d;
// d.foo(); -- Error! Do not try to call it directly
}
void ok()
{
std::vector< std::shared_ptr< Base > > v;
v.emplace_back( std::make_shared<Derived1>() );
v.emplace_back( std::make_shared<Derived2>() );
for ( auto & it : v )
it->foo();
}
int main()
{
wouldFail();
ok();
}
I had created an interface to abstract a part of the source for a later extension. But what if I want to extend the derived classes with some special methods?
So I have the interface here:
class virtualFoo
{
public:
virtual ~virtualFoo() { }
virtual void create() = 0;
virtual void initialize() = 0;
};
and one derived class with an extra method:
class concreteFoo : public virtualFoo
{
public:
concreteFoo() { }
~concreteFoo() { }
virtual void create() { }
virtual void initialize() { }
void ownMethod() { }
};
So I try to create an Instance of concreteFoo and try to call ownMethod like this:
void main()
{
virtualFoo* ptr = new concreteFoo();
concreteFoo* ptr2 = dynamic_cast<concreteFoo*>(ptr);
if(NULL != ptr2)
ptr2->ownMethod();
}
It works but is not really the elegant way. If I would try to use ptr->ownMethod(); directly the compiler complains that this method is not part of virtualFoo.
Is there a chance to do this without using dynamic_cast?
Thanks in advance!
This is exactly what dynamic_cast is for. However, you can usually avoid using it by changing your design. Since you gave an abstract example, it's hard to judge whether you should be doing things differently.
In my application, there are 10-20 classes that are instantiated once[*]. Here's an example:
class SomeOtherManager;
class SomeManagerClass {
public:
SomeManagerClass(SomeOtherManager*);
virtual void someMethod1();
virtual void someMethod2();
};
Instances of the classes are contained in one object:
class TheManager {
public:
virtual SomeManagerClass* someManagerClass() const;
virtual SomeOtherManager* someOtherManager() const;
/** More objects... up to 10-20 */
};
Currently TheManager uses the new operator in order to create objects.
My intention is to be able to replace, using plugins, the SomeManagerClass (or any other class) implementation with another one. In order to replace the implementation, 2 steps are needed:
Define a class DerivedSomeManagerClass, which inherits SomeManagerClass [plugin]
Create the new class (DerivedSomeManagerClass) instead of the default (SomeManagerClass) [application]
I guess I need some kind of object factory, but it should be fairly simple since there's always only one type to create (the default implementation or the user implementation).
Any idea about how to design a simple factory like I just described? Consider the fact that there might be more classes in the future, so it should be easy to extend.
[*] I don't care if it happens more than once.
Edit: Please note that there are more than two objects that are contained in TheManager.
Assuming a class (plugin1) which inherits from SomeManagerClass, you need a class hierarchy to build your types:
class factory
{
public:
virtual SomeManagerClass* create() = 0;
};
class plugin1_factory : public factory
{
public:
SomeManagerClass* create() { return new plugin1(); }
};
Then you can assign those factories to a std::map, where they are bound to strings
std::map<string, factory*> factory_map;
...
factory_map["plugin1"] = new plugin1_factory();
Finally your TheManager just needs to know the name of the plugin (as string) and can return an object of type SomeManagerClass with just one line of code:
SomeManagerClass* obj = factory_map[plugin_name]->create();
EDIT: If you don't like to have one plugin factory class for each plugin, you could modify the previous pattern with this:
template <class plugin_type>
class plugin_factory : public factory
{
public:
SomeManagerClass* create() { return new plugin_type(); }
};
factory_map["plugin1"] = new plugin_factory<plugin1>();
I think this is a much better solution. Moreover the 'plugin_factory' class could add itself to the 'factory_map' if you pass costructor the string.
I think there are two separate problems here.
One problem is: how does TheManager name the class that it has to create? It must keep some kind of pointer to "a way to create the class". Possible solutions are:
keeping a separate pointer for each kind of class, with a way to set it, but you already said that you don't like this as it violates the DRY principle
keeping some sort of table where the key is an enum or a string; in this case the setter is a single function with parameters (of course if the key is an enum you can use a vector instead of a map)
The other problem is: what is this "way to create a class"? Unfortunately we can't store pointers to constructors directly, but we can:
create, as others have pointed out, a factory for each class
just add a static "create" function for each class; if they keep a consistent signature, you can just use their pointers to functions
Templates can help in avoiding unnecessary code duplication in both cases.
