python distutils try setup - python-2.7

I am trying to compile some cython code files using distutils.core.setup
In order to prevent compilation from crashing but to continue as much as possible I put each file Extension in a try statement as such
from distutils.core import setup, Extension
from Cython.Build import cythonize
from Cython.Distutils import build_ext
import numpy as np
pyx = [#file 1
Extension('file1',
include_dirs=[np.get_include()],
sources ["file1.pyx"]),
#file 2
Extension('file2',
include_dirs=[np.get_include()],
language="c",
sources = ["file2.pyx"]),
#rest of files
]
# compile extensions
for E in pyx :
try:
setup( ext_modules = [E], cmdclass={'build_ext': build_ext})
except Exception as e:
print "THIS IS AN ERROR", e
All is working nicely except when there is an error, try and catch seems to be useless. The compilation will stop without going through except statement.
Any idea why and what to do?

SystemExit must be included in the except
# compile extensions
for E in pyx :
try:
setup( ext_modules = [E], cmdclass={'build_ext': build_ext})
except (Exception, SystemExit) as e:
print "THIS IS AN ERROR", e

Related

python-for-android, Cython, C++, CythonRecipe: Operation only allowed in c++

I have this setup.py for my Cython project:
from setuptools import setup
from Cython.Build import cythonize
setup(
name = 'phase-engine',
version = '0.1',
ext_modules = cythonize(["phase_engine.pyx"] + ['music-synthesizer-for-android/src/' + p for p in [
'fm_core.cc', 'dx7note.cc', 'env.cc', 'exp2.cc', 'fm_core.cc', 'fm_op_kernel.cc', 'freqlut.cc', 'lfo.cc', 'log2.cc', 'patch.cc', 'pitchenv.cc', 'resofilter.cc', 'ringbuffer.cc', 'sawtooth.cc', 'sin.cc', 'synth_unit.cc'
]],
include_path = ['music-synthesizer-for-android/src/'],
language = 'c++',
)
)
when I run buildozer, it gets angry about some Cython features only being available in C++ mode:
def __dealloc__(self):
del self.p_synth_unit
^
------------------------------------------------------------
phase_engine.pyx:74:8: Operation only allowed in c++
from which I understand it's ignoring my setup.py and doing its own somehow. How do I give it all these parameters?
CythonRecipe doesn't work well for Cython code that imports C/C++ code. Try CompiledComponentsPythonRecipe, or if you're having issues with #include <ios> or some other thing from the C++ STL, CppCompiledComponentsPythonRecipe:
from pythonforandroid.recipe import IncludedFilesBehaviour, CppCompiledComponentsPythonRecipe
import os
import sys
class MyRecipe(IncludedFilesBehaviour, CppCompiledComponentsPythonRecipe):
version = 'stable'
src_filename = "../../../phase-engine"
name = 'phase-engine'
depends = ['setuptools']
call_hostpython_via_targetpython = False
install_in_hostpython = True
def get_recipe_env(self, arch):
env = super().get_recipe_env(arch)
env['LDFLAGS'] += ' -lc++_shared'
return env
recipe = MyRecipe()
The dependency on setuptools is essential because of some weird stuff, otherwise you get an error no module named setuptools. The two other flags were also related to that error, the internet said they're relevant so I tried value combinations until one worked.
The LDFLAGS thing fixes an issue I had later (see buildozer + Cython + C++ library: dlopen failed: cannot locate symbol symbol-name referenced by module.so).

Compiled console app quits immediately when importing ConfigParser (Python 2.7.12)

I am very new to Python and am trying to append some functionality to an existing Python program. I want to read values from a config INI file like this:
[Admin]
AD1 = 1
AD2 = 2
RSW = 3
When I execute the following code from IDLE, it works as ist should (I already was able to read in values from the file, but deleted this part for a shorter code snippet):
#!/usr/bin/python
import ConfigParser
# buildin python libs
from time import sleep
import sys
def main():
print("Test")
sleep(2)
if __name__ == '__main__':
main()
But the compiled exe quits before printing and waiting 2 seconds. If I comment out the import of ConfigParser, exe runs fine.
This is how I compile into exe:
from distutils.core import setup
import py2exe, sys
sys.argv.append('py2exe')
setup(
options = {'py2exe': {'bundle_files': 1}},
zipfile = None,
console=['Test.py'],
)
What am I doing wrong? Is there maybe another way to read in a configuration in an easy way, if ConfigParser for some reason doesnt work in a compiled exe?
Thanks in advance for your help!

