Calling vkEnumerateDeviceExtensionProperties "twice" - is it required? - c++

From the man page for vkEnumerateDeviceExtensionProperties,
vkEnumerateDeviceExtensionProperties retrieves properties for
extensions on a physical device whose handle is given in
physicalDevice. To determine the extensions implemented by a layer set
pLayerName to point to the layer’s name and any returned extensions
are implemented by that layer. Setting pLayerName to NULL will return
the available non-layer extensions. pPropertyCount must be set to the
size of the VkExtensionProperties array pointed to by pProperties. The
pProperties should point to an array of VkExtensionProperties to be
filled out or null. If null, vkEnumerateDeviceExtensionProperties will
update pPropertyCount with the number of extensions found. The
definition of VkExtensionProperties is as follows:
(emphasis mine). It seems in the current implementation (Window SDK v1.0.13), pPropertyCount is updated with the number of extensions, regardless of whether pProperties is null or not. However, the documentation doesn't appear to be explicit on what happens in this situation.
Here's an example, of why having such a feature is 'nicer':
const uint32_t MaxCount = 1024; // More than you'll ever need
uint32_t ActualCount = MaxCount;
VkLayerProperties layers[MaxCount];
VkResult result = vkEnumerateDeviceLayerProperties(physicalDevice, &ActualCount, layers);
//...
vs.
uint32_t ActualCount = 0;
VkLayerProperties* layers;
VkResult result = vkEnumerateDeviceLayerProperties(physicalDevice, &ActualCount, nullptr);
if (ActualCount > 0)
{
extensions = alloca(ActualCount * sizeof(VkLayerProperties));
result = vkEnumerateDeviceLayerProperties(physicalDevice, &ActualCount, layers);
//...
}
My question is: am I depending on unsupported functionality by doing this, or is this somehow advertised somewhere else in the documentation?

From the latest spec:
For both vkEnumerateInstanceExtensionProperties and vkEnumerateDeviceExtensionProperties, if pProperties is NULL, then the number of extensions properties available is returned in pPropertyCount. Otherwise, pPropertyCount must point to a variable set by the user to the number of elements in the pProperties array, and on return the variable is overwritten with the number of structures actually written to pProperties. If pPropertyCount is less than the number of extension properties available, at most pPropertyCount structures will be written. If pPropertyCount is smaller than the number of extensions available, VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate that not all the available properties were returned.
So your approach is correct, even though it's a bit wasteful on memory. Similar functions returning arrays also behave like this.
Also note that since 1.0.13, device layers are deprecated. All instance layers are able to intercept commands to both the instance and the devices created from it.

Most Vulkan commands relays in double calls:
First call to get count number of returning structures or handles;
Second call to pass an properly sized array to get back requested structures/handle. In this second call, the count parameter tells the size of your array.
If , in second step, you get VkResult::VK_INCOMPLETE result then you passed an array too short to get all objects back. Note VK_INCOMPLETE is not an error, it is a partial success (2.6.2 Return Codes ... "All successful completion codes are non-negative values. ")
Your Question :
Am I depending on unsupported functionality by doing
this, or is this somehow advertised somewhere else in the
documentation?
You proposed create a big array before calling the function, to avoid a call Vulkan function twice.
My reply: Yes, and you are doing a bad design decision by "guessing"
the array size.
Please, don't get me wrong. I strongly agree with you that is annoying to call same function twice, but you can solve it by wrapping those sort functions with a more programmer friendly behaviour.
I'll use another Vulkan function, just to illustrate it. Let say you want to avoid double call to :
VkResult vkEnumeratePhysicalDevices(
VkInstance instance,
uint32_t* pPhysicalDeviceCount,
VkPhysicalDevice* pPhysicalDevices);
A possible solution would be write the sweet wrap function:
VkResult getPhysicalDevices(VkInstance instance, std::vector<VkPhysicalDevice>& container){
uint32_t count = 0;
VkResult res = vkEnumeratePhysicalDevices(instance, &count, NULL); // get #count
container.resize(count); //Removes extra entries or allocates more.
if (res < 0) // something goes wrong here
return res;
res = vkEnumeratePhysicalDevices(instance, &count, container.data()); // all entries overwritten.
return res; // possible OK
}
That is my two cents about the double call to Vulkan functions. It is a naive implementation and may not work for all cases! Note you must create the vector BEFORE you call the wrapping function.
Good Luck!

Related

How do you determine the size of a class when reverse engineering?

I've been trying to learn a bit about reverse engineering and how to essentially wrap an existing class (that we do not have the source for, we'll call it PrivateClass) with our own class (we'll call it WrapperClass).
Right now I'm basically calling the constructor of PrivateClass while feeding a pointer to WrapperClass as the this argument...
Doing this populates m_string_address, m_somevalue1, m_somevalue2, and missingBytes with the PrivateClass object data. The dilemma now is that I am noticing issues with the original program (first a crash that was resolved by adding m_u1 and m_u2) and then text not rendering that was fixed by adding mData[2900].
I'm able to deduce that m_u1 and m_u2 hold the size of the string in m_string_address, but I wasn't expecting there to be any other member variables after them (which is why I was surprised with mData[2900] resolving the text rendering problem). 2900 is also just a random large value I threw in.
So my question is how can we determine the real size of a class that we do not have the source for? Is there a tool that will tell you what variables exist in a class and their order (or atleast the correct datatypes or datatype sizes of each variable). I'm assuming this might be possible by processing assembly in an address range into a semi-decompiled state.
class WrapperClass
{
public:
WrapperClass(const wchar_t* original);
private:
uintptr_t m_string_address;
int m_somevalue1;
int m_somevalue2;
char missingBytes[2900];
};
WrapperClass::WrapperClass(const wchar_t* original)
{
typedef void(__thiscall* PrivateClassCtor)(void* pThis, const wchar_t* original);
PrivateClassCtor PrivateClassCtorFunc = PrivateClassCtor(DLLBase + 0x1c00);
PrivateClassCtorFunc(this, original);
}
So my question is how can we determine the real size of a class that
we do not have the source for?
You have to guess or logically deduce it for yourself. Or just guess. If guessing doesn't work out for you, you'll have to guess again.
Is there a tool that will tell you what variables exist in a class and
their order (or atleast the correct datatypes or datatype sizes of
each variable) I'm assuming by decompiling and processing assembly in
an address range.
No, there is not. The type of meta information that describes a class, it's members, etc. simply isn't written out as the program does not need it nor are there currently no facilities defined in the C++ Standard that would require a compiler to generate that information.
There are exactly zero guarantees that you can reliably 'guess' the size of a class. You can however probably make a reasonable estimate in most cases.
The one thing you can be sure of though: the only problem is when you have too little memory for a class instance. Having too much memory isn't really a problem at all (Which is what adding 2900 extra bytes works).
On the assumption that the code was originally well written (e.g. the developer decided to initialise all the variables nicely), then you may be able to guess the size using something like this:
#define MAGIC 0xCD
// allocate a big buffer
char temp_buffer[8092];
memset(temp_buffer, MAGIC, 8092);
// call ctor
PrivateClassCtor PrivateClassCtorFunc = PrivateClassCtor(DLLBase + 0x1c00);
PrivateClassCtorFunc(this, original);
// step backwards until we find a byte that isn't 0xCD.
