With the new range-based for-loop we can write code like:
for(auto x: Y) {}
Which IMO is a huge improvement from (for ex.)
for(std::vector<int>::iterator x=Y.begin(); x!=Y.end(); ++x) {}
Can it be used to loop over two simultaneous loops, like Python's zip function? For those unfamiliar with Python, the code:
Y1 = [1, 2, 3]
Y2 = [4, 5, 6, 7]
for x1,x2 in zip(Y1, Y2):
print(x1, x2)
Gives as output (1,4) (2,5) (3,6)
Warning: boost::zip_iterator and boost::combine as of Boost 1.63.0 (2016 Dec 26) will cause undefined behavior if the length of the input containers are not the same (it may crash or iterate beyond the end).
Starting from Boost 1.56.0 (2014 Aug 7) you could use boost::combine (the function exists in earlier versions but undocumented):
#include <boost/range/combine.hpp>
#include <vector>
#include <list>
#include <string>
int main() {
std::vector<int> a {4, 5, 6};
double b[] = {7, 8, 9};
std::list<std::string> c {"a", "b", "c"};
for (auto tup : boost::combine(a, b, c, a)) { // <---
int x, w;
double y;
std::string z;
boost::tie(x, y, z, w) = tup;
printf("%d %g %s %d\n", x, y, z.c_str(), w);
}
}
This would print
4 7 a 4
5 8 b 5
6 9 c 6
In earlier versions, you could define a range yourself like this:
#include <boost/iterator/zip_iterator.hpp>
#include <boost/range.hpp>
template <typename... T>
auto zip(T&&... containers) -> boost::iterator_range<boost::zip_iterator<decltype(boost::make_tuple(std::begin(containers)...))>>
{
auto zip_begin = boost::make_zip_iterator(boost::make_tuple(std::begin(containers)...));
auto zip_end = boost::make_zip_iterator(boost::make_tuple(std::end(containers)...));
return boost::make_iterator_range(zip_begin, zip_end);
}
The usage is the same.
std::transform can do this trivially:
std::vector<int> a = {1,2,3,4,5};
std::vector<int> b = {1,2,3,4,5};
std::vector<int>c;
std::transform(a.begin(),a.end(), b.begin(),
std::back_inserter(c),
[](const auto& aa, const auto& bb)
{
return aa*bb;
});
for(auto cc:c)
std::cout<<cc<<std::endl;
If the second sequence is shorter, my implementation seems to be giving default initialized values.
So I wrote this zip before when I was bored, I decided to post it because it's different than the others in that it doesn't use boost and looks more like the c++ stdlib.
template <typename Iterator>
void advance_all (Iterator & iterator) {
++iterator;
}
template <typename Iterator, typename ... Iterators>
void advance_all (Iterator & iterator, Iterators& ... iterators) {
++iterator;
advance_all(iterators...);
}
template <typename Function, typename Iterator, typename ... Iterators>
Function zip (Function func, Iterator begin,
Iterator end,
Iterators ... iterators)
{
for(;begin != end; ++begin, advance_all(iterators...))
func(*begin, *(iterators)... );
//could also make this a tuple
return func;
}
Example use:
int main () {
std::vector<int> v1{1,2,3};
std::vector<int> v2{3,2,1};
std::vector<float> v3{1.2,2.4,9.0};
std::vector<float> v4{1.2,2.4,9.0};
zip (
[](int i,int j,float k,float l){
std::cout << i << " " << j << " " << k << " " << l << std::endl;
},
v1.begin(),v1.end(),v2.begin(),v3.begin(),v4.begin());
}
With range-v3:
#include <range/v3/all.hpp>
#include <vector>
#include <iostream>
namespace ranges {
template <class T, class U>
std::ostream& operator << (std::ostream& os, common_pair<T, U> const& p)
{
return os << '(' << p.first << ", " << p.second << ')';
}
}
using namespace ranges::v3;
int main()
{
std::vector<int> a {4, 5, 6};
double b[] = {7, 8, 9};
std::cout << view::zip(a, b) << std::endl;
}
The output:
[(4, 7),(5, 8),(6, 9)]
See <redi/zip.h> for a zip function which works with range-base for and accepts any number of ranges, which can be rvalues or lvalues and can be different lengths (iteration will stop at the end of the shortest range).
std::vector<int> vi{ 0, 2, 4 };
std::vector<std::string> vs{ "1", "3", "5", "7" };
for (auto i : redi::zip(vi, vs))
std::cout << i.get<0>() << ' ' << i.get<1>() << ' ';
Prints 0 1 2 3 4 5
You can use a solution based on boost::zip_iterator. Make a phony container class maintaining references to your containers, and which return zip_iterator from the begin and end member functions. Now you can write
for (auto p: zip(c1, c2)) { ... }
Example implementation (please test):
#include <iterator>
#include <boost/iterator/zip_iterator.hpp>
template <typename C1, typename C2>
class zip_container
{
C1* c1; C2* c2;
typedef boost::tuple<
decltype(std::begin(*c1)),
decltype(std::begin(*c2))
> tuple;
public:
zip_container(C1& c1, C2& c2) : c1(&c1), c2(&c2) {}
typedef boost::zip_iterator<tuple> iterator;
iterator begin() const
{
return iterator(std::begin(*c1), std::begin(*c2));
}
iterator end() const
{
return iterator(std::end(*c1), std::end(*c2));
}
};
template <typename C1, typename C2>
zip_container<C1, C2> zip(C1& c1, C2& c2)
{
return zip_container<C1, C2>(c1, c2);
}
I leave the variadic version as an excellent exercise to the reader.
If you like operator overloading, here are three possibilities. The first two are using std::pair<> and std::tuple<>, respectively, as iterators; the third extends this to range-based for. Note that not everyone will like these definitions of the operators, so it's best to keep them in a separate namespace and have a using namespace in the functions (not files!) where you'd like to use these.
