After researching, I came across few questions similar to this:OpenCV groupRectangles - getting grouped and ungrouped rectangles (most are in c++). However, none of them are solid. I want to combine the overlapping rectangles into a single one.
Image
My progress:
for cnt in large_contours:
x,y,w,h = cv2.boundingRect(cnt)
mec=x,y,w,h
rectVec=cv2.rectangle(img_and_contours,(x,y),(x+w,y+h),(0,255,0),2)
#cv2.rectangle(img_and_contours, cv2.boundingRect(large_contours[cnt]),(0,255,0));
rectList, weights = cv2.groupRectangles(mec, 3,0.2)
I only posted piece of my code.I was hoping groupRectangle would do what I wanted, but did nothing and instead gives me an error
rectList,weights = cv2.groupRectangles(mec,3,0.2)
TypeError: rectList
Blockquote
Here is the piece of code which worked for me
def merge_overlapping_zones(zones,delta_overpap = 30):
index = 0
if zones is None: return zones
while index < len(zones):
no_Over_Lap = False
while no_Over_Lap == False and len(zones) > 1 and index < len(zones):
zone1 = zones[index]
tmpZones = np.delete(zones, index, 0)
tmpZones = [tImageZone(*a) for a in tmpZones]
for i in range(0, len(tmpZones)):
zone2 = tmpZones[i]
# check left side broken
if zone2.x >= delta_overpap and zone2.y >= delta_overpap:
t = tImageZone(zone2.x - delta_overpap, zone2.y - delta_overpap, zone2.w + 2 * delta_overpap,
zone2.h + 2 * delta_overpap)
elif zone2.x >= delta_overpap:
t = tImageZone(zone2.x - delta_overpap, zone2.y, zone2.w + 2 * delta_overpap,
zone2.h + 2 * delta_overpap)
else:
t = tImageZone(zone2.x, zone2.y - delta_overpap, zone2.w + 2 * delta_overpap,
zone2.h + 2 * delta_overpap)
if (is_zone_overlap(zone1, t) or is_zone_overlap(zone1, zone2)):
tmpZones[i] = merge_zone(zone1, zone2)
zones = tmpZones
no_Over_Lap = False
break
no_Over_Lap = True
index += 1
return zones
`
There is an algorithm called **Non max suppression**. The function takes the rectangle array as input, and output the maximum rectangle. Here is the code (from pyimagesearch):
def non_max_suppression_fast(boxes, overlapThresh):
# if there are no boxes, return an empty list
if len(boxes) == 0:
return []
# if the bounding boxes integers, convert them to floats --
# this is important since we'll be doing a bunch of divisions
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
#
# initialize the list of picked indexes
pick = []
# grab the coordinates of the bounding boxes
x1 = boxes[:,0]
y1 = boxes[:,1]
x2 = boxes[:,2]
y2 = boxes[:,3]
# compute the area of the bounding boxes and sort the bounding
# boxes by the bottom-right y-coordinate of the bounding box
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = np.argsort(y2)
# keep looping while some indexes still remain in the indexes
# list
while len(idxs) > 0:
# grab the last index in the indexes list and add the
# index value to the list of picked indexes
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
# find the largest (x, y) coordinates for the start of
# the bounding box and the smallest (x, y) coordinates
# for the end of the bounding box
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
# compute the ratio of overlap
overlap = (w * h) / area[idxs[:last]]
# delete all indexes from the index list that have
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlapThresh)[0])))
# return only the bounding boxes that were picked using the
# integer data type
return boxes[pick].astype("int")
Hope it can help you.
Related
I have the following function:
f = x**2 + y**2
I would like to use sympy to find the maximum of and minimum value in the unit square [0,1] in x and [0,1] in y.
The expected outcome would be 0 for point [0,0] and 2 for point [1,1]
Can this be achieved?