Using cython to speed up thousands of set operations

I have been trying to get over my fear of Cython (fear because I literally know NOTHING about c, or c++)
I have a function which takes 2 arguments, a set (we'll call it testSet), and a list of sets (we'll call that targetSets). The function then iterates through targetSets, and computes the length of the intersection with testSet, adding that value to a list, which is then returned.
Now, this isn't by itself that slow, but the problem is I need to do simulations of the testSet (and a large number at that, ~ 10,000), and the targetSet is about 10,000 sets long.
So for a small number of simulations to test, the pure python implementation was taking ~50 secs.
I tried making a cython function, and it worked and it's now running at ~16 secs.
If there is anything else that I could do to the cython function that anyone could think of that would be great (python 2.7 btw)
Here is my Cython implementation in overlapFunc.pyx
def computeOverlap(set testSet, list targetSets):
cdef list obsOverlaps = []
cdef int i, N
cdef set overlap
N = len(targetSets)
for i in range(N):
overlap = testSet & targetSets[i]
if len(overlap) <= 1:
obsOverlaps.append(0)
else:
obsOverlaps.append(len(overlap))
return obsOverlaps
and the setup.py
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
ext_modules = [Extension("overlapFunc",
["overlapFunc.pyx"])]
setup(
name = 'computeOverlap function',
cmdclass = {'build_ext': build_ext},
ext_modules = ext_modules
)
and some code to build some random sets for testing and to time the function. test.py
import numpy as np
from overlapFunc import computeOverlap
import time
def simRandomSet(n):
for i in range(n):
simSet= set(np.random.randint(low=1, high=100, size=50))
yield simSet
if __name__ == '__main__':
np.random.seed(23032014)
targetSet = [set(np.random.randint(low=1, high=100, size=50)) for i in range(10000)]
simulatedTestSets = simRandomSet(200)
start = time.time()
for i in simulatedTestSets:
obsOverlaps = computeOverlap(i, targetSet)
print time.time()-start
I tried changing the def at the start of the computerOverlap function, as in:
cdef list computeOverlap(set testSet, list targetSets):
but I get the following warning message when I run the setup.py script:
'__pyx_f_11overlapFunc_computeOverlap' defined but not used [-Wunused-function]
and then when I run something that tries to use the function I get an import Error:
from overlapFunc import computeOverlap
ImportError: cannot import name computeOverlap
Thanks in advance for your help,
Cheers,
Davy
In the following line, the extension module name and the filename does not match actual filename.
ext_modules = [Extension("computeOverlapWithGeneList",
["computeOverlapWithGeneList.pyx"])]
Replace it with:
ext_modules = [Extension("overlapFunc",
["overlapFunc.pyx"])]

__import__ vs imp.load_module

I got an error while trying to install autopep8 with ironpython:
ImportError: No module named logilab
The code snippet it failed is:
def load_module(self, fullname):
self._reopen()
try:
mod = imp.load_module(fullname, self.file, self.filename, self.etc)
finally:
if self.file:
self.file.close()
# Note: we don't set __loader__ because we want the module to look
# normal; i.e. this is just a wrapper for standard import machinery
return mod
using the interpreter ipy64 importing logilab did not fail.
I added a print statement for the filename and it showed:
C:\Program Files (x86)\IronPython 2.7\Lib\site-packages\logilab_common-0.59.1-py2.7.egg\logilab
The path exists and it contains a init.py with the following content:
"""generated file, don't modify or your data will be lost"""
try:
__import__('pkg_resources').declare_namespace(__name__)
except ImportError:
pass
I fixed the error quick and dirty by adding
except ImportError:
mod = __import__(fullname)
but I do not have a good feeling about this fix as I don't know the possible impacts.
Now, why does using imp.load_module fail and what is the difference using import ?