// Might want to change the magic value and run again
// just to be sure (e.g. the original ctor sets the last
// few bytes of the class to 0xCD by coincidence.
//
// Obviously fails if the developer never initialises member vars though!
for(int i = 8091; i >= 0; --i) {
if(temp_buffer[i] != MAGIC) {
printf("class size might be: %d\n", i + 1);
break;
}
}
That's probably a decent guess, however the only way to be 100% sure would be to stick a breakpoint where you call the ctor, switch to assembly view in your debugger of choice, and then step through the assembly line by line to see what the max address being written to is.

How would I validate the address being pointed to is of a type that I want? [duplicate]

Is there any way to determine (programatically, of course) if a given pointer is "valid"? Checking for NULL is easy, but what about things like 0x00001234? When trying to dereference this kind of pointer an exception/crash occurs.
A cross-platform method is preferred, but platform-specific (for Windows and Linux) is also ok.
Update for clarification:
The problem is not with stale/freed/uninitialized pointers; instead, I'm implementing an API that takes pointers from the caller (like a pointer to a string, a file handle, etc.). The caller can send (in purpose or by mistake) an invalid value as the pointer. How do I prevent a crash?
Update for clarification: The problem is not with stale, freed or uninitialized pointers; instead, I'm implementing an API that takes pointers from the caller (like a pointer to a string, a file handle, etc.). The caller can send (in purpose or by mistake) an invalid value as the pointer. How do I prevent a crash?
You can't make that check. There is simply no way you can check whether a pointer is "valid". You have to trust that when people use a function that takes a pointer, those people know what they are doing. If they pass you 0x4211 as a pointer value, then you have to trust it points to address 0x4211. And if they "accidentally" hit an object, then even if you would use some scary operation system function (IsValidPtr or whatever), you would still slip into a bug and not fail fast.
Start using null pointers for signaling this kind of thing and tell the user of your library that they should not use pointers if they tend to accidentally pass invalid pointers, seriously :)
Here are three easy ways for a C program under Linux to get introspective about the status of the memory in which it is running, and why the question has appropriate sophisticated answers in some contexts.
After calling getpagesize() and rounding the pointer to a page
boundary, you can call mincore() to find out if a page is valid and
if it happens to be part of the process working set. Note that this requires
some kernel resources, so you should benchmark it and determine if
calling this function is really appropriate in your api. If your api
is going to be handling interrupts, or reading from serial ports
into memory, it is appropriate to call this to avoid unpredictable
behaviors.
After calling stat() to determine if there is a /proc/self directory available, you can fopen and read through /proc/self/maps
to find information about the region in which a pointer resides.
Study the man page for proc, the process information pseudo-file
system. Obviously this is relatively expensive, but you might be
able to get away with caching the result of the parse into an array
you can efficiently lookup using a binary search. Also consider the
/proc/self/smaps. If your api is for high-performance computing then
the program will want to know about the /proc/self/numa which is
documented under the man page for numa, the non-uniform memory
architecture.
The get_mempolicy(MPOL_F_ADDR) call is appropriate for high performance computing api work where there are multiple threads of
execution and you are managing your work to have affinity for non-uniform memory
as it relates to the cpu cores and socket resources. Such an api
will of course also tell you if a pointer is valid.
Under Microsoft Windows there is the function QueryWorkingSetEx that is documented under the Process Status API (also in the NUMA API).
As a corollary to sophisticated NUMA API programming this function will also let you do simple "testing pointers for validity (C/C++)" work, as such it is unlikely to be deprecated for at least 15 years.
Preventing a crash caused by the caller sending in an invalid pointer is a good way to make silent bugs that are hard to find.
Isn't it better for the programmer using your API to get a clear message that his code is bogus by crashing it rather than hiding it?
On Win32/64 there is a way to do this. Attempt to read the pointer and catch the resulting SEH exeception that will be thrown on failure. If it doesn't throw, then it's a valid pointer.
The problem with this method though is that it just returns whether or not you can read data from the pointer. It makes no guarantee about type safety or any number of other invariants. In general this method is good for little else other than to say "yes, I can read that particular place in memory at a time that has now passed".
In short, Don't do this ;)
Raymond Chen has a blog post on this subject: http://blogs.msdn.com/oldnewthing/archive/2007/06/25/3507294.aspx
AFAIK there is no way. You should try to avoid this situation by always setting pointers to NULL after freeing memory.
On Unix you should be able to utilize a kernel syscall that does pointer checking and returns EFAULT, such as:
#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <stdbool.h>
bool isPointerBad( void * p )
{
int fh = open( p, 0, 0 );
int e = errno;
if ( -1 == fh && e == EFAULT )
{
printf( "bad pointer: %p\n", p );
return true;
}
else if ( fh != -1 )
{
close( fh );
}
printf( "good pointer: %p\n", p );
return false;
}
int main()
{
int good = 4;
isPointerBad( (void *)3 );
isPointerBad( &good );
isPointerBad( "/tmp/blah" );
return 0;
}
returning:
bad pointer: 0x3
good pointer: 0x7fff375fd49c
good pointer: 0x400793
There's probably a better syscall to use than open() [perhaps access], since there's a chance that this could lead to actual file creation codepath, and a subsequent close requirement.
Regarding the answer a bit up in this thread:
IsBadReadPtr(), IsBadWritePtr(), IsBadCodePtr(), IsBadStringPtr() for Windows.
My advice is to stay away from them, someone has already posted this one:
http://blogs.msdn.com/oldnewthing/archive/2007/06/25/3507294.aspx
Another post on the same topic and by the same author (I think) is this one:
http://blogs.msdn.com/oldnewthing/archive/2006/09/27/773741.aspx ("IsBadXxxPtr should really be called CrashProgramRandomly").
If the users of your API sends in bad data, let it crash. If the problem is that the data passed isn't used until later (and that makes it harder to find the cause), add a debug mode where the strings etc. are logged at entry. If they are bad it will be obvious (and probably crash). If it is happening way to often, it might be worth moving your API out of process and let them crash the API process instead of the main process.
Firstly, I don't see any point in trying to protect yourself from the caller deliberately trying to cause a crash. They could easily do this by trying to access through an invalid pointer themselves. There are many other ways - they could just overwrite your memory or the stack. If you need to protect against this sort of thing then you need to be running in a separate process using sockets or some other IPC for communication.
We write quite a lot of software that allows partners/customers/users to extend functionality. Inevitably any bug gets reported to us first so it is useful to be able to easily show that the problem is in the plug-in code. Additionally there are security concerns and some users are more trusted than others.
We use a number of different methods depending on performance/throughput requirements and trustworthyness. From most preferred:
separate processes using sockets (often passing data as text).
separate processes using shared memory (if large amounts of data to pass).
same process separate threads via message queue (if frequent short messages).
same process separate threads all passed data allocated from a memory pool.
same process via direct procedure call - all passed data allocated from a memory pool.
We try never to resort to what you are trying to do when dealing with third party software - especially when we are given the plug-ins/library as binary rather than source code.
Use of a memory pool is quite easy in most circumstances and needn't be inefficient. If YOU allocate the data in the first place then it is trivial to check the pointers against the values you allocated. You could also store the length allocated and add "magic" values before and after the data to check for valid data type and data overruns.