I did something clunky, but appears to work [although not fast]:
def findMaxMin(f):
# find stationary points:
stationary_points = sym.solve([f.diff(x), f.diff(y)], [x, y], dict=True)
# Append boundary points
stationary_points.append({x:0, y:0})
stationary_points.append({x:1, y:0})
stationary_points.append({x:1, y:1})
stationary_points.append({x:0, y:1})
# store results after evaluation
results = []
# iteration counter
j = -1
for i in range(len(stationary_points)):
j = j+1
x1 = stationary_points[j].get(x)
y1 = stationary_points[j].get(y)
# If point is in the domain evalute and append it
if (0 <= x1 <= 1) and ( 0 <= y1 <= 1):
tmp = f.subs({x:x1, y:y1})
results.append(tmp)
else:
# else remove the point
stationary_points.pop(j)
j = j-1
# Variables to store info
returnMax = []
returnMin = []
# Get the maximum value
maximum = max(results)
# Get the position of all the maximum values
maxpos = [i for i,j in enumerate(results) if j==maximum]
# Append only unique points
append = False
for item in maxpos:
for i in returnMax:
if (stationary_points[item] in i.values()):
append = True
if (not(append)):
returnMax.append({maximum: stationary_points[item]})
# Get the minimum value
minimum = min(results)
# Get the position of all the minimum values
minpos = [i for i,j in enumerate(results) if j==minimum ]
# Append only unique points
append = False
for item in minpos:
for i in returnMin:
if (stationary_points[item] in i.values()):
append = True
if (not(append)):
returnMin.append({minimum: stationary_points[item]})
return [returnMax, returnMin]
I am trying to generate a single UV-texture map in the format of the SURREAL dataset. There is a notebook in the original DensePose repository that discusses how to apply texture transfer using an image from SMPL: github.com/facebookresearch/DensePose/blob/master/notebooks/DensePose-RCNN-Texture-Transfer.ipynb
However, in this case I am trying to use the outputs we get from DensePose directly:
In dump mode, I get the uv coordinates in data[0]['pred_densepose'][0].uv with dimensions: torch.Size([2, 1098, 529])
I overlayed the output from running inference on an image with dp_u,dp_v visualization on a black background. Here is the link to the image: https://densepose.s3.amazonaws.com/test1uv.0001.png
This is the command I used to get this inference: python3 apply_net.py show configs/densepose_rcnn_R_101_FPN_DL_WC2M_s1x.yaml model_final_de6e7a.pkl input.jpg dp_u,dp_v -v --output output.png
This is the link to the original image: https://densepose.s3.amazonaws.com/02_1_front.jpg
Using these components, I am trying to generate the 24 part uv texture map in the same format as SMPL:
https://densepose.s3.amazonaws.com/extracted_smpl_texture_apprearance.png
https://densepose.s3.amazonaws.com/texture_from_SURREAL.png
It would be extremely helpful if someone can share how to solve this problem. Please let me know if additional information is needed.
I don't know if the problem still persists or you were able to find a solution. In case that anyone else would challenge the same issues, here is my solution. I put together several different codes and ideas from official github issue page for densepose (https://github.com/facebookresearch/DensePose/issues/68).
I assume that we already have output of apply_net.py utility from github denspose repository. From your post it is a data output (one you were able to obtain data[0]['pred_densepose'][0].uv from).
Let's do some coding:
import copy
import cv2
import matplotlib
import numpy as np
from matplotlib import pyplot as plt
matplotlib.use('TkAgg')
# I assume the data are stored in pickle, and you are able to read them
results = data[0]
IMAGE_FILE = 'path/to/image.png'
def parse_iuv(result):
i = result['pred_densepose'][0].labels.cpu().numpy().astype(float)
uv = (result['pred_densepose'][0].uv.cpu().numpy() * 255.0).astype(float)
iuv = np.stack((uv[1, :, :], uv[0, :, :], i))
iuv = np.transpose(iuv, (1, 2, 0))
return iuv
def parse_bbox(result):
return result["pred_boxes_XYXY"][0].cpu().numpy()
def concat_textures(array):
texture = []
for i in range(4):
tmp = array[6 * i]
for j in range(6 * i + 1, 6 * i + 6):
tmp = np.concatenate((tmp, array[j]), axis=1)
texture = tmp if len(texture) == 0 else np.concatenate((texture, tmp), axis=0)
return texture
def interpolate_tex(tex):
# code is adopted from https://github.com/facebookresearch/DensePose/issues/68
valid_mask = np.array((tex.sum(0) != 0) * 1, dtype='uint8')
radius_increase = 10
kernel = np.ones((radius_increase, radius_increase), np.uint8)
dilated_mask = cv2.dilate(valid_mask, kernel, iterations=1)
region_to_fill = dilated_mask - valid_mask
invalid_region = 1 - valid_mask
actual_part_max = tex.max()
actual_part_min = tex.min()
actual_part_uint = np.array((tex - actual_part_min) / (actual_part_max - actual_part_min) * 255, dtype='uint8')
actual_part_uint = cv2.inpaint(actual_part_uint.transpose((1, 2, 0)), invalid_region, 1,
cv2.INPAINT_TELEA).transpose((2, 0, 1))
actual_part = (actual_part_uint / 255.0) * (actual_part_max - actual_part_min) + actual_part_min
# only use dilated part
actual_part = actual_part * dilated_mask
return actual_part
def get_texture(im, iuv, bbox, tex_part_size=200):