Speeding up build process with distutils

I am programming a C++ extension for Python and I am using distutils to compile the project. As the project grows, rebuilding it takes longer and longer. Is there a way to speed up the build process?
I read that parallel builds (as with make -j) are not possible with distutils. Are there any good alternatives to distutils which might be faster?
I also noticed that it's recompiling all object files every time I call python setup.py build, even when I only changed one source file. Should this be the case or might I be doing something wrong here?
In case it helps, here are some of the files which I try to compile: https://gist.github.com/2923577
Thanks!
Try building with environment variable CC="ccache gcc", that will speed up build significantly when the source has not changed. (strangely, distutils uses CC also for c++ source files). Install the ccache package, of course.
Since you have a single extension which is assembled from multiple compiled object files, you can monkey-patch distutils to compile those in parallel (they are independent) - put this into your setup.py (adjust the N=2 as you wish):
# monkey-patch for parallel compilation
def parallelCCompile(self, sources, output_dir=None, macros=None, include_dirs=None, debug=0, extra_preargs=None, extra_postargs=None, depends=None):
# those lines are copied from distutils.ccompiler.CCompiler directly
macros, objects, extra_postargs, pp_opts, build = self._setup_compile(output_dir, macros, include_dirs, sources, depends, extra_postargs)
cc_args = self._get_cc_args(pp_opts, debug, extra_preargs)
# parallel code
N=2 # number of parallel compilations
import multiprocessing.pool
def _single_compile(obj):
try: src, ext = build[obj]
except KeyError: return
self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts)
# convert to list, imap is evaluated on-demand
list(multiprocessing.pool.ThreadPool(N).imap(_single_compile,objects))
return objects
import distutils.ccompiler
distutils.ccompiler.CCompiler.compile=parallelCCompile
For the sake of completeness, if you have multiple extensions, you can use the following solution:
import os
import multiprocessing
try:
from concurrent.futures import ThreadPoolExecutor as Pool
except ImportError:
from multiprocessing.pool import ThreadPool as LegacyPool
# To ensure the with statement works. Required for some older 2.7.x releases
class Pool(LegacyPool):
def __enter__(self):
return self
def __exit__(self, *args):
self.close()
self.join()
def build_extensions(self):
"""Function to monkey-patch
distutils.command.build_ext.build_ext.build_extensions
"""
self.check_extensions_list(self.extensions)
try:
num_jobs = os.cpu_count()
except AttributeError:
num_jobs = multiprocessing.cpu_count()
with Pool(num_jobs) as pool:
pool.map(self.build_extension, self.extensions)
def compile(
self, sources, output_dir=None, macros=None, include_dirs=None,
debug=0, extra_preargs=None, extra_postargs=None, depends=None,
):
"""Function to monkey-patch distutils.ccompiler.CCompiler"""
macros, objects, extra_postargs, pp_opts, build = self._setup_compile(
output_dir, macros, include_dirs, sources, depends, extra_postargs
)
cc_args = self._get_cc_args(pp_opts, debug, extra_preargs)
for obj in objects:
try:
src, ext = build[obj]
except KeyError:
continue
self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts)
# Return *all* object filenames, not just the ones we just built.
return objects
from distutils.ccompiler import CCompiler
from distutils.command.build_ext import build_ext
build_ext.build_extensions = build_extensions
CCompiler.compile = compile
I've got this working on Windows with clcache, derived from eudoxos's answer:
# Python modules
import datetime
import distutils
import distutils.ccompiler
import distutils.sysconfig
import multiprocessing
import multiprocessing.pool
import os
import sys
from distutils.core import setup
from distutils.core import Extension
from distutils.errors import CompileError
from distutils.errors import DistutilsExecError
now = datetime.datetime.now
ON_LINUX = "linux" in sys.platform
N_JOBS = 4
#------------------------------------------------------------------------------
# Enable ccache to speed up builds
if ON_LINUX:
os.environ['CC'] = 'ccache gcc'
# Windows
else:
