std::enable_if an argument is a function? - c++

Why does the following compile under C++11? (I know it won't link.) I would expect the std::enable_if test to fail since 1() is not a function type.
#include <type_traits>
template <typename Func, typename... Args>
typename std::enable_if<std::is_function<Func(Args...)>::value>::type
delegate(Func, Args...);
int main(void) {
delegate(1); // << Why does this line compile?
return 0;
}

Func is int, Args is empty, so Func(Args...) is int(), i.e., "function of () returning int".
Anything that is_function returns true for can't be the type of a by-value function parameter, so it's not obvious what you want to do.
I was trying to get delegate to only be callable when Func is a
function (preferably function pointer) that can be applied to Args...
Use expression SFINAE for that.
template <typename Func, typename... Args>
auto delegate(Func f, Args... args) -> decltype(f(args...), void());
Depending on what you actually want to do, you may want to std::move f and args.

The code you have written will always yield true. You probably meant std::is_function<Func>...
Though not sure, it seems like you do not need enable_if at all, and you'd better of with a simple
template <class R, class... ARGS>
R delegate2(R (*fun)(ARGS...), ARGS...);
However, if I am wrong and enable_if is a key to success in your case, here is how you can do this:
#include <type_traits>
template <typename Func, typename... Args>
typename std::enable_if<std::is_function<std::remove_pointer_t<Func>>::value>::type
delegate(Func, Args...);
void check(int);
int main(void) {
delegate(check, 10); // << good line compiles
delegate(10); // << this bad line does not
return 0;
}

Based on this comment:
I was trying to get delegate to only be callable when Func is a function (preferably function pointer) that can be applied to Args...
you're using the wrong type trait. To check if Func is callable with Args..., you need to construct an expression that would actually call an instance of Func with those arguments. For that, there's std::result_of_t (in C++14, it becomes SFINAE friendly):
template <typename Func, typename... Args,
class R = std::result_of_t<Func(Args...)>>
R delegate(Func, Args...);
Or, in C++11, just write that out with decltype and declval:
template <typename Func, typename... Args,
class R = std::declval<Func>()(std::declval<Args>()...)>
R delegate(Func, Args...);

Related

How is a template function evaluated by a compiler?

Consider the following variadic template function:
template<typename T, typename... Args>
auto foo(Args... args) -> T[sizeof...(args)]
{
T t[sizeof...(args)];
// Maybe do some pack expansion/assignment
return t;
}
with the instantiation:
// total should be of type int[5];
auto total = foo(1,2,3,4,5);
I understand that this will not compile, due to the return type not being deducible, but I do not understand why it is not deducible.
Is there something about this function that the compiler does/can not know at compile time, or the order of parts of the function being evaluated, which prevents type deduction?
I suspect it is due to the calling of the function sizeof..., which I think evaluates at run-time. If so, is there a compile-time equivalent?
You cannot return built-in arrays by value. Use std::array instead.
Also, as it stands, you'll need to explicitly provide the type T as a template argument as it does not appear in the argument list. Thus the compiler has nothing to deduce it from.
Complete example:
#include <array>
template<typename T, typename... Args>
auto foo(Args... args) -> std::array<T, sizeof...(args)>
{
std::array<T, sizeof...(args)> t;
// Maybe do some pack expansion/assignment
return t;
}
int main () {
auto a = foo<int>(1,2,3);
}
Depending on the usecase, you may get rid of the explicit template argument by e.g. using the std::common_type of all elements in the pack or static_asserting they all have the same type and use that.
Also, for the record, sizeof... does yield a compile-time constant. The problem is, to make the answer explicit, that the compiler has no way tell what T is supposed to be.
Compiler unable to deduce T, because you don't pass T to function argument.
auto total = foo<int>(1,2,3,4,5);
If we correctly put T manually as template argument - it will compile & work fine on G++7.1
Or, you can simply decltype required type from variadic argument.
something like this:
template <typename T, typename...Args>
T getHead(T&& arg, Args&&...) {
return arg;
}
template<typename... Args>
auto foo(Args... args)
{
using TYPE = typename std::decay<decltype(getHead(args...))>::type;
return std::array<TYPE, sizeof...(Args)>{ args... };
}
And yes, use std::array, return local C-style array is undefined behaviour.