# this part of code creates iuv image which corresponds
# to the size of original image (iuv from densepose is placed
# within pose bounding box).
im = im.transpose(2, 1, 0) / 255
image_w, image_h = im.shape[1], im.shape[2]
bbox[2] = bbox[2] - bbox[0]
bbox[3] = bbox[3] - bbox[1]
x, y, w, h = [int(v) for v in bbox]
bg = np.zeros((image_h, image_w, 3))
bg[y:y + h, x:x + w, :] = iuv
iuv = bg
iuv = iuv.transpose((2, 1, 0))
i, u, v = iuv[2], iuv[1], iuv[0]
# following part of code iterate over parts and creates textures
# of size `tex_part_size x tex_part_size`
n_parts = 24
texture = np.zeros((n_parts, 3, tex_part_size, tex_part_size))
for part_id in range(1, n_parts + 1):
generated = np.zeros((3, tex_part_size, tex_part_size))
x, y = u[i == part_id], v[i == part_id]
# transform uv coodrinates to current UV texture coordinates:
tex_u_coo = (x * (tex_part_size - 1) / 255).astype(int)
tex_v_coo = (y * (tex_part_size - 1) / 255).astype(int)
# clipping due to issues encountered in denspose output;
# for unknown reason, some `uv` coos are out of bound [0, 1]
tex_u_coo = np.clip(tex_u_coo, 0, tex_part_size - 1)
tex_v_coo = np.clip(tex_v_coo, 0, tex_part_size - 1)
# write corresponding pixels from original image to UV texture
# iterate in range(3) due to 3 chanels
for channel in range(3):
generated[channel][tex_v_coo, tex_u_coo] = im[channel][i == part_id]
# this part is not crucial, but gives you better results
# (texture comes out more smooth)
if np.sum(generated) > 0:
generated = interpolate_tex(generated)
# assign part to final texture carrier
texture[part_id - 1] = generated[:, ::-1, :]
# concatenate textures and create 2D plane (UV)
tex_concat = np.zeros((24, tex_part_size, tex_part_size, 3))
for i in range(texture.shape[0]):
tex_concat[i] = texture[i].transpose(2, 1, 0)
tex = concat_textures(tex_concat)
return tex
iuv = parse_iuv(results)
bbox = parse_bbox(results)
image = cv2.imread(IMAGE_FILE)[:, :, ::-1]
uv_texture = get_texture(image, iuv, bbox)
# plot texture or do whatever you like
plt.imshow(uv_texture)
plt.show()
Enjoy
I am trying to update my function arguments after each iteration but failed to do so. Kindly check my code because I am new to python language. My task is to calculate xps, (represents collection of positions) and v2ps, (represents collection of velocities) after each iteration and want to plot them against each other. Basic this program represents the collision of objects moving vertical down and one of object also collide with plane above which they are moving.