I have answered in another SO question about C++ factories. Please see there if a flexible factory is of interest. I try to describe an old way from ET++ to use macros which has worked great for me.
ET++ was a project to port old MacApp to C++ and X11. In the effort of it Eric Gamma etc started to think about Design Patterns
I'd create a "base" factory that has virtual methods for creation of all the basic managers, and let the "meta manager" (TheManager in your question) take a pointer to the base factory as a constructor parameter.
I'm assuming that the "factory" can customize the instances of CXYZWManager by deriving from them, but alternatively the constructor of CXYZWManager could take different arguments in the "custom" factory.
A lengthy code example that outputs "CSomeManager" and "CDerivedFromSomeManager":
#include <iostream>
//--------------------------------------------------------------------------------
class CSomeManager
{
public:
virtual const char * ShoutOut() { return "CSomeManager";}
};
//--------------------------------------------------------------------------------
class COtherManager
{
};
//--------------------------------------------------------------------------------
class TheManagerFactory
{
public:
// Non-static, non-const to allow polymorphism-abuse
virtual CSomeManager *CreateSomeManager() { return new CSomeManager(); }
virtual COtherManager *CreateOtherManager() { return new COtherManager(); }
};
//--------------------------------------------------------------------------------
class CDerivedFromSomeManager : public CSomeManager
{
public:
virtual const char * ShoutOut() { return "CDerivedFromSomeManager";}
};
//--------------------------------------------------------------------------------
class TheCustomManagerFactory : public TheManagerFactory
{
public:
virtual CDerivedFromSomeManager *CreateSomeManager() { return new CDerivedFromSomeManager(); }
};
//--------------------------------------------------------------------------------
class CMetaManager
{
public:
CMetaManager(TheManagerFactory *ip_factory)
: mp_some_manager(ip_factory->CreateSomeManager()),
mp_other_manager(ip_factory->CreateOtherManager())
{}
CSomeManager *GetSomeManager() { return mp_some_manager; }
COtherManager *GetOtherManager() { return mp_other_manager; }
private:
CSomeManager *mp_some_manager;
COtherManager *mp_other_manager;
};
//--------------------------------------------------------------------------------
int _tmain(int argc, _TCHAR* argv[])
{
TheManagerFactory standard_factory;
TheCustomManagerFactory custom_factory;
CMetaManager meta_manager_1(&standard_factory);
CMetaManager meta_manager_2(&custom_factory);
std::cout << meta_manager_1.GetSomeManager()->ShoutOut() << "\n";
std::cout << meta_manager_2.GetSomeManager()->ShoutOut() << "\n";
return 0;
}
Here's the solution I thought of, it's not the best one but maybe it will help to think of better solutions:
For each class there would be a creator class:
class SomeManagerClassCreator {
public:
virtual SomeManagerClass* create(SomeOtherManager* someOtherManager) {
return new SomeManagerClass(someOtherManager);
}
};
Then, the creators will be gathered in one class:
class SomeManagerClassCreator;
class SomeOtherManagerCreator;
class TheCreator {
public:
void setSomeManagerClassCreator(SomeManagerClassCreator*);
SomeManagerClassCreator* someManagerClassCreator() const;
void setSomeOtherManagerCreator(SomeOtherManagerCreator*);
SomeOtherManagerCreator* someOtherManagerCreator() const;
private:
SomeManagerClassCreator* m_someManagerClassCreator;
SomeOtherManagerCreator* m_someOtherManagerCreator;
};
And TheManager will be created with TheCreator for internal creation:
class TheManager {
public:
TheManager(TheCreator*);
/* Rest of code from above */
};
The problem with this solution is that it violates DRY - for each class creator I would have to write setter/getter in TheCreator.