Deduction of the function

Let's say we have a class template like this:
template<typename F>
class A
{
public:
template<typename... Args>
A(F f, Args... args)
{ /* Do something... */ }
};
And now I want to use it in some way like this one:
A<int(int)> a(::close, 1);
Now the question: is there any way to omit the <int(int)> because a compiler can know this information for the ::close? There is no need to save the "design" of the template.
As for concrete task, I need to design a template of a class. Objects of this class could take a function and parameters for this function at construction time and call this function later.
No, you (currently) cannot. The standard way of doing this is by creating "make_like" function (such as make_pair, make_optional ...):
template<typename F, typename... Args>
A<std::decay_t<F>> make_A (F &&f, Args&&... args) {
return {std::forward<F>(f), std::forward<Args>(args)...};
}
C++17 will introduce template argument deduction for class which will allow you to do exactly what you want (see also Barry's answer below).
Thanks to the adoption of template parameter deduction for constructors, in C++17, you'll be able to just write:
A a(::close, 1);
Before that, you'll just need to write a factory to do the deduction for you:
template <class F, class... Args>
A<std::decay_t<F>> make_a(F&& f, Args&&... args) {
return {std::forward<F>(f), std::forward<Args>(args)...};
}
auto a = make_a(::close, 1);
This is a little verbose, but at least you don't need to worry about efficiency - there will be no copies made here thanks to RVO.
You cannot omit the arguments of a template class, unless they are defaulted. What you can do is have a maker function which deduces the argument and forwards this argument to the template class, returning an object of the appropriate instantiation.
template<typename F, typename... Args>
A<F> make_A(F f, Args&&... args) {
return A<F>(f, std::forward<Args>(args)...);
}

C++ universal function caller

I'd want to implement a function caller that works just like the thread constructor. For example
std::thread second (bar,0);
will start a thread which calls bar with the single argument 0. I would like to do the same thing, but I do not know how.
For example, given:
void myFunc(int a){
cout << a << endl;
}
I would like:
int main() {
caller(myFunc,12);
}
to call myFunc with the parameter 12.
std::bind will make a callable object from any callable object with an arbitrary set of parameters, just as the thread constructor does. So just wrap that in a function that calls it:
template <typename... Args>
auto caller(Args &&... args) {
return std::bind(std::forward<Args>(args)...)();
}
Note that the auto return type requires C++14 or later. For C++11, you'll have to either return void, or specify the type:
auto caller(Args &&... args)
-> decltype(std::bind(std::forward<Args>(args)...)())
If all you want to do is call an arbitrary function with an arbitrary argument, that's just a template on both types:
template <typename Function, typename Arg>
void call_with_one(Function&& f, Arg&& arg) {
f(std::forward<Arg>(arg));
}
which you can expand to call with any number of args by making it variadic:
template <typename Function, typename... Arg>
void call_with_any(Function f, Arg&&... args) {
f(std::forward<Arg>(args)...);
}
Or really f should be a forwarding reference as well:
template <typename Function, typename... Arg>
void call_with_any(Function&& f, Arg&&... args) {
std::forward<Function>(f)(std::forward<Arg>(args)...);
}
Note that this will only work with functions and objects that implement operator(). If f is a pointer-to-member, this will fail - you will have to instead use std::bind as Mike Seymour suggests.