acc_grav = 10
m1 =float(input(" Input mass of ball one, m1: "))
m2 =float(input(" Input mass of ball two, m2: "))
time_steps =10000
num_coll_bounce = 0
num_ball_coll = 0
eps=1.e-6
def ball_coll(x1_old,v1_old,x2_old,v2_old,time_ball_coll):
v1 = v1_old - acc_grav*time_ball_coll
v2 = v2_old - acc_grav*time_ball_coll
x1 = x1_old + time_ball_coll*v1_old - 0.5*acc_grav*(time_ball_coll)**2
x2 = x2_old + time_ball_coll*v2_old - 0.5*acc_grav*(time_ball_coll)**2
v1_ball_coll = (v1*(m1-m2)+(2*m2*v2))/(m1+m2)
v2_ball_coll = (v2*(m2-m1)+(2*m1*v1))/(m1+m2)
cumlv2=v2
return [v1,v2,x1,x2,v1_ball_coll,v2_ball_coll]
def floor_coll(x1_old,v1_old,x2_old,v2_old,time_floor_coll):
v1 = v1_old - acc_grav*time_floor_coll
v2 = v2_old - acc_grav*time_floor_coll
x1 = 0 #at the time of bonuce
x2 = x2_old + time_floor_coll*v2_old - 0.5*acc_grav*time_floor_coll**2
#update velocities following rules for collision with walls
v1_bounce = -v1
v2_bounce = v2
return [v1,v2,x1,x2,v1_bounce,v2_bounce]
for i in range(0, 10):
x1_0 = 1
x2_0 = 3 - (i-1)*0.1
v1_0 = 2
v2_0 = 2*v1_0
xps = []
v2ps = []
for n in range (time_steps-1):
time_ball_coll = (x2_0-x1_0)/(v1_0 - v2_0)
time_floor_coll = (v1_0 + (v1_0**2 + 2*acc_grav*x1_0)**1/2)/acc_grav
if ((time_ball_coll - time_floor_coll)<eps and v1_0 - v2_0 > 0):
num_coll_bounce = num_coll_bounce + 1
num_ball_coll = num_ball_coll + 1
ball_coll(x1_0,v1_0,x2_0,v2_0,time_ball_coll)
#xps[n] = x2_0
#v2ps(n,num_ballcoll) = v2ini
xps.append(x2_0)
v2ps.append(v2_0)
else:
num_coll_bounce = num_coll_bounce + 1
floor_coll(x1_0,v1_0,x2_0,v2_0,time_floor_coll)
#x1_old,v1_old,x2_old,v2_old,time_floor_coll = dd2
x_1.append(x1_0)
x_2.append(x2_0)
I have some problems the first one is that I can't update the plot limits of the y axis and the second is that I want to see 6 lines from each sensor, as you can see in the picture I see only one if I make some changes I see all the sensors variations in one line
here is the code where I create the plot and a picture of this:
http://i.imgur.com/ogFoMDJ.png?1
# Flag variables
self.isLogging = False
# Create data buffers
self.N = 70
self.n = range(self.N)
self.M = 6 # just one lead - i.e. 1 number per sample
self.x = 0 * numpy.ones(self.N, numpy.int)
# Data logging file
self.f = 0
# Create plot area and axes
self.x_max = 500
self.x_min = 330
self.fig = Figure(facecolor='#e4e4e4')
self.canvas = FigureCanvasWxAgg(self, -1, self.fig)
self.canvas.SetPosition((330,50))
self.canvas.SetSize((550,280))
self.ax = self.fig.add_axes([0.08,0.1,0.86,0.8])
self.ax.autoscale(False)
self.ax.set_xlim(0, self.N - 1)
self.ax.set_ylim(self.x_min, self.x_max)
self.ax.plot(self.n,self.x)
# Filter taps
self.taps = [0, 0, 0]
# Create timer to read incoming data and scroll plot
self.timer = wx.Timer(self)
self.Bind(wx.EVT_TIMER, self.GetSample, self.timer)
And here is where I grab the data and I try to update the limits of the plot
if len(sample_string) != 6:
sample_string = sample_string[0:-1]
self.taps[1:3] = self.taps[0:2]
self.taps[0] = int(array[1])
#value = 0.5 * self.taps[0] + 0.5 * self.taps[2]
value = self.taps[0]
self.x[0:self.N-1] = self.x[1:]
self.x[self.N-1] = value
# print sample to data logging file
if self.f != 0:
self.f.write(str(value))
self.f.write("\n")
# update plot limits
maxval = max(self.x[:])
minval = min(self.x[:])
self.x_max += ((maxval + 10) - self.x_max) / 100.0
self.x_min -= (self.x_min - (minval - 10)) / 100.0
# Update plot
self.ax.cla()
self.ax.autoscale(False)
self.ax.set_xlim(0, self.N - 1)
self.ax.set_ylim(self.x_min, self.x_max)
self.ax.plot(self.n, self.x)
self.canvas.draw()
if b7 == True:
self.textctrl0.Clear()
self.textctrl0.AppendText(array[1])
self.textctrl1.Clear()
self.textctrl1.AppendText(array[2])
self.textctrl2.Clear()
self.textctrl2.AppendText(array[3])
self.textctrl3.Clear()
self.textctrl3.AppendText(array[4])
self.textctrl4.Clear()
self.textctrl4.AppendText(array[5])
self.textctrl5.Clear()
self.textctrl5.AppendText(array[6])
b7=False
p.s I removed the faulty code where I tried to add the other sensors,here is only the working code for the one sensor plot..
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 9 years ago.