This seems like it would be a lot simpler with function templating as opposed to an Abstract Factory pattern
class ManagerFactory
{
public:
template <typename T> static BaseManager * getManager() { return new T();}
};
BaseManager * manager1 = ManagerFactory::template getManager<DerivedManager1>();
If you want to get them via a string, you can create a standard map from strings to function pointers. Here is an implementation that works:
#include <map>
#include <string>
class BaseManager
{
public:
virtual void doSomething() = 0;
};
class DerivedManager1 : public BaseManager
{
public:
virtual void doSomething() {};
};
class DerivedManager2 : public BaseManager
{
public:
virtual void doSomething() {};
};
class ManagerFactory
{
public:
typedef BaseManager * (*GetFunction)();
typedef std::map<std::wstring, GetFunction> ManagerFunctionMap;
private:
static ManagerFunctionMap _managers;
public:
template <typename T> static BaseManager * getManager() { return new T();}
template <typename T> static void registerManager(const std::wstring& name)
{
_managers[name] = ManagerFactory::template getManager<T>;
}
static BaseManager * getManagerByName(const std::wstring& name)
{
if(_managers.count(name))
{
return _managers[name]();
}
return NULL;
}
};
// the static map needs to be initialized outside the class
ManagerFactory::ManagerFunctionMap ManagerFactory::_managers;
int _tmain(int argc, _TCHAR* argv[])
{
// you can get with the templated function
BaseManager * manager1 = ManagerFactory::template getManager<DerivedManager1>();
manager1->doSomething();
// or by registering with a string
ManagerFactory::template registerManager<DerivedManager1>(L"Derived1");
ManagerFactory::template registerManager<DerivedManager2>(L"Derived2");
// and getting them
BaseManager * manager2 = ManagerFactory::getManagerByName(L"Derived2");
manager2->doSomething();
BaseManager * manager3 = ManagerFactory::getManagerByName(L"Derived1");
manager3->doSomething();
return 0;
}
EDIT: In reading the other answers I realized that this is very similar to Dave Van den Eynde's FactorySystem solution, but I'm using a function template pointer instead of instantiating templated factory classes. I think my solution is a little more lightweight. Due to static functions, the only object that gets instantiated is the map itself. If you need the factory to perform other functions (DestroyManager, etc.), I think his solution is more extensible.
You could implement an object factory with static methods that return an instance of a Manager-Class. In the factory you could create a method for the default type of manager and a method for any type of manager which you give an argument representing the type of the Manager-Class (say with an enum). This last method should return an Interface rather than a Class.
Edit: I'll try to give some code, but mind that my C++ times are quite a while back and I'm doing only Java and some scripting for the time being.
class Manager { // aka Interface
public: virtual void someMethod() = 0;
};
class Manager1 : public Manager {
void someMethod() { return null; }
};
class Manager2 : public Manager {
void someMethod() { return null; }
};
enum ManagerTypes {
Manager1, Manager2
};
class ManagerFactory {
public static Manager* createManager(ManagerTypes type) {
Manager* result = null;
switch (type) {
case Manager1:
result = new Manager1();
break;
case Manager2:
result = new Manager2();
break;
default:
// Do whatever error logging you want
break;
}
return result;
}
};
Now you should be able to call the Factory via (if you've been able to make the code sample work):
Manager* manager = ManagerFactory.createManager(ManagerTypes.Manager1);
I would use templates like this as I can't see the point of factories classes:
class SomeOtherManager;
class SomeManagerClass {
public:
SomeManagerClass(SomeOtherManager*);
virtual void someMethod1();
virtual void someMethod2();
};
class TheBaseManager {
public:
//
};
template <class ManagerClassOne, class ManagerClassOther>
class SpecialManager : public TheBaseManager {
public:
virtual ManagerClassOne* someManagerClass() const;
virtual ManagerClassOther* someOtherManager() const;
};
TheBaseManager* ourManager = new SpecialManager<SomeManagerClass,SomeOtherManager>;
You should take a look at the tutorial at
http://downloads.sourceforge.net/papafactory/PapaFactory20080622.pdf?use_mirror=fastbull
It contains a great tutorial on implementing an Abstract factory in C++ and the source code that comes with it is also very robust
Chris
Mh I don't understand a hundred percent, and I am not really into factory stuff from books and articles.
If all your managers share a similar interface you could derive from a base class, and use this base class in your program.