#include <iostream>
#include <utility>
#include <vector>
#include <tuple>
// put these in namespaces so we don't pollute global
namespace pair_iterators
{
template<typename T1, typename T2>
std::pair<T1, T2> operator++(std::pair<T1, T2>& it)
{
++it.first;
++it.second;
return it;
}
}
namespace tuple_iterators
{
// you might want to make this generic (via param pack)
template<typename T1, typename T2, typename T3>
auto operator++(std::tuple<T1, T2, T3>& it)
{
++( std::get<0>( it ) );
++( std::get<1>( it ) );
++( std::get<2>( it ) );
return it;
}
template<typename T1, typename T2, typename T3>
auto operator*(const std::tuple<T1, T2, T3>& it)
{
return std::tie( *( std::get<0>( it ) ),
*( std::get<1>( it ) ),
*( std::get<2>( it ) ) );
}
// needed due to ADL-only lookup
template<typename... Args>
struct tuple_c
{
std::tuple<Args...> containers;
};
template<typename... Args>
auto tie_c( const Args&... args )
{
tuple_c<Args...> ret = { std::tie(args...) };
return ret;
}
template<typename T1, typename T2, typename T3>
auto begin( const tuple_c<T1, T2, T3>& c )
{
return std::make_tuple( std::get<0>( c.containers ).begin(),
std::get<1>( c.containers ).begin(),
std::get<2>( c.containers ).begin() );
}
template<typename T1, typename T2, typename T3>
auto end( const tuple_c<T1, T2, T3>& c )
{
return std::make_tuple( std::get<0>( c.containers ).end(),
std::get<1>( c.containers ).end(),
std::get<2>( c.containers ).end() );
}
// implement cbegin(), cend() as needed
}
int main()
{
using namespace pair_iterators;
using namespace tuple_iterators;
std::vector<double> ds = { 0.0, 0.1, 0.2 };
std::vector<int > is = { 1, 2, 3 };
std::vector<char > cs = { 'a', 'b', 'c' };
// classical, iterator-style using pairs
for( auto its = std::make_pair(ds.begin(), is.begin()),
end = std::make_pair(ds.end(), is.end() ); its != end; ++its )
{
std::cout << "1. " << *(its.first ) + *(its.second) << " " << std::endl;
}
// classical, iterator-style using tuples
for( auto its = std::make_tuple(ds.begin(), is.begin(), cs.begin()),
end = std::make_tuple(ds.end(), is.end(), cs.end() ); its != end; ++its )
{
std::cout << "2. " << *(std::get<0>(its)) + *(std::get<1>(its)) << " "
<< *(std::get<2>(its)) << " " << std::endl;
}
// range for using tuples
for( const auto& d_i_c : tie_c( ds, is, cs ) )
{
std::cout << "3. " << std::get<0>(d_i_c) + std::get<1>(d_i_c) << " "
<< std::get<2>(d_i_c) << " " << std::endl;
}
}
// declare a, b
BOOST_FOREACH(boost::tie(a, b), boost::combine(list_of_a, list_of_b)){
// your code here.
}
I ran into this same question independently and didn't like the syntax of any of the above. So, I have a short header file that essentially does the same as the boost zip_iterator but has a few macros to make the syntax more palatable to me:
https://github.com/cshelton/zipfor
For example you can do
vector<int> a {1,2,3};
array<string,3> b {"hello","there","coders"};
zipfor(i,s eachin a,b)
cout << i << " => " << s << endl;
The main syntactic sugar is that I can name the elements from each container. I also include a "mapfor" that does the same, but for maps (to name the ".first" and ".second" of the element).
If you have a C++14 compliant compiler (e.g. gcc5) you can use zip provided in the cppitertools library by Ryan Haining, which looks really promising:
array<int,4> i{{1,2,3,4}};
vector<float> f{1.2,1.4,12.3,4.5,9.9};
vector<string> s{"i","like","apples","alot","dude"};
array<double,5> d{{1.2,1.2,1.2,1.2,1.2}};
for (auto&& e : zip(i,f,s,d)) {
cout << std::get<0>(e) << ' '
<< std::get<1>(e) << ' '
<< std::get<2>(e) << ' '
<< std::get<3>(e) << '\n';
std::get<1>(e)=2.2f; // modifies the underlying 'f' array
}
For a C++ stream processing library I'm writing I was looking for a solution that doesn't rely on third party libraries and works with an arbitrary number of containers. I ended up with this solution. It's similar to the accepted solution which uses boost (and also results in undefined behavior if the container lengths are not equal)
#include <utility>
namespace impl {
template <typename Iter, typename... Iters>
class zip_iterator {
public:
using value_type = std::tuple<const typename Iter::value_type&,
const typename Iters::value_type&...>;
zip_iterator(const Iter &head, const Iters&... tail)
: head_(head), tail_(tail...) { }
value_type operator*() const {
return std::tuple_cat(std::tuple<const typename Iter::value_type&>(*head_), *tail_);
}
zip_iterator& operator++() {
++head_; ++tail_;
return *this;
}
bool operator==(const zip_iterator &rhs) const {
return head_ == rhs.head_ && tail_ == rhs.tail_;
}
bool operator!=(const zip_iterator &rhs) const {
return !(*this == rhs);
}
private:
Iter head_;
zip_iterator<Iters...> tail_;
};
template <typename Iter>
class zip_iterator<Iter> {
public:
using value_type = std::tuple<const typename Iter::value_type&>;
zip_iterator(const Iter &head) : head_(head) { }
value_type operator*() const {
return value_type(*head_);
}
zip_iterator& operator++() { ++head_; return *this; }
bool operator==(const zip_iterator &rhs) const { return head_ == rhs.head_; }
bool operator!=(const zip_iterator &rhs) const { return !(*this == rhs); }
private:
Iter head_;
};
} // namespace impl
template <typename Iter>
class seq {
public:
using iterator = Iter;
seq(const Iter &begin, const Iter &end) : begin_(begin), end_(end) { }
iterator begin() const { return begin_; }
iterator end() const { return end_; }
private:
Iter begin_, end_;
};
/* WARNING: Undefined behavior if iterator lengths are different.