Improve this question
I'm new to Openstreetmap and mapnick,
I'm trying to export map image which will be geo-referenced
(So it can be used in other applications)
I've installed osm and mapnik inside ubuntu virtual machine
I've tried using generate_image.py script, but generated image is not equal to the bounding box. My python knowledge is not good enough for me to fix the script.
I've also tried using nik2img.py script using verbose mode, for example:
nik2img.py osm.xml sarajevo.png --srs 900913 --bbox 18.227 43.93 18.511 43.765 --dimensions 10000 10000
and tried using the log bounding box
Step: 11 // --> Map long/lat bbox: Envelope(18.2164733537,43.765,18.5215266463,43.93)
Unfortunately generated image is not equal to the bounding box :(
How can I change scripts so I can georeference generated image?
Or do you know an easier way to accomplish this task?
Image i'm getting using the http://www.openstreetmap.org/ export is nicely geo-referenced, but it's not big enough :(
I've managed to change generate_tiles.py to generate 1024x1024 images together with correct bounding box
Changed script is available bellow
#!/usr/bin/python
from math import pi,cos,sin,log,exp,atan
from subprocess import call
import sys, os
from Queue import Queue
import mapnik
import threading
DEG_TO_RAD = pi/180
RAD_TO_DEG = 180/pi
# Default number of rendering threads to spawn, should be roughly equal to number of CPU cores available
NUM_THREADS = 4
def minmax (a,b,c):
a = max(a,b)
a = min(a,c)
return a
class GoogleProjection:
def __init__(self,levels=18):
self.Bc = []
self.Cc = []
self.zc = []
self.Ac = []
c = 1024
for d in range(0,levels):
e = c/2;
self.Bc.append(c/360.0)
self.Cc.append(c/(2 * pi))
self.zc.append((e,e))
self.Ac.append(c)
c *= 2
def fromLLtoPixel(self,ll,zoom):
d = self.zc[zoom]
e = round(d[0] + ll[0] * self.Bc[zoom])
f = minmax(sin(DEG_TO_RAD * ll[1]),-0.9999,0.9999)
g = round(d[1] + 0.5*log((1+f)/(1-f))*-self.Cc[zoom])
return (e,g)
def fromPixelToLL(self,px,zoom):
e = self.zc[zoom]
f = (px[0] - e[0])/self.Bc[zoom]
g = (px[1] - e[1])/-self.Cc[zoom]
h = RAD_TO_DEG * ( 2 * atan(exp(g)) - 0.5 * pi)
return (f,h)
class RenderThread:
def __init__(self, tile_dir, mapfile, q, printLock, maxZoom):
self.tile_dir = tile_dir
self.q = q
self.m = mapnik.Map(1024, 1024)
self.printLock = printLock
# Load style XML
mapnik.load_map(self.m, mapfile, True)
# Obtain <Map> projection
self.prj = mapnik.Projection(self.m.srs)
# Projects between tile pixel co-ordinates and LatLong (EPSG:4326)
self.tileproj = GoogleProjection(maxZoom+1)
def render_tile(self, tile_uri, x, y, z):
# Calculate pixel positions of bottom-left & top-right
p0 = (x * 1024, (y + 1) * 1024)
p1 = ((x + 1) * 1024, y * 1024)
# Convert to LatLong (EPSG:4326)
l0 = self.tileproj.fromPixelToLL(p0, z);
l1 = self.tileproj.fromPixelToLL(p1, z);
# Convert to map projection (e.g. mercator co-ords EPSG:900913)
c0 = self.prj.forward(mapnik.Coord(l0[0],l0[1]))
c1 = self.prj.forward(mapnik.Coord(l1[0],l1[1]))
# Bounding box for the tile
if hasattr(mapnik,'mapnik_version') and mapnik.mapnik_version() >= 800:
bbox = mapnik.Box2d(c0.x,c0.y, c1.x,c1.y)
else:
bbox = mapnik.Envelope(c0.x,c0.y, c1.x,c1.y)
render_size = 1024
self.m.resize(render_size, render_size)
self.m.zoom_to_box(bbox)
self.m.buffer_size = 128
# Render image with default Agg renderer
im = mapnik.Image(render_size, render_size)
mapnik.render(self.m, im)
im.save(tile_uri, 'png256')
print "Rendered: ", tile_uri, "; ", l0 , "; ", l1