I've got a lot of sympathy with your question, as I'm in an almost identical position myself. I appreciate what a lot of the replies are saying, and they are correct - the routine supplying the pointer should be providing a valid pointer. In my case, it is almost inconceivable that they could have corrupted the pointer - but if they had managed, it would be MY software that crashes, and ME that would get the blame :-(
My requirement isn't that I continue after a segmentation fault - that would be dangerous - I just want to report what happened to the customer before terminating so that they can fix their code rather than blaming me!
This is how I've found to do it (on Windows): http://www.cplusplus.com/reference/clibrary/csignal/signal/
To give a synopsis:
#include <signal.h>
using namespace std;
void terminate(int param)
/// Function executed if a segmentation fault is encountered during the cast to an instance.
{
cerr << "\nThe function received a corrupted reference - please check the user-supplied dll.\n";
cerr << "Terminating program...\n";
exit(1);
}
...
void MyFunction()
{
void (*previous_sigsegv_function)(int);
previous_sigsegv_function = signal(SIGSEGV, terminate);
<-- insert risky stuff here -->
signal(SIGSEGV, previous_sigsegv_function);
}
Now this appears to behave as I would hope (it prints the error message, then terminates the program) - but if someone can spot a flaw, please let me know!
There are no provisions in C++ to test for the validity of a pointer as a general case. One can obviously assume that NULL (0x00000000) is bad, and various compilers and libraries like to use "special values" here and there to make debugging easier (For example, if I ever see a pointer show up as 0xCECECECE in visual studio I know I did something wrong) but the truth is that since a pointer is just an index into memory it's near impossible to tell just by looking at the pointer if it's the "right" index.
There are various tricks that you can do with dynamic_cast and RTTI such to ensure that the object pointed to is of the type that you want, but they all require that you are pointing to something valid in the first place.
If you want to ensure that you program can detect "invalid" pointers then my advice is this: Set every pointer you declare either to NULL or a valid address immediately upon creation and set it to NULL immediately after freeing the memory that it points to. If you are diligent about this practice, then checking for NULL is all you ever need.
Setting the pointer to NULL before and after using is a good technique. This is easy to do in C++ if you manage pointers within a class for example (a string):
class SomeClass
{
public:
SomeClass();
~SomeClass();
void SetText( const char *text);
char *GetText() const { return MyText; }
void Clear();
private:
char * MyText;
};
SomeClass::SomeClass()
{
MyText = NULL;
}
SomeClass::~SomeClass()
{
Clear();
}
void SomeClass::Clear()
{
if (MyText)
free( MyText);
MyText = NULL;
}
void SomeClass::Settext( const char *text)
{
Clear();
MyText = malloc( strlen(text));
if (MyText)
strcpy( MyText, text);
}
Indeed, something could be done under specific occasion: for example if you want to check whether a string pointer string is valid, using write(fd, buf, szie) syscall can help you do the magic: let fd be a file descriptor of temporary file you create for test, and buf pointing to the string you are tesing, if the pointer is invalid write() would return -1 and errno set to EFAULT which indicating that buf is outside your accessible address space.
Peeter Joos answer is pretty good. Here is an "official" way to do it:
#include <sys/mman.h>
#include <stdbool.h>
#include <unistd.h>
bool is_pointer_valid(void *p) {
/* get the page size */
size_t page_size = sysconf(_SC_PAGESIZE);
/* find the address of the page that contains p */
void *base = (void *)((((size_t)p) / page_size) * page_size);
/* call msync, if it returns non-zero, return false */
int ret = msync(base, page_size, MS_ASYNC) != -1;
return ret ? ret : errno != ENOMEM;
}
There isn't any portable way of doing this, and doing it for specific platforms can be anywhere between hard and impossible. In any case, you should never write code that depends on such a check - don't let the pointers take on invalid values in the first place.
As others have said, you can't reliably detect an invalid pointer. Consider some of the forms an invalid pointer might take:
You could have a null pointer. That's one you could easily check for and do something about.
You could have a pointer to somewhere outside of valid memory. What constitutes valid memory varies depending on how the run-time environment of your system sets up the address space. On Unix systems, it is usually a virtual address space starting at 0 and going to some large number of megabytes. On embedded systems, it could be quite small. It might not start at 0, in any case. If your app happens to be running in supervisor mode or the equivalent, then your pointer might reference a real address, which may or may not be backed up with real memory.
You could have a pointer to somewhere inside your valid memory, even inside your data segment, bss, stack or heap, but not pointing at a valid object. A variant of this is a pointer that used to point to a valid object, before something bad happened to the object. Bad things in this context include deallocation, memory corruption, or pointer corruption.
You could have a flat-out illegal pointer, such as a pointer with illegal alignment for the thing being referenced.
The problem gets even worse when you consider segment/offset based architectures and other odd pointer implementations. This sort of thing is normally hidden from the developer by good compilers and judicious use of types, but if you want to pierce the veil and try to outsmart the operating system and compiler developers, well, you can, but there is not one generic way to do it that will handle all of the issues you might run into.
The best thing you can do is allow the crash and put out some good diagnostic information.
In general, it's impossible to do. Here's one particularly nasty case:
struct Point2d {
int x;
int y;
};
struct Point3d {
int x;
int y;
int z;
};
void dump(Point3 *p)
{
printf("[%d %d %d]\n", p->x, p->y, p->z);
}
Point2d points[2] = { {0, 1}, {2, 3} };
Point3d *p3 = reinterpret_cast<Point3d *>(&points[0]);
dump(p3);
On many platforms, this will print out:
[0 1 2]
You're forcing the runtime system to incorrectly interpret bits of memory, but in this case it's not going to crash, because the bits all make sense. This is part of the design of the language (look at C-style polymorphism with struct inaddr, inaddr_in, inaddr_in6), so you can't reliably protect against it on any platform.
It's unbelievable how much misleading information you can read in articles above...
And even in microsoft msdn documentation IsBadPtr is claimed to be banned. Oh well - I prefer working application rather than crashing. Even if term working might be working incorrectly (as long as end-user can continue with application).
By googling I haven't found any useful example for windows - found a solution for 32-bit apps,
http://www.codeproject.com/script/Content/ViewAssociatedFile.aspx?rzp=%2FKB%2Fsystem%2Fdetect-driver%2F%2FDetectDriverSrc.zip&zep=DetectDriverSrc%2FDetectDriver%2Fsrc%2FdrvCppLib%2Frtti.cpp&obid=58895&obtid=2&ovid=2
but I need also to support 64-bit apps, so this solution did not work for me.