C++ variadic template function parameter with default value

I have a function which takes one parameter with a default value. Now I also want it to take a variable number of parameters and forward them to some other function. Function parameters with default value have to be last, so... can I put that parameter after the variadic pack and the compiler will detect whether I'm supplying it or not when calling the function?
(Assuming the pack doesn't contain the type of that one last parameter. If necessary, we can assume that, because that type is generally not supposed to be known to the user, otherwise it's considered as wrong usage of my interface anyway....)
template <class... Args>
void func (Args&&... args, SomeSpecialType num = fromNum(5))
{
}
No, packs must be last.
But you can fake it. You can detect what the last type in a pack is. If it is SomeSpecialType, you can run your func. If it isn't SomeSpecialType, you can recursively call yourself with your arguments forwarded and fromNum(5) appended.
If you want to be fancy, this check can be done at compile time (ie, a different overload) using SFINAE techniques. But that probably isn't worth the hassle, considering that the "run-time" check will be constant on a given overload, and hence will almost certainly be optimized out, and SFINAE shouldn't be used lightly.
This doesn't give you the signature you want, but it gives you the behavior you want. You'll have to explain the intended signature in comments.
Something like this, after you remove typos and the like:
// extract the last type in a pack. The last type in a pack with no elements is
// not a type:
template<typename... Ts>
struct last_type {};
template<typename T0>
struct last_type<T0> {
typedef T0 type;
};
template<typename T0, typename T1, typename... Ts>
struct last_type<T0, T1, Ts...>:last_type<T1, Ts...> {};
// using aliases, because typename spam sucks:
template<typename Ts...>
using LastType = typename last_type<Ts...>::type;
template<bool b, typename T=void>
using EnableIf = typename std::enable_if<b, T>::type;
template<typename T>
using Decay = typename std::decay<T>::type;
// the case where the last argument is SomeSpecialType:
template<
typename... Args,
typename=EnableIf<
std::is_same<
Decay<LastType<Args...>>,
SomeSpecialType
>::value
>
void func( Args&&... args ) {
// code
}
// the case where there is no SomeSpecialType last:
template<
typename... Args,
typename=EnableIf<
!std::is_same<
typename std::decay<LastType<Args...>>::type,
SomeSpecialType
>::value
>
void func( Args&&... args ) {
func( std::forward<Args>(args)..., std::move(static_cast<SomeSpecialType>(fromNum(5))) );
}
// the 0-arg case, because both of the above require that there be an actual
// last type:
void func() {
func( std::move(static_cast<SomeSpecialType>(fromNum(5))) );
}
or something much like that.
Another approach would be to pass variadic arguments through a tuple.
template <class... Args>
void func (std::tuple<Args...> t, SomeSpecialType num = fromNum(5))
{
// don't forget to move t when you use it for the last time
}
Pros : interface is much simpler, overloading and adding default valued arguments is quite easy.
Cons : caller has to manually wrap arguments in a std::make_tuple or std::forward_as_tuple call. Also, you'll probably have to resort to std::index_sequence tricks to implement the function.
Since C++17 there is way to work around this limitation, by using class template argument deduction and user-defined deduction guides.
This is espactialy useful for C++20 std::source_location.
Here is C++17 demo:
#include <iostream>
int defaultValueGenerator()
{
static int c = 0;
return ++c;
}
template <typename... Ts>
struct debug
{
debug(Ts&&... ts, int c = defaultValueGenerator())
{
std::cout << c << " : ";
((std::cout << std::forward<Ts>(ts) << " "), ...);
std::cout << std::endl;
}
};
template <typename... Ts>
debug(Ts&&...args) -> debug<Ts...>;
void test()
{
debug();
debug(9);
debug<>(9);
}
int main()
{
debug(5, 'A', 3.14f, "foo");
test();
debug("bar", 123, 2.72);
}
Live demo
Demo with source_location (should be available since C++20, but still for compilers it is experimental).
This is coming a bit late, but in C++17 you can do it with std::tuple and it would be quite nice overall. This is an expansion to #xavlours 's answer:
template <class... Args>
void func (std::tuple<Args&&...> t, SomeSpecialType num = fromNum(5))
{
// std::apply from C++17 allows you to iterate over the tuple with ease
// this just prints them one by one, you want to do other operations i presume
std::apply([](auto&&... args) {((std::cout << args << '\n'), ...);}, t);
}
Then, make a simple function to prepare them:
template<typename... Args>
std::tuple<Args&&...> MULTI_ARGS(Args&&... args) {
return std::tuple<Args&&...>(args...);
}
Now you can call the function like this:
func(MULTI_ARGS(str1, int1, str2, str3, int3)); // default parameter used
func(MULTI_ARGS(str1, int1, str2)); // default parameter used
func(MULTI_ARGS(str1, int1, str2, str3, int3, otherStuff), fromNum(10)); // custom value instead of default
Disclaimer: I came across this question as I was designing a logger and wanted to have a default parameter which contains std::source_location::current() and as far as I was able to find, this is the only way that ensures the caller's information is passed accurately. Making a function wrapper will change the source_location information to represent the wrapper instead of the original caller.