# Write geo coding informations
file = open(tile_uri[:-4] + ".tab", 'w')
file.write("!table\n")
file.write("!version 300\n")
file.write("!charset WindowsLatin2\n")
file.write("Definition Table\n")
file.write(" File \""+tile_uri[:-4]+".jpg\"\n")
file.write(" Type \"RASTER\"\n")
file.write(" ("+str(l0[0])+","+str(l1[1])+") (0,0) Label \"Pt 1\",\n")
file.write(" ("+str(l1[0])+","+str(l1[1])+") (1023,0) Label \"Pt 2\",\n")
file.write(" ("+str(l1[0])+","+str(l0[1])+") (1023,1023) Label \"Pt 3\",\n")
file.write(" ("+str(l0[0])+","+str(l0[1])+") (0,1023) Label \"Pt 4\"\n")
file.write(" CoordSys Earth Projection 1, 104\n")
file.write(" Units \"degree\"\n")
file.close()
def loop(self):
while True:
#Fetch a tile from the queue and render it
r = self.q.get()
if (r == None):
self.q.task_done()
break
else:
(name, tile_uri, x, y, z) = r
exists= ""
if os.path.isfile(tile_uri):
exists= "exists"
else:
self.render_tile(tile_uri, x, y, z)
bytes=os.stat(tile_uri)[6]
empty= ''
if bytes == 103:
empty = " Empty Tile "
self.printLock.acquire()
print name, ":", z, x, y, exists, empty
self.printLock.release()
self.q.task_done()
def render_tiles(bbox, mapfile, tile_dir, minZoom=1,maxZoom=18, name="unknown", num_threads=NUM_THREADS):
print "render_tiles(",bbox, mapfile, tile_dir, minZoom,maxZoom, name,")"
# Launch rendering threads
queue = Queue(32)
printLock = threading.Lock()
renderers = {}
for i in range(num_threads):
renderer = RenderThread(tile_dir, mapfile, queue, printLock, maxZoom)
render_thread = threading.Thread(target=renderer.loop)
render_thread.start()
#print "Started render thread %s" % render_thread.getName()
renderers[i] = render_thread
if not os.path.isdir(tile_dir):
os.mkdir(tile_dir)
gprj = GoogleProjection(maxZoom+1)
ll0 = (bbox[0],bbox[3])
ll1 = (bbox[2],bbox[1])
for z in range(minZoom,maxZoom + 1):
px0 = gprj.fromLLtoPixel(ll0,z)
px1 = gprj.fromLLtoPixel(ll1,z)
# check if we have directories in place
zoom = "%s" % z
if not os.path.isdir(tile_dir + zoom):
os.mkdir(tile_dir + zoom)
for x in range(int(px0[0]/1024.0),int(px1[0]/1024.0)+1):
# Validate x co-ordinate
if (x < 0) or (x >= 2**z):
continue
# check if we have directories in place
str_x = "%s" % x
if not os.path.isdir(tile_dir + zoom + '/' + str_x):
os.mkdir(tile_dir + zoom + '/' + str_x)
for y in range(int(px0[1]/1024.0),int(px1[1]/1024.0)+1):
# Validate x co-ordinate
if (y < 0) or (y >= 2**z):
continue
str_y = "%s" % y
tile_uri = tile_dir + zoom + '_' + str_x + '_' + str_y + '.png'
# Submit tile to be rendered into the queue
t = (name, tile_uri, x, y, z)
queue.put(t)
# Signal render threads to exit by sending empty request to queue
for i in range(num_threads):
queue.put(None)
# wait for pending rendering jobs to complete
queue.join()
for i in range(num_threads):
renderers[i].join()
if __name__ == "__main__":
home = os.environ['HOME']
try:
mapfile = "/home/emir/bin/mapnik/osm.xml" #os.environ['MAPNIK_MAP_FILE']
except KeyError:
mapfile = "/home/emir/bin/mapnik/osm.xml"
try:
tile_dir = os.environ['MAPNIK_TILE_DIR']
except KeyError:
tile_dir = home + "/osm/tiles/"
if not tile_dir.endswith('/'):
tile_dir = tile_dir + '/'
#-------------------------------------------------------------------------
#
# Change the following for different bounding boxes and zoom levels
#
#render sarajevo at 16 zoom level
bbox = (18.256, 43.785, 18.485, 43.907)
render_tiles(bbox, mapfile, tile_dir, 16, 16, "World")
Try Maperitive's export-bitmap command, it generates various georeferencing sidecar files
(worldfile, KML, OziExplorer .MAP file).