But I've harvested wine's source codes, and managed to cook similar kind of code which would work for 64-bit apps as well - attaching code here:
#include <typeinfo.h>
typedef void (*v_table_ptr)();
typedef struct _cpp_object
{
v_table_ptr* vtable;
} cpp_object;
#ifndef _WIN64
typedef struct _rtti_object_locator
{
unsigned int signature;
int base_class_offset;
unsigned int flags;
const type_info *type_descriptor;
//const rtti_object_hierarchy *type_hierarchy;
} rtti_object_locator;
#else
typedef struct
{
unsigned int signature;
int base_class_offset;
unsigned int flags;
unsigned int type_descriptor;
unsigned int type_hierarchy;
unsigned int object_locator;
} rtti_object_locator;
#endif
/* Get type info from an object (internal) */
static const rtti_object_locator* RTTI_GetObjectLocator(void* inptr)
{
cpp_object* cppobj = (cpp_object*) inptr;
const rtti_object_locator* obj_locator = 0;
if (!IsBadReadPtr(cppobj, sizeof(void*)) &&
!IsBadReadPtr(cppobj->vtable - 1, sizeof(void*)) &&
!IsBadReadPtr((void*)cppobj->vtable[-1], sizeof(rtti_object_locator)))
{
obj_locator = (rtti_object_locator*) cppobj->vtable[-1];
}
return obj_locator;
}
And following code can detect whether pointer is valid or not, you need probably to add some NULL checking:
CTest* t = new CTest();
//t = (CTest*) 0;
//t = (CTest*) 0x12345678;
const rtti_object_locator* ptr = RTTI_GetObjectLocator(t);
#ifdef _WIN64
char *base = ptr->signature == 0 ? (char*)RtlPcToFileHeader((void*)ptr, (void**)&base) : (char*)ptr - ptr->object_locator;
const type_info *td = (const type_info*)(base + ptr->type_descriptor);
#else
const type_info *td = ptr->type_descriptor;
#endif
const char* n =td->name();
This gets class name from pointer - I think it should be enough for your needs.
One thing which I'm still afraid is performance of pointer checking - in code snipet above there is already 3-4 API calls being made - might be overkill for time critical applications.
It would be good if someone could measure overhead of pointer checking compared for example to C#/managed c++ calls.
It is not a very good policy to accept arbitrary pointers as input parameters in a public API. It's better to have "plain data" types like an integer, a string or a struct (I mean a classical struct with plain data inside, of course; officially anything can be a struct).
Why? Well because as others say there is no standard way to know whether you've been given a valid pointer or one that points to junk.
But sometimes you don't have the choice - your API must accept a pointer.
In these cases, it is the duty of the caller to pass a good pointer. NULL may be accepted as a value, but not a pointer to junk.
Can you double-check in any way? Well, what I did in a case like that was to define an invariant for the type the pointer points to, and call it when you get it (in debug mode). At least if the invariant fails (or crashes) you know that you were passed a bad value.
// API that does not allow NULL
void PublicApiFunction1(Person* in_person)
{
assert(in_person != NULL);
assert(in_person->Invariant());
// Actual code...
}
// API that allows NULL
void PublicApiFunction2(Person* in_person)
{
assert(in_person == NULL || in_person->Invariant());
// Actual code (must keep in mind that in_person may be NULL)
}
Following does work in Windows (somebody suggested it before):
static void copy(void * target, const void* source, int size)
{
__try
{
CopyMemory(target, source, size);
}
__except(EXCEPTION_EXECUTE_HANDLER)
{
doSomething(--whatever--);
}
}
The function has to be static, standalone or static method of some class.
To test on read-only, copy data in the local buffer.
To test on write without modifying contents, write them over.
You can test first/last addresses only.
If pointer is invalid, control will be passed to 'doSomething',
and then outside the brackets.
Just do not use anything requiring destructors, like CString.
On Windows I use this code:
void * G_pPointer = NULL;
const char * G_szPointerName = NULL;
void CheckPointerIternal()
{
char cTest = *((char *)G_pPointer);
}
bool CheckPointerIternalExt()
{
bool bRet = false;
__try
{
CheckPointerIternal();
bRet = true;
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
}
return bRet;
}
void CheckPointer(void * A_pPointer, const char * A_szPointerName)
{
G_pPointer = A_pPointer;
G_szPointerName = A_szPointerName;
if (!CheckPointerIternalExt())
throw std::runtime_error("Invalid pointer " + std::string(G_szPointerName) + "!");
}
Usage:
unsigned long * pTest = (unsigned long *) 0x12345;
CheckPointer(pTest, "pTest"); //throws exception
On macOS, you can do this with mach_vm_region, which as well as telling you if a pointer is valid, also lets you validate what access you have to the memory to which the pointer points (read/write/execute). I provided sample code to do this in my answer to another question:
#include <mach/mach.h>
#include <mach/mach_vm.h>
#include <stdio.h>
#include <stdbool.h>
bool ptr_is_valid(void *ptr, vm_prot_t needs_access) {
vm_map_t task = mach_task_self();
mach_vm_address_t address = (mach_vm_address_t)ptr;
mach_vm_size_t size = 0;
vm_region_basic_info_data_64_t info;
mach_msg_type_number_t count = VM_REGION_BASIC_INFO_COUNT_64;
mach_port_t object_name;
kern_return_t ret = mach_vm_region(task, &address, &size, VM_REGION_BASIC_INFO_64, (vm_region_info_t)&info, &count, &object_name);
if (ret != KERN_SUCCESS) return false;
return ((mach_vm_address_t)ptr) >= address && ((info.protection & needs_access) == needs_access);
}
#define TEST(ptr,acc) printf("ptr_is_valid(%p,access=%d)=%d\n", (void*)(ptr), (acc), ptr_is_valid((void*)(ptr),(acc)))
int main(int argc, char**argv) {
TEST(0,0);
TEST(0,VM_PROT_READ);
TEST(123456789,VM_PROT_READ);
TEST(main,0);
TEST(main,VM_PROT_READ);
TEST(main,VM_PROT_READ|VM_PROT_EXECUTE);
TEST(main,VM_PROT_EXECUTE);
TEST(main,VM_PROT_WRITE);
TEST((void*)(-1),0);
return 0;
}
The SEI CERT C Coding Standard recommendation MEM10-C. Define and use a pointer validation function says it is possible to do a check to some degree, especially under Linux OS.
The method described in the link is to keep track of the highest memory address returned by malloc and add a function that tests if someone tries to use a pointer greater than that value. It is probably of limited use.
IsBadReadPtr(), IsBadWritePtr(), IsBadCodePtr(), IsBadStringPtr() for Windows.
These take time proportional to the length of the block, so for sanity check I just check the starting address.
I have seen various libraries use some method to check for unreferenced memory and such. I believe they simply "override" the memory allocation and deallocation methods (malloc/free), which has some logic that keeps track of the pointers. I suppose this is overkill for your use case, but it would be one way to do it.
Technically you can override operator new (and delete) and collect information about all allocated memory, so you can have a method to check if heap memory is valid.
but:
you still need a way to check if pointer is allocated on stack ()
you will need to define what is 'valid' pointer:
a) memory on that address is
allocated
b) memory at that address
is start address of object (e.g.
address not in the middle of huge
array)
c) memory at that address
is start address of object of expected type
Bottom line: approach in question is not C++ way, you need to define some rules which ensure that function receives valid pointers.
There is no way to make that check in C++. What should you do if other code passes you an invalid pointer? You should crash. Why? Check out this link: http://blogs.msdn.com/oldnewthing/archive/2006/09/27/773741.aspx
Addendum to the accpeted answer(s):
Assume that your pointer could hold only three values -- 0, 1 and -1 where 1 signifies a valid pointer, -1 an invalid one and 0 another invalid one. What is the probability that your pointer is NULL, all values being equally likely? 1/3. Now, take the valid case out, so for every invalid case, you have a 50:50 ratio to catch all errors. Looks good right? Scale this for a 4-byte pointer. There are 2^32 or 4294967294 possible values. Of these, only ONE value is correct, one is NULL, and you are still left with 4294967292 other invalid cases. Recalculate: you have a test for 1 out of (4294967292+ 1) invalid cases. A probability of 2.xe-10 or 0 for most practical purposes. Such is the futility of the NULL check.