*/
template <typename... Seqs>
seq<impl::zip_iterator<typename Seqs::iterator...>>
zip(const Seqs&... seqs) {
return seq<impl::zip_iterator<typename Seqs::iterator...>>(
impl::zip_iterator<typename Seqs::iterator...>(std::begin(seqs)...),
impl::zip_iterator<typename Seqs::iterator...>(std::end(seqs)...));
}
From C++23, we can iterate on std::views::zip.
Below is simple example.
#include <iostream>
#include <ranges>
#include <vector>
int main() {
std::vector<int> x {4, 5, 6};
double y[] = {7, 8, 9};
for (auto [elem1,elem2] : std::views::zip(x, y))
std::cout << "[" << elem1 << "," << elem2 << "]" << " ";
}
The output can be verified below (an online compiler). Not sure how many days the link exists.
https://godbolt.org/z/KjjE4eeGY
An improvement on aaronman's solution:
Still C++11.
No recursive template expansion.
Support for container zipping.
Utilizes the approach of Sean Parent's famed for_each_arg().
// Includes only required for the example main() below!
#include <vector>
#include <iostream>
namespace detail {
struct advance {
template <typename T> void operator()(T& t) const { ++t; }
};
// Adaptation of for_each_arg, see:
// https://isocpp.org/blog/2015/01/for-each-argument-sean-parent
template <class... Iterators>
void advance_all(Iterators&... iterators) {
[](...){}((advance{}(iterators), 0)...);
}
} // namespace detail
template <typename F, typename Iterator, typename ... ExtraIterators>
F for_each_zipped(
F func,
Iterator begin,
Iterator end,
ExtraIterators ... extra_iterators)
{
for(;begin != end; ++begin, detail::advance_all(extra_iterators...))
func(*begin, *(extra_iterators)... );
return func;
}
template <typename F, typename Container, typename... ExtraContainers>
F for_each_zipped_containers(
F func,
Container& container,
ExtraContainers& ... extra_containers)
{
return for_each_zipped(
func, std::begin(container), std::end(container), std::begin(extra_containers)...);
}
int main () {
std::vector<int> v1 { 1, 2, 3};
std::vector<int> v2 { 3, 2, 1};
std::vector<float> v3 {1.2, 2.4, 9.0};
std::vector<float> v4 {1.2, 2.4, 9.0};
auto print_quartet =
[](int i,int j,float k,float l) {
std::cout << i << " " << j << " " << k << " " << l << '\n';
};
std::cout << "Using zipped iterators:\n";
for_each_zipped(print_quartet, v1.begin(), v1.end(), v2.begin(), v3.begin(), v4.begin());
std::cout << "\nUsing zipped containers:\n";
for_each_zipped_containers(print_quartet, v1, v2, v3, v4);
}
See it working on GodBolt.
I would propose this one. I found it to be quite elegant, and exactly what I (and you) needed.
https://github.com/CommitThis/zip-iterator
Just in case here's a code copy. Note, it is distributed under MIT License, also don't forget to put name of author.
zip.hpp
/***
* MIT License
* Author: G Davey
*/
#pragma once
#include <cassert>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <string>
#include <vector>
#include <typeinfo>
namespace c9 {
template <typename Iter>
using select_access_type_for = std::conditional_t<
std::is_same_v<Iter, std::vector<bool>::iterator> ||
std::is_same_v<Iter, std::vector<bool>::const_iterator>,
typename Iter::value_type,
typename Iter::reference
>;
template <typename ... Args, std::size_t ... Index>
auto any_match_impl(std::tuple<Args...> const & lhs,
std::tuple<Args...> const & rhs,
std::index_sequence<Index...>) -> bool
{
auto result = false;
result = (... | (std::get<Index>(lhs) == std::get<Index>(rhs)));
return result;
}
template <typename ... Args>
auto any_match(std::tuple<Args...> const & lhs, std::tuple<Args...> const & rhs)
-> bool
{
return any_match_impl(lhs, rhs, std::index_sequence_for<Args...>{});
}
template <typename ... Iters>
class zip_iterator
{
public:
using value_type = std::tuple<
select_access_type_for<Iters>...
>;
zip_iterator() = delete;
zip_iterator(Iters && ... iters)
: m_iters {std::forward<Iters>(iters)...}
{
}
auto operator++() -> zip_iterator&
{
std::apply([](auto && ... args){ ((args += 1), ...); }, m_iters);
return *this;
}
auto operator++(int) -> zip_iterator
{
auto tmp = *this;
++*this;
return tmp;
}
auto operator!=(zip_iterator const & other)
{
return !(*this == other);
}
auto operator==(zip_iterator const & other)
{
auto result = false;
return any_match(m_iters, other.m_iters);
}
auto operator*() -> value_type
{
return std::apply([](auto && ... args){
return value_type(*args...);
}, m_iters);
}
private:
std::tuple<Iters...> m_iters;
};
/* std::decay needed because T is a reference, and is not a complete type */
template <typename T>
using select_iterator_for = std::conditional_t<
std::is_const_v<std::remove_reference_t<T>>,
typename std::decay_t<T>::const_iterator,
typename std::decay_t<T>::iterator>;
template <typename ... T>
class zipper
{
public:
using zip_type = zip_iterator<select_iterator_for<T> ...>;
template <typename ... Args>
zipper(Args && ... args)
: m_args{std::forward<Args>(args)...}
{
}
auto begin() -> zip_type
{
return std::apply([](auto && ... args){
return zip_type(std::begin(args)...);
}, m_args);
}
auto end() -> zip_type
{
return std::apply([](auto && ... args){
return zip_type(std::end(args)...);
}, m_args);
}
private:
std::tuple<T ...> m_args;
};
template <typename ... T>
auto zip(T && ... t)
{
return zipper<T ...>{std::forward<T>(t)...};
}
}
Example
#include "zip.hpp"
#include <vector>
std::vector<int> a, b, c;
void foo() {
for (auto && [x, y] : zip(a, b))
c.push_back(x + z);
}
Boost.Iterators has zip_iterator you can use (example's in the docs). It won't work with range for, but you can use std::for_each and a lambda.