Depending on where the decision which class will be created will be made, you have to use an identifier for creation (as stated above) or handle the decision which manager to instantiate internally.
Another way would be to implement it "policy" like by using templates. So that You ManagerClass::create() returns a specific SomeOtherManagerWhatever instance. This would lay the decision which manager to make in the code which uses your Manager - Maye this is not intended.
Or that way:
template<class MemoryManagment>
class MyAwesomeClass
{
MemoryManagment m_memoryManager;
};
(or something like that)
With this construct you can easily use other managers by only changing the instantiation of MyAwesomeClass.
Also A class for this purpose might be a little over the top. In your case a factory function would do I guess. Well it's more a question of personal preference.
If you plan on supporting plugins that are dynamically linked, your program will need to provide a stable ABI (Application Binary Interface), that means that you cannot use C++ as your main interface as C++ has no standard ABI.
If you want plugins to implement an interface you define yourself, you will have to provide the header file of the interface to plugin programmer and standardize on a very simple C interface in order to create and delete the object.
You cannot provide a dynamic library that will allow you to "new" the plugin class as-is. That is why you need to standardize on a C interface in order to create the object. Using the C++ object is then possible as long as none of your arguments use possibly incompatible types, like STL containers. You will not be able to use a vector returned by another library, because you cannot ensure that their STL implementation is the same as yours.
Manager.h
class Manager
{
public:
virtual void doSomething() = 0;
virtual int doSomethingElse() = 0;
}
extern "C" {
Manager* newManager();
void deleteManager(Manager*);
}
PluginManager.h
#include "Manager.h"
class PluginManager : public Manager
{
public:
PluginManager();
virtual ~PluginManager();
public:
virtual void doSomething();
virtual int doSomethingElse();
}
PluginManager.cpp
#include "PluginManager.h"
Manager* newManager()
{
return new PluginManager();
}
void deleteManager(Manager* pManager)
{
delete pManager;
}
PluginManager::PluginManager()
{
// ...
}
PluginManager::~PluginManager()
{
// ...
}
void PluginManager::doSomething()
{
// ...
}
int PluginManager::doSomethingElse()
{
// ...
}
You didnt talk about TheManager. It looks like you want that to control which class is being used? or maybe you trying to chain them together?
It sounds like you need a abstract base class and a pointer to the currently used class. If you wish to chain you can do it in both abstract class and themanager class. If abstract class, add a member to the next class in chain, if themanager then sort it in order you which to use in a list. You'll need a way to add classes so you'll need an addMe() in themanager. It sounds like you know what your doing so w/e you choose should be right. A list with an addMe func is my recommendation and if you want only 1 active class then a function in TheManager deciding it would be good.
This maybe heavier than you need, but it sounds like you are trying to make a frame work class that supports plugins.
I would break it up into to 3 sections.
1) The FrameWork class would own the plugins.
This class is responsable for publishing interfaces supplied by the plugins.
2) A PlugIn class would own the componets that do the work.
This class is responsable for registering the exported interfaces, and binding the imported interfaces to the components.
3) The third section, the componets are the suppliers and consumers of the interfaces.
To make things extensible, getting things up and running might be broke up into stages.
Create everything.
Wire everything up.
Start everything.
To break things down.
Stop everything.
Destroy everything.