You know, a new driver (at least on Linux) that is capable of this probably wouldn't be that hard to write.
On the other hand, it would be folly to build your programs like this. Unless you have some really specific and single use for such a thing, I wouldn't recommend it. If you built a large application loaded with constant pointer validity checks it would likely be horrendously slow.
you should avoid these methods because they do not work. blogs.msdn.com/oldnewthing/archive/2006/09/27/773741.aspx – JaredPar Feb 15 '09 at 16:02
If they don't work - next windows update will fix it ?
If they don't work on concept level - function will be probably removed from windows api completely.
MSDN documentation claim that they are banned, and reason for this is probably flaw of further design of application (e.g. generally you should not eat invalid pointers silently - if you're in charge of design of whole application of course), and performance/time of pointer checking.
But you should not claim that they does not work because of some blog.
In my test application I've verified that they do work.
these links may be helpful
_CrtIsValidPointer
Verifies that a specified memory range is valid for reading and writing (debug version only).
http://msdn.microsoft.com/en-us/library/0w1ekd5e.aspx
_CrtCheckMemory
Confirms the integrity of the memory blocks allocated in the debug heap (debug version only).
http://msdn.microsoft.com/en-us/library/e73x0s4b.aspx

How to check that the address pointed by a pointer is pointing to an object not a garbage before reading or writing to this object? [duplicate]

Is there any way to determine (programatically, of course) if a given pointer is "valid"? Checking for NULL is easy, but what about things like 0x00001234? When trying to dereference this kind of pointer an exception/crash occurs.
A cross-platform method is preferred, but platform-specific (for Windows and Linux) is also ok.
Update for clarification:
The problem is not with stale/freed/uninitialized pointers; instead, I'm implementing an API that takes pointers from the caller (like a pointer to a string, a file handle, etc.). The caller can send (in purpose or by mistake) an invalid value as the pointer. How do I prevent a crash?
Update for clarification: The problem is not with stale, freed or uninitialized pointers; instead, I'm implementing an API that takes pointers from the caller (like a pointer to a string, a file handle, etc.). The caller can send (in purpose or by mistake) an invalid value as the pointer. How do I prevent a crash?
You can't make that check. There is simply no way you can check whether a pointer is "valid". You have to trust that when people use a function that takes a pointer, those people know what they are doing. If they pass you 0x4211 as a pointer value, then you have to trust it points to address 0x4211. And if they "accidentally" hit an object, then even if you would use some scary operation system function (IsValidPtr or whatever), you would still slip into a bug and not fail fast.
Start using null pointers for signaling this kind of thing and tell the user of your library that they should not use pointers if they tend to accidentally pass invalid pointers, seriously :)
Here are three easy ways for a C program under Linux to get introspective about the status of the memory in which it is running, and why the question has appropriate sophisticated answers in some contexts.
After calling getpagesize() and rounding the pointer to a page
boundary, you can call mincore() to find out if a page is valid and
if it happens to be part of the process working set. Note that this requires
some kernel resources, so you should benchmark it and determine if
calling this function is really appropriate in your api. If your api
is going to be handling interrupts, or reading from serial ports
into memory, it is appropriate to call this to avoid unpredictable
behaviors.
After calling stat() to determine if there is a /proc/self directory available, you can fopen and read through /proc/self/maps
to find information about the region in which a pointer resides.
Study the man page for proc, the process information pseudo-file
system. Obviously this is relatively expensive, but you might be
able to get away with caching the result of the parse into an array
you can efficiently lookup using a binary search. Also consider the
/proc/self/smaps. If your api is for high-performance computing then
the program will want to know about the /proc/self/numa which is
documented under the man page for numa, the non-uniform memory
architecture.
The get_mempolicy(MPOL_F_ADDR) call is appropriate for high performance computing api work where there are multiple threads of
execution and you are managing your work to have affinity for non-uniform memory
as it relates to the cpu cores and socket resources. Such an api
will of course also tell you if a pointer is valid.
Under Microsoft Windows there is the function QueryWorkingSetEx that is documented under the Process Status API (also in the NUMA API).
As a corollary to sophisticated NUMA API programming this function will also let you do simple "testing pointers for validity (C/C++)" work, as such it is unlikely to be deprecated for at least 15 years.
Preventing a crash caused by the caller sending in an invalid pointer is a good way to make silent bugs that are hard to find.
Isn't it better for the programmer using your API to get a clear message that his code is bogus by crashing it rather than hiding it?
On Win32/64 there is a way to do this. Attempt to read the pointer and catch the resulting SEH exeception that will be thrown on failure. If it doesn't throw, then it's a valid pointer.
The problem with this method though is that it just returns whether or not you can read data from the pointer. It makes no guarantee about type safety or any number of other invariants. In general this method is good for little else other than to say "yes, I can read that particular place in memory at a time that has now passed".
In short, Don't do this ;)
Raymond Chen has a blog post on this subject: http://blogs.msdn.com/oldnewthing/archive/2007/06/25/3507294.aspx
AFAIK there is no way. You should try to avoid this situation by always setting pointers to NULL after freeing memory.
On Unix you should be able to utilize a kernel syscall that does pointer checking and returns EFAULT, such as:
#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <stdbool.h>
bool isPointerBad( void * p )
{
int fh = open( p, 0, 0 );
int e = errno;
if ( -1 == fh && e == EFAULT )
{
printf( "bad pointer: %p\n", p );
return true;
}
else if ( fh != -1 )
{
close( fh );
}
printf( "good pointer: %p\n", p );
return false;
}
int main()
{
int good = 4;
isPointerBad( (void *)3 );
isPointerBad( &good );
isPointerBad( "/tmp/blah" );
return 0;
}
returning:
bad pointer: 0x3
good pointer: 0x7fff375fd49c
good pointer: 0x400793
There's probably a better syscall to use than open() [perhaps access], since there's a chance that this could lead to actual file creation codepath, and a subsequent close requirement.
Regarding the answer a bit up in this thread:
IsBadReadPtr(), IsBadWritePtr(), IsBadCodePtr(), IsBadStringPtr() for Windows.
My advice is to stay away from them, someone has already posted this one:
http://blogs.msdn.com/oldnewthing/archive/2007/06/25/3507294.aspx
Another post on the same topic and by the same author (I think) is this one:
http://blogs.msdn.com/oldnewthing/archive/2006/09/27/773741.aspx ("IsBadXxxPtr should really be called CrashProgramRandomly").
If the users of your API sends in bad data, let it crash. If the problem is that the data passed isn't used until later (and that makes it harder to find the cause), add a debug mode where the strings etc. are logged at entry. If they are bad it will be obvious (and probably crash). If it is happening way to often, it might be worth moving your API out of process and let them crash the API process instead of the main process.
Firstly, I don't see any point in trying to protect yourself from the caller deliberately trying to cause a crash. They could easily do this by trying to access through an invalid pointer themselves. There are many other ways - they could just overwrite your memory or the stack. If you need to protect against this sort of thing then you need to be running in a separate process using sockets or some other IPC for communication.
We write quite a lot of software that allows partners/customers/users to extend functionality. Inevitably any bug gets reported to us first so it is useful to be able to easily show that the problem is in the plug-in code. Additionally there are security concerns and some users are more trusted than others.