Here is a simple version that does not require boost. It won't be particularly efficient as it creates temporary values, and it does not generalise over containers other than lists, but it has no dependencies and it solves the most common case for zipping.
template<class L, class R>
std::list< std::pair<L,R> > zip(std::list<L> left, std::list<R> right)
{
auto l = left.begin();
auto r = right.begin();
std::list< std::pair<L,R> > result;
while( l!=left.end() && r!=right.end() )
result.push_back( std::pair<L,R>( *(l++), *(r++) ) );
return result;
}
Although the other versions are more flexible, often the point of using a list operator is make a simple one-liner. This version has the benefit that the common-case is simple.
Related
I'm trying to write a generic erase_if method that can be used on any container type to remove elements given a predicate. It should either use the erase-remove-idiom if the container allows it, or loop through the container and call the erase method. I also just want to provide the container itself, not the begin and end iterator separatly. That shall be handled by the method.
However I can't get the meta-template to work to distinguish between the two cases through SFINAE. I'm trying to check whether the method std::remove_if (or std::remove) would be well defined for a given type, but the value is either true for both vector and map (in which case the code won't compile) or false for both of them. I'm quite new to template meta-programming, so is there something I'm missing? Or maybe there's another, better solution?
Below is my example code:
#include <algorithm>
#include <iostream>
#include <iterator>
#include <map>
#include <type_traits>
#include <vector>
namespace my_std
{
using std::begin;
using std::end;
namespace detail
{
template <typename T>
// this is false for both vector and map
auto is_remove_compatible(int) -> decltype(std::remove_if(begin(std::declval<T&>()), end(std::declval<T&>()),
[](auto&&) { return false; }),
std::true_type{});
// this is true for both vector and map
// auto is_remove_compatible(int)
// -> decltype(std::remove(begin(std::declval<T&>()), end(std::declval<T&>()), std::declval<T::value_type&>()),
// std::true_type{});
template <typename T>
auto is_remove_compatible(...) -> std::false_type;
}
template <typename T>
using is_remove_compatible = decltype(detail::is_remove_compatible<T>(0));
template <typename T>
constexpr bool is_remove_compatible_v = is_remove_compatible<T>::value;
template <typename Cont, typename Pred>
std::enable_if_t<is_remove_compatible_v<Cont>> erase_if(Cont& container, Pred pred)
{
std::cout << "Using erase-remove\n";
container.erase(std::remove_if(begin(container), end(container), pred), end(container));
}
template <typename Cont, typename Pred>
std::enable_if_t<!is_remove_compatible_v<Cont>> erase_if(Cont& container, Pred pred)
{
std::cout << "Using loop\n";
for (auto it = begin(container); it != end(container);)
{
if (pred(*it))
it = container.erase(it);
else
++it;
}
}
}
template <typename T>
std::ostream& operator<<(std::ostream& out, std::vector<T> const& v)
{
if (!v.empty())
{
out << '[';
std::copy(v.begin(), v.end(), std::ostream_iterator<T>(out, ", "));
out << "\b\b]";
}
return out;
}
template <typename K, typename V>
std::ostream& operator<<(std::ostream& out, std::map<K, V> const& v)
{
out << '[';
for (auto const& p : v)
out << '{' << p.first << ", " << p.second << "}, ";
out << "\b\b]";
return out;
}
int main(int argc, int argv[])
{
auto vp = my_std::is_remove_compatible_v<std::vector<int>>;
auto mp = my_std::is_remove_compatible_v<std::map<int, int>>;
std::cout << vp << ' ' << mp << '\n';
std::vector<int> v = {1, 2, 3, 4, 5};
auto v2 = v;
my_std::erase_if(v2, [](auto&& x) { return x % 2 == 0; });
std::map<int, int> m{{1, 0}, {2, 0}, {3, 0}, {4, 0}, {5, 0}};
auto m2 = m;
my_std::erase_if(m2, [](auto&& x) { return x.first % 2 == 0; });
std::cout << v << " || " << v2 << '\n';
std::cout << m << " || " << m2 << '\n';
std::cin.ignore();
}
This idea is wrong for two reasons:
auto is_remove_compatible(int) -> decltype(std::remove_if(begin(std::declval<T&>()), end(std::declval<T&>()),
[](auto&&) { return false; }),
std::true_type{});
First, you can't have a lambda in an unevaluated context, so the code is ill-formed. Second, even if it wasn't ill-formed (which is easy to fix), remove_if() isn't SFINAE-friendly on anything. If you pass in something that isn't a predicate to remove_if, or a non-modifiable iterator, that's not required by the standard to be anything but a hard error.
The way I would do it right now is via the chooser idiom. Basically, have conditional sfinae based on a rank ordering:
template <std::size_t I> struct chooser : chooser<I-1> { };
template <> struct chooser<0> { };
template <class Cont, class Predicate>
void erase_if(Cont& container, Predicate&& predicate) {
return erase_if_impl(container, std::forward<Predicate>(predicate), chooser<10>{});
}
And then we just have our various erase_if_impl conditions, in order:
// for std::list/std::forward_list
template <class Cont, class Predicate>
auto erase_if_impl(Cont& c, Predicate&& predicate, chooser<3> )
-> decltype(void(c.remove_if(std::forward<Predicate>(predicate))))
{
c.remove_if(std::forward<Predicate>(predicate));
}
// for the associative containers (set, map, ... )
template <class Cont, class Predicate>
auto erase_if_impl(Cont& c, Predicate&& predicate, chooser<2> )
-> decltype(void(c.find(std::declval<typename Cont::key_type const&>())))
{
using std::begin; using std::end;
for (auto it = begin(c); it != end(c); )
{
if (predicate(*it)) {
it = c.erase(it);
} else {
++it;
}
}
}
// for everything else, there's MasterCard
template <class Cont, class Predicate>
void erase_if_impl(Cont& c, Predicate&& predicate, chooser<1> )
{
using std::begin; using std::end;
c.erase(std::remove_if(begin(c), end(c), std::forward<Predicate>(predicate)), end(c));
}
As an exercise I'm trying to implement Python's str.join method in C++. I will eventually add the function as a method of the std::string class but I figure getting it to work is more of a priority. I've defined the function as follows:
template<typename Iterable>
std::string join(const std::string sep, Iterable iter);
Is there any way that I can ensure that the Iterable type is actually iterable? E.g. I wouldn't want to receive an int or char..