# Using clcache.exe, see: https://github.com/frerich/clcache
# Insert path to clcache.exe into the path.
prefix = os.path.dirname(os.path.abspath(__file__))
path = os.path.join(prefix, "bin")
print "Adding %s to the system path." % path
os.environ['PATH'] = '%s;%s' % (path, os.environ['PATH'])
clcache_exe = os.path.join(path, "clcache.exe")
#------------------------------------------------------------------------------
# Parallel Compile
#
# Reference:
#
# http://stackoverflow.com/questions/11013851/speeding-up-build-process-with-distutils
#
def linux_parallel_cpp_compile(
self,
sources,
output_dir=None,
macros=None,
include_dirs=None,
debug=0,
extra_preargs=None,
extra_postargs=None,
depends=None):
# Copied from distutils.ccompiler.CCompiler
macros, objects, extra_postargs, pp_opts, build = self._setup_compile(
output_dir, macros, include_dirs, sources, depends, extra_postargs)
cc_args = self._get_cc_args(pp_opts, debug, extra_preargs)
def _single_compile(obj):
try:
src, ext = build[obj]
except KeyError:
return
self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts)
# convert to list, imap is evaluated on-demand
list(multiprocessing.pool.ThreadPool(N_JOBS).imap(
_single_compile, objects))
return objects
def windows_parallel_cpp_compile(
self,
sources,
output_dir=None,
macros=None,
include_dirs=None,
debug=0,
extra_preargs=None,
extra_postargs=None,
depends=None):
# Copied from distutils.msvc9compiler.MSVCCompiler
if not self.initialized:
self.initialize()
macros, objects, extra_postargs, pp_opts, build = self._setup_compile(
output_dir, macros, include_dirs, sources, depends, extra_postargs)
compile_opts = extra_preargs or []
compile_opts.append('/c')
if debug:
compile_opts.extend(self.compile_options_debug)
else:
compile_opts.extend(self.compile_options)
def _single_compile(obj):
try:
src, ext = build[obj]
except KeyError:
return
input_opt = "/Tp" + src
output_opt = "/Fo" + obj
try:
self.spawn(
[clcache_exe]
+ compile_opts
+ pp_opts
+ [input_opt, output_opt]
+ extra_postargs)
except DistutilsExecError, msg:
raise CompileError(msg)
# convert to list, imap is evaluated on-demand
list(multiprocessing.pool.ThreadPool(N_JOBS).imap(
_single_compile, objects))
return objects
#------------------------------------------------------------------------------
# Only enable parallel compile on 2.7 Python
if sys.version_info[1] == 7:
if ON_LINUX:
distutils.ccompiler.CCompiler.compile = linux_parallel_cpp_compile
else:
import distutils.msvccompiler
import distutils.msvc9compiler
distutils.msvccompiler.MSVCCompiler.compile = windows_parallel_cpp_compile
distutils.msvc9compiler.MSVCCompiler.compile = windows_parallel_cpp_compile
# ... call setup() as usual
You can do this easily if you have Numpy 1.10 available. Just add:
try:
from numpy.distutils.ccompiler import CCompiler_compile
import distutils.ccompiler
distutils.ccompiler.CCompiler.compile = CCompiler_compile
except ImportError:
print("Numpy not found, parallel compile not available")
Use -j N or set NPY_NUM_BUILD_JOBS.
In the limited examples you provided in the link, it seems fairly obvious that you have some misunderstanding on what some of the features of the language are. For example, the gsminterface.h has a whole lot of namespace level statics, which is probably unintended. Every translation unit that includes that header will compile it's own version for everyone of the symbols declared in that header. Side effects of this are not only the compile time but also code bloat (larger binaries) and link time as the linker needs to process all those symbols.
There are still many questions that affect the build process that you have not answered, for example, whether you clean every time before you recompile. If you are doing that, then you might want to consider ccache, which is a tool that caches the result of the build process, so that if you run make clean; make target only the preprocessor will be run for any translation unit that has not changed. Note that as long as you keep maintaining most code in headers, this will not offer much of an advantage, as a change in a header modifies all translation units that include it. (I don't know your build system, so I cannot tell you whether python setup.py build will clean or not)
The project does not seem large otherwise, so I would be surprised if it took more than a few seconds to compile.