We use a number of different methods depending on performance/throughput requirements and trustworthyness. From most preferred:
separate processes using sockets (often passing data as text).
separate processes using shared memory (if large amounts of data to pass).
same process separate threads via message queue (if frequent short messages).
same process separate threads all passed data allocated from a memory pool.
same process via direct procedure call - all passed data allocated from a memory pool.
We try never to resort to what you are trying to do when dealing with third party software - especially when we are given the plug-ins/library as binary rather than source code.
Use of a memory pool is quite easy in most circumstances and needn't be inefficient. If YOU allocate the data in the first place then it is trivial to check the pointers against the values you allocated. You could also store the length allocated and add "magic" values before and after the data to check for valid data type and data overruns.
I've got a lot of sympathy with your question, as I'm in an almost identical position myself. I appreciate what a lot of the replies are saying, and they are correct - the routine supplying the pointer should be providing a valid pointer. In my case, it is almost inconceivable that they could have corrupted the pointer - but if they had managed, it would be MY software that crashes, and ME that would get the blame :-(
My requirement isn't that I continue after a segmentation fault - that would be dangerous - I just want to report what happened to the customer before terminating so that they can fix their code rather than blaming me!
This is how I've found to do it (on Windows): http://www.cplusplus.com/reference/clibrary/csignal/signal/
To give a synopsis:
#include <signal.h>
using namespace std;
void terminate(int param)
/// Function executed if a segmentation fault is encountered during the cast to an instance.
{
cerr << "\nThe function received a corrupted reference - please check the user-supplied dll.\n";
cerr << "Terminating program...\n";
exit(1);
}
...
void MyFunction()
{
void (*previous_sigsegv_function)(int);
previous_sigsegv_function = signal(SIGSEGV, terminate);
<-- insert risky stuff here -->
signal(SIGSEGV, previous_sigsegv_function);
}
Now this appears to behave as I would hope (it prints the error message, then terminates the program) - but if someone can spot a flaw, please let me know!
There are no provisions in C++ to test for the validity of a pointer as a general case. One can obviously assume that NULL (0x00000000) is bad, and various compilers and libraries like to use "special values" here and there to make debugging easier (For example, if I ever see a pointer show up as 0xCECECECE in visual studio I know I did something wrong) but the truth is that since a pointer is just an index into memory it's near impossible to tell just by looking at the pointer if it's the "right" index.
There are various tricks that you can do with dynamic_cast and RTTI such to ensure that the object pointed to is of the type that you want, but they all require that you are pointing to something valid in the first place.
If you want to ensure that you program can detect "invalid" pointers then my advice is this: Set every pointer you declare either to NULL or a valid address immediately upon creation and set it to NULL immediately after freeing the memory that it points to. If you are diligent about this practice, then checking for NULL is all you ever need.
Setting the pointer to NULL before and after using is a good technique. This is easy to do in C++ if you manage pointers within a class for example (a string):
class SomeClass
{
public:
SomeClass();
~SomeClass();
void SetText( const char *text);
char *GetText() const { return MyText; }
void Clear();
private:
char * MyText;
};
SomeClass::SomeClass()
{
MyText = NULL;
}
SomeClass::~SomeClass()
{
Clear();
}
void SomeClass::Clear()
{
if (MyText)
free( MyText);
MyText = NULL;
}
void SomeClass::Settext( const char *text)
{
Clear();
MyText = malloc( strlen(text));
if (MyText)
strcpy( MyText, text);
}
Indeed, something could be done under specific occasion: for example if you want to check whether a string pointer string is valid, using write(fd, buf, szie) syscall can help you do the magic: let fd be a file descriptor of temporary file you create for test, and buf pointing to the string you are tesing, if the pointer is invalid write() would return -1 and errno set to EFAULT which indicating that buf is outside your accessible address space.
Peeter Joos answer is pretty good. Here is an "official" way to do it:
#include <sys/mman.h>
#include <stdbool.h>
#include <unistd.h>
bool is_pointer_valid(void *p) {
/* get the page size */
size_t page_size = sysconf(_SC_PAGESIZE);
/* find the address of the page that contains p */
void *base = (void *)((((size_t)p) / page_size) * page_size);
/* call msync, if it returns non-zero, return false */
int ret = msync(base, page_size, MS_ASYNC) != -1;
return ret ? ret : errno != ENOMEM;
}
There isn't any portable way of doing this, and doing it for specific platforms can be anywhere between hard and impossible. In any case, you should never write code that depends on such a check - don't let the pointers take on invalid values in the first place.
As others have said, you can't reliably detect an invalid pointer. Consider some of the forms an invalid pointer might take:
You could have a null pointer. That's one you could easily check for and do something about.
You could have a pointer to somewhere outside of valid memory. What constitutes valid memory varies depending on how the run-time environment of your system sets up the address space. On Unix systems, it is usually a virtual address space starting at 0 and going to some large number of megabytes. On embedded systems, it could be quite small. It might not start at 0, in any case. If your app happens to be running in supervisor mode or the equivalent, then your pointer might reference a real address, which may or may not be backed up with real memory.
You could have a pointer to somewhere inside your valid memory, even inside your data segment, bss, stack or heap, but not pointing at a valid object. A variant of this is a pointer that used to point to a valid object, before something bad happened to the object. Bad things in this context include deallocation, memory corruption, or pointer corruption.
You could have a flat-out illegal pointer, such as a pointer with illegal alignment for the thing being referenced.
The problem gets even worse when you consider segment/offset based architectures and other odd pointer implementations. This sort of thing is normally hidden from the developer by good compilers and judicious use of types, but if you want to pierce the veil and try to outsmart the operating system and compiler developers, well, you can, but there is not one generic way to do it that will handle all of the issues you might run into.
The best thing you can do is allow the crash and put out some good diagnostic information.
In general, it's impossible to do. Here's one particularly nasty case:
struct Point2d {
int x;
int y;
};
struct Point3d {
int x;
int y;
int z;
};
void dump(Point3 *p)
{
printf("[%d %d %d]\n", p->x, p->y, p->z);
}
Point2d points[2] = { {0, 1}, {2, 3} };
Point3d *p3 = reinterpret_cast<Point3d *>(&points[0]);
dump(p3);
On many platforms, this will print out:
[0 1 2]
You're forcing the runtime system to incorrectly interpret bits of memory, but in this case it's not going to crash, because the bits all make sense. This is part of the design of the language (look at C-style polymorphism with struct inaddr, inaddr_in, inaddr_in6), so you can't reliably protect against it on any platform.
It's unbelievable how much misleading information you can read in articles above...
And even in microsoft msdn documentation IsBadPtr is claimed to be banned. Oh well - I prefer working application rather than crashing. Even if term working might be working incorrectly (as long as end-user can continue with application).
By googling I haven't found any useful example for windows - found a solution for 32-bit apps,
http://www.codeproject.com/script/Content/ViewAssociatedFile.aspx?rzp=%2FKB%2Fsystem%2Fdetect-driver%2F%2FDetectDriverSrc.zip&zep=DetectDriverSrc%2FDetectDriver%2Fsrc%2FdrvCppLib%2Frtti.cpp&obid=58895&obtid=2&ovid=2
but I need also to support 64-bit apps, so this solution did not work for me.