Can we get the type of a lambda argument?

Using std::function, we can get the type of an argument using the argument_type, second_argument_type etc. typedefs, but I can't see a way to do the same thing with lambdas. Is it possible? (I'm using VS2010)
Say I want something like the following in my deserialization system used to read an object and pass it to a setter function:
template<typename F>
static void forward(F f)
{
// Create an object of the type of the first
// parameter to the function object F
typedef typename F::argument_type T;
T t;
//...do something with 't' here (deserialize in my case)
// Forward the object to the function
f(t);
}
It can be used like this and everything works fine:
std::function<void(int)> f = [](int i) -> void { setValue(i); };
forward(f);
But it will not work directly with lambdas:
forward([](int i) -> void { setValue(i); });
//error C2039: 'argument_type' : is not a
//member of '`anonymous-namespace'::<lambda1>'
Is there a way to access the parameter types in a way that will work for both lambdas and std::function objects? Maybe a way to get the std::function type of a lambda first, and then the argument_type from that?
Following on from the answer below, a version that works with lambdas and std::function is:
template<typename T, typename F>
static void forward(F f)
{
T t;
//...do something with 't' here (deserialize in my case)
f(t);
}
forward<int>([](int i) -> void { setValue(i); });
Since int is repeated here I was hoping to get rid of it - not so bad for int but more annoying for long-named types in a couple of namespaces. C'est la vie!
It's not desirable in the general case. (Note that it's quite easy for std::function<T(A)> to specify what e.g. argument_type is: it's just A! It's available in the type definition.)
It would be possible to require each and every function object type to specify its argument types, and in turn mandate that the closure types generated from lambda expression do so. In fact, pre-C++0x features like adaptable functors would only work for such types.
However, we're moving from that with C++0x and for good reasons. The simplest of which is simply overloading: a functor type with a templated operator() (a.k.a a polymorphic functor) simply takes all kind of arguments; so what should argument_type be? Another reason is that generic code (usually) attempts to specify the least constraints on the types and objects it operates on in order to more easily be (re)used.
In other words, generic code is not really interested that given Functor f, typename Functor::argument be int. It's much more interesting to know that f(0) is an acceptable expression. For this C++0x gives tools such as decltype and std::declval (conveniently packaging the two inside std::result_of).
The way I see it you have two choices: require that all functors passed to your template use a C++03-style convention of specifying an argument_type and the like; use the technique below; or redesign. I'd recommend the last option but it's your call since I don't know what your codebase looks like or what your requirements are.
For a monomorphic functor type (i.e. no overloading), it is possible to inspect the operator() member. This works for the closure types of lambda expressions.
So we declare these helpers
template<typename F, typename Ret, typename A, typename... Rest>
A
helper(Ret (F::*)(A, Rest...));
template<typename F, typename Ret, typename A, typename... Rest>
A
helper(Ret (F::*)(A, Rest...) const);
// volatile or lvalue/rvalue *this not required for lambdas (phew)
that accept a pointer to member function taking at least one argument. And now:
template<typename F>
struct first_argument {
typedef decltype( helper(&F::operator()) ) type;
};
[ an elaborate trait could successively query the lvalue-rvalue/const/volatile overloads and expose the first argument if it's the same for all overloads, or use std::common_type.]
#Luc's answer is great but I just came across a case where I also needed to deal with function pointers:
template<typename Ret, typename Arg, typename... Rest>
Arg first_argument_helper(Ret(*) (Arg, Rest...));
template<typename Ret, typename F, typename Arg, typename... Rest>
Arg first_argument_helper(Ret(F::*) (Arg, Rest...));
template<typename Ret, typename F, typename Arg, typename... Rest>
Arg first_argument_helper(Ret(F::*) (Arg, Rest...) const);
template <typename F>
decltype(first_argument_helper(&F::operator())) first_argument_helper(F);
template <typename T>
using first_argument = decltype(first_argument_helper(std::declval<T>()));
This can be used on both functors and function pointers:
void function(float);
struct functor {
void operator() (int);
};
int main() {
std::cout << std::is_same<first_argument<functor>, int>::value
<< ", "
<< std::is_same<first_argument<decltype(&function)>, int>::value
<< std::endl;
return 0;
}