In C++, rather than having one Iterable, we pass in an iterator (almost a pointer) to the front and the end of the range:
template<typename Iter>
std::string join(const std::string &sep, Iter begin, Iter end);
Note that the sep should be passed as const reference, as you don't need to copy it.
You don't need to worry about whether the Iter is actually an iterator, though. This is because the code will simply fail to compile if it doesn't work.
For example, suppose you implemented it like so (this is a bad implementation):
template<typename Iter>
std::string join(const std::string &sep, Iter begin, Iter end) {
std::string result;
while (begin != end) {
result += *begin;
++begin;
if (begin != end) result += sep;
}
return result;
}
Then the type passed in as Iter must have an operator++, an operator!=, and an operator* to work, which is the well understood contract of an iterator.
All standard c++ collections has begin() and end() member functions. You could make use of that fact to ensure that the passed argument is actually a collection (in your terminology - iterable) by some SFINAE (c++11 example):
#include <array>
#include <list>
#include <vector>
#include <map>
#include <string>
template <class Iterable>
auto join(const std::string sep, const Iterable& iterable) -> decltype(iterable.begin(), iterable.end(), std::string{}) {
(void)sep; // to suppress warning that sep isn't used
// some implementation
return {};
}
int main() {
join(";", std::array<int, 5>{});
join(";", std::list<int>{});
join(";", std::vector<float>{});
join(";", std::string{});
join(";", std::map<int, float>{});
//join(";", int{}); // does not compile as int is not a collection
}
[live demo]
You may use template template syntax and - if needed - use SFINAE to make sure that proper class members are existing:
#include <vector>
#include <list>
#include <string>
#include <map>
#include <ostream>
//! Single value containers.
template< template<class> class L, class T,
class EntryT = typename L<T>::value_type>
std::string my_join(const std::string_view sep, const L<T>& anyTypeIterable)
{
std::stringstream ss;
bool first = true;
for (const EntryT& entry : anyTypeIterable)
{
if (first) first = false;
else ss << sep;
ss << entry;
}
return ss.str();
}
//! std::map specialization - SFINAE used here to filter containers with pair value_type
template< template<class, class> class L, class T0, class T1,
class EntryT = typename L<T0, T1>::value_type,
class FirstT = typeof(EntryT::first),
class SecondT = typeof(EntryT::second)>
std::string my_join(const std::string_view sep, const L<T0, T1>& anyTypeIterable)
{
std::stringstream ss;
bool first = true;
for (const EntryT& entry : anyTypeIterable)
{
if (first) first = false;
else ss << sep;
ss << entry.first << sep << entry.second;
}
return ss.str();
}
int main()
{
std::cout << my_join("; ", std::vector<int>({1, 2, 3, 4})) << std::endl;
std::cout << my_join("; ", std::list<int>({1, 2, 3, 4})) << std::endl;
std::cout << my_join("; ", std::string("1234")) << std::endl;
std::cout << my_join("; ", std::map<int, int>({ {1, 2}, {3, 4} })) << std::endl;
return 0;
}
// Output:
// 1; 2; 3; 4
// 1; 2; 3; 4
// 1; 2; 3; 4
// 1; 2; 3; 4
From https://devblogs.microsoft.com/oldnewthing/20190619-00/?p=102599 :
template<typename C, typename T = typename C::value_type>
auto do_something_with(C const& container)
{
for (int v : container) { ... }
}
Or if the container doesn't implement value_type:
template<typename C, typename T = std::decay_t<decltype(*begin(std::declval<C>()))>>
auto do_something_with(C const& container)
{
for (int v : container) { ... }
}
Or if you want only containers containing types convertible to int:
template<typename C, typename T = std::decay_t<decltype(*begin(std::declval<C>()))>,
typename = std::enable_if_t<std::is_convertible_v<T, int>>>
auto do_something_with(C const& container)
{
for (int v : container) { ... }
}
But see the comments in that blog post for more refinements.
Is there a better way to write:
for (auto i = container.begin(); i != container.end();)
{
if (condition(i))
{
i = container.erase(i);
continue;
}
++i;
}
This code does what I want, but it feels like bad style.
How can I improve it?
My container is std::map, but a generic solution would be cool.
Use erase + remove_if:
auto pred = /* lambda or something*/
container.erase(std::remove_if(container.begin(),
container.end(),
pred)
Is there a better way to...?
It is always subjective, but one way is a traits-based template function suite with a consistent interface, using tag-dispatching to choose the most optimal algorithm depending on the container type...
The interface function could look like this:
template<class Range, class Pred>
Range& erase_if(Range& range, Pred&& pred)
{
erase_if(typename detail::range_traits<std::decay_t<Range>>::idiom_type(),
range, std::forward<Pred>(pred));
return range;
}
which defers to the correct idiom for the container type...
void erase_if(erase_remove_idiom, Vector& vec, Pred pred)
{
vec.erase(std::remove_if(std::begin(vec), std::end(vec),
std::forward<Pred>(pred)),
std::end(vec));
}
template<class Maplike, class Pred>
void erase_if(equal_range_idiom, Maplike& map, Pred pred)
{
auto first = std::begin(map);
auto last = std::end(map);
while (first != last) {
auto& item = *first;
auto& key = get_key(item);
auto range = map.equal_range(key);
if (pred(key)) {
map.erase(range.first, range.second);
}
first = range.second;
}
}
template<class Maplike, class Pred>
void erase_if(map_crawl_idiom, Maplike& map, Pred pred)
{
for (auto i = map.begin(); i != map.end();)
{
i = pred(*i) ? map.erase(i) : std::next(i);
}
}
Here's the complete code and some tests.