class IFrameWork {
public:
virtual ~IFrameWork() {}
virtual void RegisterInterface( const char*, void* ) = 0;
virtual void* GetInterface( const char* name ) = 0;
};
class IPlugIn {
public:
virtual ~IPlugIn() {}
virtual void BindInterfaces( IFrameWork* frameWork ) {};
virtual void Start() {};
virtual void Stop() {};
};
struct SamplePlugin :public IPlugIn {
ILogger* logger;
Component1 component1;
WebServer webServer;
public:
SamplePlugin( IFrameWork* frameWork )
:logger( (ILogger*)frameWork->GetInterface( "ILogger" ) ), //assumes the 'System' plugin exposes this
component1(),
webServer( component1 )
{
logger->Log( "MyPlugin Ctor()" );
frameWork->RegisterInterface( "ICustomerManager", dynamic_cast( &component1 ) );
frameWork->RegisterInterface( "IVendorManager", dynamic_cast( &component1 ) );
frameWork->RegisterInterface( "IAccountingManager", dynamic_cast( &webServer ) );
}
virtual void BindInterfaces( IFrameWork* frameWork ) {
logger->Log( "MyPlugin BindInterfaces()" );
IProductManager* productManager( static_cast( frameWork->GetInterface( "IProductManager" ) ) );
IShippingManager* shippingManager( static_cast( frameWork->GetInterface( "IShippingManager" ) ) );
component1.BindInterfaces( logger, productManager );
webServer.BindInterfaces( logger, productManager, shippingManager );
}
virtual void Start() {
logger->Log( "MyPlugin Start()" );
webServer.Start();
}
virtual void Stop() {
logger->Log( "MyPlugin Stop()" );
webServer.Stop();
}
};
class FrameWork :public IFrameWork {
vector plugIns;
map interfaces;
public:
virtual void RegisterInterface( const char* name, void* itfc ) {
interfaces[ name ] = itfc;
}
virtual void* GetInterface( const char* name ) {
return interfaces[ name ];
}
FrameWork() {
//Only interfaces in 'SystemPlugin' can be used by all methods of the other plugins
plugIns.push_back( new SystemPlugin( this ) );
plugIns.push_back( new SamplePlugin( this ) );
//add other plugIns here
for_each( plugIns.begin(), plugIns.end(), bind2nd( mem_fun( &IPlugIn::BindInterfaces ), this ) );
for_each( plugIns.begin(), plugIns.end(), mem_fun( &IPlugIn::Start ) );
}
~FrameWork() {
for_each( plugIns.rbegin(), plugIns.rend(), mem_fun( &IPlugIn::Stop ) );
for_each( plugIns.rbegin(), plugIns.rend(), Delete() );
}
};
Here's a minimal factory pattern implementation that I came up with in about 15 minutes. We use a similar one that uses more advanced base classes.
#include "stdafx.h"
#include <map>
#include <string>
class BaseClass
{
public:
virtual ~BaseClass() { }
virtual void Test() = 0;
};
class DerivedClass1 : public BaseClass
{
public:
virtual void Test() { } // You can put a breakpoint here to test.
};
class DerivedClass2 : public BaseClass
{
public:
virtual void Test() { } // You can put a breakpoint here to test.
};
class IFactory
{
public:
virtual BaseClass* CreateNew() const = 0;
};
template <typename T>
class Factory : public IFactory
{
public:
T* CreateNew() const { return new T(); }
};
class FactorySystem
{
private:
typedef std::map<std::wstring, IFactory*> FactoryMap;
FactoryMap m_factories;
public:
~FactorySystem()
{
FactoryMap::const_iterator map_item = m_factories.begin();
for (; map_item != m_factories.end(); ++map_item) delete map_item->second;
m_factories.clear();
}
template <typename T>
void AddFactory(const std::wstring& name)
{
delete m_factories[name]; // Delete previous one, if it exists.
m_factories[name] = new Factory<T>();
}
BaseClass* CreateNew(const std::wstring& name) const
{
FactoryMap::const_iterator found = m_factories.find(name);
if (found != m_factories.end())
return found->second->CreateNew();
else
return NULL; // or throw an exception, depending on how you want to handle it.
}
};
int _tmain(int argc, _TCHAR* argv[])
{
FactorySystem system;
system.AddFactory<DerivedClass1>(L"derived1");
system.AddFactory<DerivedClass2>(L"derived2");
BaseClass* b1 = system.CreateNew(L"derived1");
b1->Test();
delete b1;
BaseClass* b2 = system.CreateNew(L"derived2");
b2->Test();
delete b2;
return 0;
}
Just copy & paste over an initial Win32 console app in VS2005/2008. I like to point out something:
You don't need to create a concrete factory for every class. A template will do that for you.
I like to place the entire factory pattern in its own class, so that you don't need to worry about creating factory objects and deleting them. You simply register your classes, a factory class gets created by the compiler and a factory object gets created by the pattern. At the end of its lifetime, all factories are cleanly destroyed. I like this form of encapsulation, as there is no confusion over who governs the lifetime of the factories.