But I've harvested wine's source codes, and managed to cook similar kind of code which would work for 64-bit apps as well - attaching code here:
#include <typeinfo.h>
typedef void (*v_table_ptr)();
typedef struct _cpp_object
{
v_table_ptr* vtable;
} cpp_object;
#ifndef _WIN64
typedef struct _rtti_object_locator
{
unsigned int signature;
int base_class_offset;
unsigned int flags;
const type_info *type_descriptor;
//const rtti_object_hierarchy *type_hierarchy;
} rtti_object_locator;
#else
typedef struct
{
unsigned int signature;
int base_class_offset;
unsigned int flags;
unsigned int type_descriptor;
unsigned int type_hierarchy;
unsigned int object_locator;
} rtti_object_locator;
#endif
/* Get type info from an object (internal) */
static const rtti_object_locator* RTTI_GetObjectLocator(void* inptr)
{
cpp_object* cppobj = (cpp_object*) inptr;
const rtti_object_locator* obj_locator = 0;
if (!IsBadReadPtr(cppobj, sizeof(void*)) &&
!IsBadReadPtr(cppobj->vtable - 1, sizeof(void*)) &&
!IsBadReadPtr((void*)cppobj->vtable[-1], sizeof(rtti_object_locator)))
{
obj_locator = (rtti_object_locator*) cppobj->vtable[-1];
}
return obj_locator;
}
And following code can detect whether pointer is valid or not, you need probably to add some NULL checking:
CTest* t = new CTest();
//t = (CTest*) 0;
//t = (CTest*) 0x12345678;
const rtti_object_locator* ptr = RTTI_GetObjectLocator(t);
#ifdef _WIN64
char *base = ptr->signature == 0 ? (char*)RtlPcToFileHeader((void*)ptr, (void**)&base) : (char*)ptr - ptr->object_locator;
const type_info *td = (const type_info*)(base + ptr->type_descriptor);
#else
const type_info *td = ptr->type_descriptor;
#endif
const char* n =td->name();
This gets class name from pointer - I think it should be enough for your needs.
One thing which I'm still afraid is performance of pointer checking - in code snipet above there is already 3-4 API calls being made - might be overkill for time critical applications.
It would be good if someone could measure overhead of pointer checking compared for example to C#/managed c++ calls.
It is not a very good policy to accept arbitrary pointers as input parameters in a public API. It's better to have "plain data" types like an integer, a string or a struct (I mean a classical struct with plain data inside, of course; officially anything can be a struct).
Why? Well because as others say there is no standard way to know whether you've been given a valid pointer or one that points to junk.
But sometimes you don't have the choice - your API must accept a pointer.
In these cases, it is the duty of the caller to pass a good pointer. NULL may be accepted as a value, but not a pointer to junk.
Can you double-check in any way? Well, what I did in a case like that was to define an invariant for the type the pointer points to, and call it when you get it (in debug mode). At least if the invariant fails (or crashes) you know that you were passed a bad value.
// API that does not allow NULL
void PublicApiFunction1(Person* in_person)
{
assert(in_person != NULL);
assert(in_person->Invariant());
// Actual code...
}
// API that allows NULL
void PublicApiFunction2(Person* in_person)
{
assert(in_person == NULL || in_person->Invariant());
// Actual code (must keep in mind that in_person may be NULL)
}
Following does work in Windows (somebody suggested it before):
static void copy(void * target, const void* source, int size)
{
__try
{
CopyMemory(target, source, size);
}
__except(EXCEPTION_EXECUTE_HANDLER)
{
doSomething(--whatever--);
}
}
The function has to be static, standalone or static method of some class.
To test on read-only, copy data in the local buffer.
To test on write without modifying contents, write them over.
You can test first/last addresses only.
If pointer is invalid, control will be passed to 'doSomething',
and then outside the brackets.
Just do not use anything requiring destructors, like CString.
On Windows I use this code:
void * G_pPointer = NULL;
const char * G_szPointerName = NULL;
void CheckPointerIternal()
{
char cTest = *((char *)G_pPointer);
}
bool CheckPointerIternalExt()
{
bool bRet = false;
__try
{
CheckPointerIternal();
bRet = true;
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
}
return bRet;
}
void CheckPointer(void * A_pPointer, const char * A_szPointerName)
{
G_pPointer = A_pPointer;
G_szPointerName = A_szPointerName;
if (!CheckPointerIternalExt())
throw std::runtime_error("Invalid pointer " + std::string(G_szPointerName) + "!");
}
Usage:
unsigned long * pTest = (unsigned long *) 0x12345;
CheckPointer(pTest, "pTest"); //throws exception
On macOS, you can do this with mach_vm_region, which as well as telling you if a pointer is valid, also lets you validate what access you have to the memory to which the pointer points (read/write/execute). I provided sample code to do this in my answer to another question:
#include <mach/mach.h>
#include <mach/mach_vm.h>
#include <stdio.h>
#include <stdbool.h>
bool ptr_is_valid(void *ptr, vm_prot_t needs_access) {
vm_map_t task = mach_task_self();
mach_vm_address_t address = (mach_vm_address_t)ptr;
mach_vm_size_t size = 0;
vm_region_basic_info_data_64_t info;
mach_msg_type_number_t count = VM_REGION_BASIC_INFO_COUNT_64;
mach_port_t object_name;
kern_return_t ret = mach_vm_region(task, &address, &size, VM_REGION_BASIC_INFO_64, (vm_region_info_t)&info, &count, &object_name);
if (ret != KERN_SUCCESS) return false;
return ((mach_vm_address_t)ptr) >= address && ((info.protection & needs_access) == needs_access);
}
#define TEST(ptr,acc) printf("ptr_is_valid(%p,access=%d)=%d\n", (void*)(ptr), (acc), ptr_is_valid((void*)(ptr),(acc)))
int main(int argc, char**argv) {
TEST(0,0);
TEST(0,VM_PROT_READ);
TEST(123456789,VM_PROT_READ);
TEST(main,0);
TEST(main,VM_PROT_READ);
TEST(main,VM_PROT_READ|VM_PROT_EXECUTE);
TEST(main,VM_PROT_EXECUTE);
TEST(main,VM_PROT_WRITE);
TEST((void*)(-1),0);
return 0;
}
The SEI CERT C Coding Standard recommendation MEM10-C. Define and use a pointer validation function says it is possible to do a check to some degree, especially under Linux OS.
The method described in the link is to keep track of the highest memory address returned by malloc and add a function that tests if someone tries to use a pointer greater than that value. It is probably of limited use.
IsBadReadPtr(), IsBadWritePtr(), IsBadCodePtr(), IsBadStringPtr() for Windows.
These take time proportional to the length of the block, so for sanity check I just check the starting address.
I have seen various libraries use some method to check for unreferenced memory and such. I believe they simply "override" the memory allocation and deallocation methods (malloc/free), which has some logic that keeps track of the pointers. I suppose this is overkill for your use case, but it would be one way to do it.
Technically you can override operator new (and delete) and collect information about all allocated memory, so you can have a method to check if heap memory is valid.
but:
you still need a way to check if pointer is allocated on stack ()
you will need to define what is 'valid' pointer:
a) memory on that address is
allocated
b) memory at that address
is start address of object (e.g.
address not in the middle of huge
array)
c) memory at that address
is start address of object of expected type
Bottom line: approach in question is not C++ way, you need to define some rules which ensure that function receives valid pointers.