Writing code like this always makes me feel admiration for std-library maintainers. So many corner cases...
#include <iostream>
#include <vector>
#include <algorithm>
#include <iterator>
#include <set>
#include <unordered_set>
#include <map>
namespace detail {
// The general concept of range_traits
template<class Range>
struct range_traits
{
};
// Tag for performing erase-remove on vector-like containers
struct erase_remove_idiom {};
// Using equal-range to skip redundant comparisons in multiset-like-containers
struct equal_range_idiom {};
// Crawling through maps...
struct map_crawl_idiom {};
template<class V, class A>
struct range_traits<std::vector<V, A>> {
using idiom_type = erase_remove_idiom;
};
template<class V, class C, class A>
struct range_traits<std::multiset<V, C, A>> {
using idiom_type = equal_range_idiom;
};
template<class V, class C, class A>
struct range_traits<std::set<V, C, A>> {
using idiom_type = map_crawl_idiom;
};
template<class V, class C, class H, class A>
struct range_traits<std::unordered_set<V, C, H, A>> {
using idiom_type = map_crawl_idiom;
};
template<class V, class C, class H, class A>
struct range_traits<std::unordered_multiset<V, C, H, A>> {
using idiom_type = equal_range_idiom;
};
template<class K, class V, class C, class A>
struct range_traits<std::multimap<K, V, C, A>> {
using idiom_type = map_crawl_idiom;
};
template<class K, class V, class C, class A>
struct range_traits<std::map<K, V, C, A>> {
using idiom_type = map_crawl_idiom;
};
}
namespace detail {
template<class Vector, class Pred>
void erase_if(erase_remove_idiom, Vector& vec, Pred pred)
{
vec.erase(std::remove_if(std::begin(vec), std::end(vec),
std::forward<Pred>(pred)),
std::end(vec));
}
// Generalised key-getter for sets
template<class V>
V& get_key(V& v) {
return v;
}
// Specialised key-getter for maps
template<class K, class V>
const K& get_key(std::pair<const K, V>& p) {
return p.first;
}
template<class Maplike, class Pred>
void erase_if(equal_range_idiom, Maplike& map, Pred pred)
{
auto first = std::begin(map);
auto last = std::end(map);
while (first != last) {
auto& item = *first;
auto& key = get_key(item);
auto range = map.equal_range(key);
if (pred(key)) {
map.erase(range.first, range.second);
}
first = range.second;
}
}
template<class Maplike, class Pred>
void erase_if(map_crawl_idiom, Maplike& map, Pred pred)
{
for (auto i = map.begin(); i != map.end();)
{
i = pred(*i) ? map.erase(i) : std::next(i);
}
}
}
//
// The interface function
//
template<class Range, class Pred>
Range& erase_if(Range& range, Pred&& pred)
{
erase_if(typename detail::range_traits<std::decay_t<Range>>::idiom_type(),
range, std::forward<Pred>(pred));
return range;
}
template<class T>
struct emitter
{
void operator()(std::ostream& os, const T& t) const {
os << t;
}
};
template<class K, class V>
struct emitter<std::pair<const K, V>>
{
void operator()(std::ostream& os, const std::pair<const K, V>& p) const {
os << "(" << p.first << ", " << p.second << ")";
}
};
template<class Range>
void dump(Range& range)
{
auto sep = "";
auto e = emitter<typename std::decay_t<Range>::value_type> {};
for (auto& item : range) {
std::cout << sep;
e(std::cout, item);
sep = ", ";
}
std::cout << std::endl;
}
//
// Test on various containers
//
int main()
{
std::vector<int> some { 1,0,1,0,1,0,1,0 };
std::multiset<int> some_mset { 1,0,1,0,1,0,1,0 };
std::unordered_multiset<int> some_umset { some_mset.begin(), some_mset.end() };
std::map<int, std::string> some_map {
{ 1, "mouse" },
{ 2, "house" },
{ 3, "mouth" }
};
std::multimap<int, std::string> some_mmap(some_map.begin(), some_map.end());
some_mmap.insert(some_map.begin(), some_map.end());
std::set<int> some_set { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
auto is_one = [](auto& x) { return x == 1; };
auto is_even = [](auto&x) { return (x % 2) == 0; };
auto value_starts_with_m = [](auto& item) { return item.second.substr(0,1) == "m"; };
dump(erase_if(some, is_one));
dump(erase_if(some_mset, is_one));
dump(erase_if(some_umset, is_one));
dump(erase_if(some_map, value_starts_with_m));
dump(erase_if(some_mmap, value_starts_with_m));
dump(erase_if(some_set, is_even));
}
Expected results:
0, 0, 0, 0
0, 0, 0, 0
0, 0, 0, 0
(2, house)
(2, house), (2, house)
1, 3, 5, 7, 9
All of these questions and comments are quaint, but they don't address the original question.
What was asked is, how does one tighten up the following:
for( i = ...; some_condition( i ); ) {
if( another_condition( i ) ) {
erase( i );
continue;
}
i++;
}
And the answer is:
for( i = ...; some_condition( i ); i++ ) {
if( another_condition( i ) ) {
erase( i );
}
}
I’m writing filter and map algorithms using boost::range library:
template <class Range> struct Converter
{
Converter(const Range& p_range) : m_range(p_range) {}
template<class OutContainer> operator OutContainer() const
{
return {m_range.begin(), m_range.end()};
}
private:
Range m_range;
};
template<class Range> Converter<Range> convert(const Range& p_range) { return {p_range}; }
template<class Range, class Fun> auto map(Range&& p_range, Fun&& p_fun)
{
return convert(p_range | boost::adaptors::transformed(p_fun));
}
template<class Range, class Pred> auto filter(Range&& p_range, Pred&& p_pred)
{
return convert(p_range | boost::adaptors::filtered(p_pred));
}
Right now I can use them like this:
std::vector<int> l_in = {1, 2, 3, 4, 5};
std::vector<int> l_tmp_out = filter(l_in, [](int p){ return p < 4; });
std::vector<int> l_out = map(l_tmp_out, [](int p){ return p + 5; });
I would also like to write code this way:
map(filter(l_in, [](int p){ return p < 4; }), [](int p){ return p + 5; });
Unfortunately my Converter class does not compose with boost::range algorithms so this example does not compile. I'm looking for a proper way to change that.
UPDATE
I followed #sehe link and it turned out that all I had to do was to add this four lines to Converter class:
using iterator = typename Range::iterator;
using const_iterator = typename Range::const_iterator;
auto begin() const { return m_range.begin(); }
auto end() const { return m_range.end(); }
Here's my take on things:
Live On Coliru
#include <boost/range.hpp>
#include <boost/range/adaptors.hpp>
#include <boost/range/algorithm.hpp>
#include <iostream>
#include <vector>
namespace MyRange {
template <typename R> struct Proxy {
Proxy(R&& r) : _r(std::move(r)) {}
Proxy(R const& r) : _r(r) {}
template <typename OutContainer> operator OutContainer() const {
return boost::copy_range<OutContainer>(_r);
}
using iterator = typename boost::range_mutable_iterator<R>::type;
using const_iterator = typename boost::range_const_iterator<R>::type;
auto begin() const { return range_begin(_r); }
auto end() const { return range_end(_r); }
auto begin() { return range_begin(_r); }
auto end() { return range_end(_r); }
private:
R _r;
};
template <typename R> auto make_proxy(R&& r) { return Proxy<R>(std::forward<R>(r)); }
template <typename Range, typename Fun> auto map(Range&& p_range, Fun&& p_fun) {
return make_proxy(std::forward<Range>(p_range) | boost::adaptors::transformed(std::forward<Fun>(p_fun)));
}
template <typename Range, typename Pred> auto filter(Range&& p_range, Pred&& p_pred) {
return make_proxy(std::forward<Range>(p_range) | boost::adaptors::filtered(std::forward<Pred>(p_pred)));
}
}
int main() {
using namespace MyRange;
{
std::vector<int> l_in = {1, 2, 3, 4, 5};
std::vector<int> l_tmp_out = filter(l_in, [](int p){ return p < 4; });
std::vector<int> l_out = map(l_tmp_out, [](int p){ return p + 5; });
boost::copy(l_out, std::ostream_iterator<int>(std::cout << "\nfirst:\t", "; "));
}
{
boost::copy(
map(
filter(
std::vector<int> { 1,2,3,4,5 },
[](int p){ return p < 4; }),
[](int p){ return p + 5; }),
std::ostream_iterator<int>(std::cout << "\nsecond:\t", "; "));
}
}
Prints
first: 6; 7; 8;
second: 6; 7; 8;
NOTES
it uses std::forward<> more accurately
it uses const/non-const iterators
it uses Boost Range traits (range_mutable_iterator<> etc.) instead of hardcoding assuming nested typedefs. This allows things to work with other ranges (e.g. std::array<> or even int (&)[]).
the user-defined converson operator uses boost::copy_range<> for similar reasons
I want to do the following:
std::vector<int> a = {1,2,3}, b = {4,5,6}, c = {7,8,9};
for(auto&& i : join(a,b,c)) {
i += 1
std::cout << i; // -> 2345678910
}
I tried using boost::range::join, this works fine:
auto r = boost::join(a,b);
for(auto&& i : boost::join(r,c)) {
i += 1;
std::cout << i; // -> 2345678910
}
Chaining joins, reading operations work:
for(auto&& i : boost::join(boost::join(a,b),c))
std::cout << i; // -> 123456789
However, writing doesn't work:
for(auto&& i : boost::join(boost::join(a,b),c)) {
i += 1; // Fails :(
std::cout << i;
}
My variadic join has the same problem, i.e. works for reading but not for writing:
template<class C> C&& join(C&& c) { return c; }
template<class C, class D, class... Args>
auto join(C&& c, D&& d, Args&&... args)
-> decltype(boost::join(boost::join(std::forward<C>(c), std::forward<D>(d)),
join(std::forward<Args>(args)...))) {
return boost::join(boost::join(std::forward<C>(c), std::forward<D>(d)),
join(std::forward<Args>(args)...));
}
Mehrdad gave the solution in the comments
template<class C>
auto join(C&& c)
-> decltype(boost::make_iterator_range(std::begin(c),std::end(c))) {
return boost::make_iterator_range(std::begin(c),std::end(c));
}
template<class C, class D, class... Args>
auto join(C&& c, D&& d, Args&&... args)
-> decltype(boost::join(boost::join(boost::make_iterator_range(std::begin(c),std::end(c)),
boost::make_iterator_range(std::begin(d),std::end(d))),
join(std::forward<Args>(args)...))) {
return boost::join(boost::join(boost::make_iterator_range(std::begin(c),std::end(c)),
boost::make_iterator_range(std::begin(d),std::end(d))),
join(std::forward<Args>(args)...));
}
There are two overloads of boost::join
template<typename SinglePassRange1, typename SinglePassRange2>
joined_range<const SinglePassRange1, const SinglePassRange2>
join(const SinglePassRange1& rng1, const SinglePassRange2& rng2)
template<typename SinglePassRange1, typename SinglePassRange2>
joined_range<SinglePassRange1, SinglePassRange2>
join(SinglePassRange1& rng1, SinglePassRange2& rng2);
When you do this
for(auto&& i : boost::join(boost::join(a,b), c)) {
// ^^^^ ^^^^ temporary here
// ||
// calls the const ref overload
You get a temporary joined_range and as those can only bind to const references, the first overload is selected which returns a range that doesn't allow modifying.
You can work around this if you avoid temporaries:
#include <boost/range.hpp>
#include <boost/range/join.hpp>
int main()
{
std::vector<int> a = {1,2,3}, b = {4,5,6}, c = {7,8,9};
auto range = boost::join(a,b);
for(int& i : boost::join(range,c)) {
i += 1;
std::cout << i;
}
}
Live demo.
I haven't looked into your variadic functions, but the problem is likely similar.