There is no way to make that check in C++. What should you do if other code passes you an invalid pointer? You should crash. Why? Check out this link: http://blogs.msdn.com/oldnewthing/archive/2006/09/27/773741.aspx
Addendum to the accpeted answer(s):
Assume that your pointer could hold only three values -- 0, 1 and -1 where 1 signifies a valid pointer, -1 an invalid one and 0 another invalid one. What is the probability that your pointer is NULL, all values being equally likely? 1/3. Now, take the valid case out, so for every invalid case, you have a 50:50 ratio to catch all errors. Looks good right? Scale this for a 4-byte pointer. There are 2^32 or 4294967294 possible values. Of these, only ONE value is correct, one is NULL, and you are still left with 4294967292 other invalid cases. Recalculate: you have a test for 1 out of (4294967292+ 1) invalid cases. A probability of 2.xe-10 or 0 for most practical purposes. Such is the futility of the NULL check.
You know, a new driver (at least on Linux) that is capable of this probably wouldn't be that hard to write.
On the other hand, it would be folly to build your programs like this. Unless you have some really specific and single use for such a thing, I wouldn't recommend it. If you built a large application loaded with constant pointer validity checks it would likely be horrendously slow.
you should avoid these methods because they do not work. blogs.msdn.com/oldnewthing/archive/2006/09/27/773741.aspx – JaredPar Feb 15 '09 at 16:02
If they don't work - next windows update will fix it ?
If they don't work on concept level - function will be probably removed from windows api completely.
MSDN documentation claim that they are banned, and reason for this is probably flaw of further design of application (e.g. generally you should not eat invalid pointers silently - if you're in charge of design of whole application of course), and performance/time of pointer checking.
But you should not claim that they does not work because of some blog.
In my test application I've verified that they do work.
these links may be helpful
_CrtIsValidPointer
Verifies that a specified memory range is valid for reading and writing (debug version only).
http://msdn.microsoft.com/en-us/library/0w1ekd5e.aspx
_CrtCheckMemory
Confirms the integrity of the memory blocks allocated in the debug heap (debug version only).
http://msdn.microsoft.com/en-us/library/e73x0s4b.aspx

ntQuerySystemInformtion and it's struct - size not mismatch and other doubts

I'm curious why the API ntquerysysteminformtion return size that is different from the sum of all nextEntryOffsets. I call the API with a SYSTEM_PROCESS_INFORMATION structure, and it returns the size of the struct populated as expected.
However if I loop into all entries and sum the NextEntryOffset and do a comparison with the size returned with the API it never mismatch.
//call to API
int sum = 0;
pCurrent = nullptr;
pfw = (_SYSTEM_PROCESS_INFORMATION*)si;
do {
pCurrent = pfw;
pfw = (_SYSTEM_PROCESS_INFORMATION*)((PUCHAR)pCurrent + pfw->NextEntryOffset);
sum += pCurrent->NextEntryOffset;
} while (pCurrent->NextEntryOffset != 0);
If I print the value of sum variable and length returned by API they are always not equal.
How to discover / calculate the correct size of each entry if there is no field on the structure for this? My guess is that it's not working because on the last entry the NextEntryOffset is null, but this is weird, because I dont see a way to calculate the real size of each entry without just believe on the returned length. I guess that there is a way, right?
I was reading unofficial documentation and it describe that the start of its output buffer and irregularly throughout the buffer when given specific information classes like mine. I don't understand how it work, but I assume that for example if there is an pointer to another structure this pointer size + the size of the data or other struct pointed is calculated as part of the total size which may be dynamically, correct?
I also tried see if the field offsets works as expected on this unoffical documentation, but I failed to access it contents. It work for example to see the supposed address of UniqueProcessId, however I can't find a way to see the value inside this address to confirm.
PVOID tmp = pCurrent + 0x50;
wprintf(L"ID: %d", *tmp);
It fails. I can call the structure like pCurrent.UniqueProcessId and it works. But how to move on the data without depends on the struct? Examples codes are very welcome.
Thank so much.
The loop looks correct. The size doesn't match because you can't measure the size of the last struct in the return buffer that way. What's going on is the structure is variable length. In modern C we would declare the last element as a flexible array of SYSTEM_THREAD_ENTRY (where the size is given in NumberOfThreads), but the stuff from NTDLL is old.
The "right" way to code it (in so far as there's any right) is to copy the data you need into your own datastructure then discard the original buffer.
The sum you get only calculates the length of the first to penultimate struct, which is not include the length of the last one. As other answer pointed out, this is a variable-length struct, Each struct is immediately followed in memory by one or more SYSTEM_THREAD_INFORMATION structures that provide info for each thread in the preceding process.
And there is also the memory space for the ImageName.Buffer(the size is determined by the system), you do not need to calculate the size of each struct yourself, first pass NULL to get the required size:
NtQuerySystemInformation(SystemProcessInformation, NULL, 0, &length);
If you want to know the size of the last structure, just use length-sum.
In addition, pCurrent + 0x50 is equal to &pCurrent[0x50], try to test wih (char*)pCurrent + 0x50.
For variable arrays, see https://devblogs.microsoft.com/oldnewthing/20040826-00/?p=38043

C++ Call by Ref. with a dynamic sized struct without knowing its size

I need to use a function (part of an API) which stores some requested data into a dynamic sized struct using call by reference. The struct is defined as follows - it concerns access control lists of either posix or NFS4 version, but that is just the use case, I guess.
typedef struct my_struct
{
unsigned int len; /* total length of the struct in bytes */
... /* some other static sized fields */
unsigned int version; /* 2 different versions are possible */
unsigned int amount; /* number of entries that follow */
union {
entry_v1_t entry_v1[1];
entry_v2_t entry_v2[1];
};
} my_struct_t;
There are 2 versions of the entries and I know which one I will obtain (v1). Both entry_v1_t and entry_v2_t are fixed (but different) sized structs just containing integers (so I guess they are not worth being explained here). Now I need to use an existing function to fill my structure with the information I need using Call by Reference, the signature is as follows, including the comments - I don't have access to the implementation:
int get_information(char *pathname, void *ptr);
/* The ptr parameter must point to a buffer mapped by the my_struct
* structure. The first four bytes of the buffer must contain its total size.
*/
So the point is, that I must allocate memory for that struct but don't know for how much entries (and, as consequence, the total size) I must allocate. Have you ever dealt with such a situation?
Under Windows API there are many such functions, you normally call them with some NULL pointer to get size of the buffer, then call again with allocated buffer. In case during next call size of buffer have changed function returns error and you need allocate again. So you do it in a while loop till function returns with success.
So your get_information must implement somehow such mechanisms, either it returns false if buffer is to small or returns its correct size if ptr is NULL. But that is just my guess.
OK I thing I figured out how it works. Thanks for your ideas and notes. I declared a my_struct pointer and allocated minimum space for the fixed sized fields (5) before the dynamic array => 5 * sizeof(unsigned int). Invoking get_information with that pointer returns -1 and sets errno = 28 and strerror(errno) = "No space left on device".
But, it sets the my_struct->len field to the required size and that seems to be the answer to my question - how should you know? No I can invoke get_information initially with the minimum space and figure out how much I need to allocate, and afterwards call it again with the right sized memory allocated to get the information successfully.
The loop solution seems to make sense anyway and would have been my next try - since there are usually just a few entries in that dynamic array.
Thank you.