Here's a complete solution, which works correctly on GCC 12. For GCC 10 & 11, the subranges function can be used to obtain an array of subranges, which can then be used as the lhs argument to | std::views::join.
EDIT: These functions only return on ranges that have a common iterator type. If you don't have a common iterator type, one option is to create a new container from the ranges (which is probably not what you want), or to create a custom type with different sub-ranges (which can't be used with std::views::join).
#include <ranges>
#include <vector>
#include <iostream>
#include <tuple>
#include <array>
#include <algorithm>
namespace detail {
template<std::size_t N, typename... Ts>
struct has_common_type_helper {
using T1 = std::decay_t<std::tuple_element_t<N-1, std::tuple<Ts...>>>;
using T2 = std::decay_t<std::tuple_element_t<N-2, std::tuple<Ts...>>>;
static constexpr bool value = std::same_as<T1, T2> && has_common_type_helper<N-1, Ts...>::value;
};
template<typename... Ts>
struct has_common_type_helper<0, Ts...> : std::false_type {
static_assert(std::is_void_v<Ts...>, "Undefined for an empty parameter pack");
};
template<typename... Ts>
struct has_common_type_helper<1, Ts...> : std::true_type {};
template<typename T> struct iterator_types;
template<std::ranges::range... Ts>
struct iterator_types<std::tuple<Ts...>> {
using type = std::tuple<std::ranges::iterator_t<Ts>...>;
};
}
template<typename T>
struct has_common_type;
template<typename T1, typename T2>
struct has_common_type<std::pair<T1,T2>> {
static constexpr bool value = std::same_as<std::decay_t<T1>, std::decay_t<T2>>;
};
template <typename... Ts>
struct has_common_type<std::tuple<Ts...>> : detail::has_common_type_helper<sizeof...(Ts), Ts...> {};
template <typename T>
inline constexpr bool has_common_type_v = has_common_type<T>::value;
template<std::size_t I = 0, typename Array, typename... Ts, typename Func> requires (I == sizeof...(Ts))
void init_array_from_tuple(Array& a, const std::tuple<Ts...>& t, Func fn)
{
}
template<std::size_t I = 0, typename Array, typename... Ts, typename Func> requires (I < sizeof...(Ts))
void init_array_from_tuple(Array& a, const std::tuple<Ts...>& t, Func fn)
{
a[I] = fn(std::get<I>(t));
init_array_from_tuple<I+1>(a, t, fn);
}
template<std::ranges::range... Ranges>
auto subranges(Ranges&&... rngs)
{
using IteratorTypes = detail::iterator_types<std::tuple<Ranges...>>::type;
static_assert(has_common_type_v<IteratorTypes>);
using SubrangeT = std::ranges::subrange<std::tuple_element_t<0, IteratorTypes>>;
auto subrngs = std::array<SubrangeT, sizeof...(Ranges)>{};
auto t = std::tuple<Ranges&&...>{std::forward<Ranges>(rngs)...};
auto fn = [](auto&& rng) {
return std::ranges::subrange{rng.begin(), rng.end()};
};
init_array_from_tuple(subrngs, t, fn);
return subrngs;
}
#if __GNUC__ >= 12
template<std::ranges::range... Ranges>
auto join(Ranges&&... rngs)
{
return std::ranges::owning_view{subranges(std::forward<Ranges>(rngs)...) | std::views::join};
}
#endif
int main()
{
std::vector<int> v1{1,2,3};
std::vector<int> v2{4};
std::vector<int> v3{5,6};
#if __GNUC__ >= 12
std::ranges::copy(join(v1,v2,v3,v1), std::ostream_iterator<int>(std::cout, " "));
#else
auto subrngs = subranges(v1,v2,v3,v1);
std::ranges::copy(subrngs | std::views::join, std::ostream_iterator<int>(std::cout, " "));
#endif
std::cout << '\n';
return 0;
}
Here's an implementation that works for two different ranges with a common reference type. You can extend it to 3 ranges using a brute-force approach.
#include <ranges>
#include <vector>
#include <list>
#include <iostream>
#include <algorithm>
template<std::ranges::range Range1, std::ranges::range Range2>
auto join2(Range1&& rng1, Range2&& rng2)
{
using Ref1 = std::ranges::range_reference_t<Range1>;
using Ref2 = std::ranges::range_reference_t<Range2>;
using Ref = std::common_reference_t<Ref1, Ref2>;
class Iter {
public:
using value_type = std::remove_cv_t<std::remove_reference_t<Ref>>;
using difference_type = std::ptrdiff_t;
Iter() = default;
Iter(Range1&& rng1_, Range2&& rng2_, bool begin)
: m_it1{begin ? rng1_.begin() : rng1_.end()}
, m_it2{begin ? rng2_.begin() : rng2_.end()}
, m_e1{rng1_.end()} {}
bool operator==(const Iter& rhs) const {
return m_it1 == rhs.m_it1 && m_it2 == rhs.m_it2;
}
Ref operator*() const {
return m_it1 != m_e1 ? *m_it1 : *m_it2;
}
Iter& operator++() {
(m_it1 != m_e1) ? (void)++m_it1 : (void)++m_it2;
return *this;
}
Iter operator++(int) {
Iter ret = *this;
++(*this);
return ret;
}
private:
std::ranges::iterator_t<Range1> m_it1;
std::ranges::iterator_t<Range2> m_it2;
std::ranges::iterator_t<Range1> m_e1;
};
static_assert(std::forward_iterator<Iter>);
auto b = Iter{std::forward<Range1>(rng1), std::forward<Range2>(rng2), true};
auto e = Iter{std::forward<Range1>(rng1), std::forward<Range2>(rng2), false};
return std::ranges::subrange<Iter>{b, e};
}
int main()
{
std::vector<int> v{1,2,3};
std::list<int> l{4,5,6};
std::ranges::copy(join2(v,l), std::ostream_iterator<int>(std::cout, " "));
std::cout << '\n';
return 0;
}
P.S. I am not optimistic about a variadic implementation, although I'm sure someone smarter than me would be able to figure it out.