I'm building a heatmap-like rectangular array interface and I want the 'hot' location to be at the top left of the array, and the 'cold' location to be at the bottom right. Therefore, I need an array to be filled diagonally like this:
0 1 2 3
|----|----|----|----|
0 | 0 | 2 | 5 | 8 |
|----|----|----|----|
1 | 1 | 4 | 7 | 10 |
|----|----|----|----|
2 | 3 | 6 | 9 | 11 |
|----|----|----|----|
So actually, I need a function f(x,y) such that
f(0,0) = 0
f(2,1) = 7
f(1,2) = 6
f(3,2) = 11
(or, of course, a similar function f(n) where f(7) = 10, f(9) = 6, etc.).
Finally, yes, I know this question is similar to the ones asked here, here and here, but the solutions described there only traverse and don't fill a matrix.
Interesting problem if you are limited to go through the array row by row.
I divided the rectangle in three regions. The top left triangle, the bottom right triangle and the rhomboid in the middle.
For the top left triangle the values in the first column (x=0) can be calculated using the common arithmetic series 1 + 2 + 3 + .. + n = n*(n+1)/2. Fields in the that triangle with the same x+y value are in the same diagonal and there value is that sum from the first colum + x.
The same approach works for the bottom right triangle. But instead of x and y, w-x and h-y is used, where w is the width and h the height of rectangle. That value have to be subtracted from the highest value w*h-1 in the array.
There are two cases for the rhomboid in the middle. If the width of rectangle is greater than (or equal to) the height, then the bottom left field of the rectangle is the field with the lowest value in the rhomboid and can be calculated that sum from before for h-1. From there on you can imagine that the rhomboid is a rectangle with a x-value of x+y and a y-value of y from the original rectangle. So calculations of the remaining values in that new rectangle are easy.
In the other case when the height is greater than the width, then the field at x=w-1 and y=0 can be calculated using that arithmetic sum and the rhomboid can be imagined as a rectangle with x-value x and y-value y-(w-x-1).
The code can be optimised by precalculating values for example. I think there also is one formula for all that cases. Maybe i think about it later.
inline static int diagonalvalue(int x, int y, int w, int h) {
if (h > x+y+1 && w > x+y+1) {
// top/left triangle
return ((x+y)*(x+y+1)/2) + x;
} else if (y+x >= h && y+x >= w) {
// bottom/right triangle
return w*h - (((w-x-1)+(h-y-1))*((w-x-1)+(h-y-1)+1)/2) - (w-x-1) - 1;
}
// rhomboid in the middle
if (w >= h) {
return (h*(h+1)/2) + ((x+y+1)-h)*h - y - 1;
}
return (w*(w+1)/2) + ((x+y)-w)*w + x;
}
for (y=0; y<h; y++) {
for (x=0; x<w; x++) {
array[x][y] = diagonalvalue(x,y,w,h);
}
}
Of course if there is not such a limitation, something like that should be way faster:
n = w*h;
x = 0;
y = 0;
for (i=0; i<n; i++) {
array[x][y] = i;
if (y <= 0 || x+1 >= w) {
y = x+y+1;
if (y >= h) {
x = (y-h)+1;
y -= x;
} else {
x = 0;
}
} else {
x++;
y--;
}
}
What about this (having an NxN matrix):
count = 1;
for( int k = 0; k < 2*N-1; ++k ) {
int max_i = std::min(k,N-1);
int min_i = std::max(0,k-N+1);
for( int i = max_i, j = min_i; i >= min_i; --i, ++j ) {
M.at(i).at(j) = count++;
}
}
Follow the steps in the 3rd example -- this gives the indexes (in order to print out the slices) -- and just set the value with an incrementing counter:
int x[3][3];
int n = 3;
int pos = 1;
for (int slice = 0; slice < 2 * n - 1; ++slice) {
int z = slice < n ? 0 : slice - n + 1;
for (int j = z; j <= slice - z; ++j)
x[j][slice - j] = pos++;
}
At a M*N matrix, the values, when traversing like in your stated example, seem to increase by n, except for border cases, so
f(0,0)=0
f(1,0)=f(0,0)+2
f(2,0)=f(1,0)+3
...and so on up to f(N,0). Then
f(0,1)=1
f(0,2)=3
and then
f(m,n)=f(m-1,n)+N, where m,n are index variables
and
f(M,N)=f(M-1,N)+2, where M,N are the last indexes of the matrix
This is not conclusive, but it should give you something to work with. Note, that you only need the value of the preceding element in each row and a few starting values to begin.
If you want a simple function, you could use a recursive definition.
H = height
def get_point(x,y)
if x == 0
if y == 0
return 0
else
return get_point(y-1,0)+1
end
else
return get_point(x-1,y) + H
end
end
This takes advantage of the fact that any value is H+the value of the item to its left. If the item is already at the leftmost column, then you find the cell that is to its far upper right diagonal, and move left from there, and add 1.
This is a good chance to use dynamic programming, and "cache" or memoize the functions you've already accomplished.
If you want something "strictly" done by f(n), you could use the relationship:
n = ( n % W , n / H ) [integer division, with no remainder/decimal]
And work your function from there.
Alternatively, if you want a purely array-populating-by-rows method, with no recursion, you could follow these rules:
If you are on the first cell of the row, "remember" the item in the cell (R-1) (where R is your current row) of the first row, and add 1 to it.
Otherwise, simply add H to the cell you last computed (ie, the cell to your left).
Psuedo-Code: (Assuming array is indexed by arr[row,column])
arr[0,0] = 0
for R from 0 to H
if R > 0
arr[R,0] = arr[0,R-1] + 1
end
for C from 1 to W
arr[R,C] = arr[R,C-1]
end
end
Related
I'm working on an assignment that gives an integer N and tasks us to find all possible combinations of X, Y such that X + Y = N and Y = X with one digit removed. For example, 302 would have the following solutions:
251 + 51 = 302
275 + 27 = 302
276 + 26 = 302
281 + 21 = 302
301 + 01 = 302
My code to accomplish this can find all of the correct answers, but it runs too slowly for very large numbers (it takes roughly 8 seconds for the largest possible number, 10^9, when I would like for the entire algorithm of up to 100 of these cases to complete in under 3 seconds).
Here's some code describing my current solution:
//Only need to consider cases where x > y.
for(int x = n * 0.5; x <= n; x++)
{
//Only considers cases where y's rightmost digit could align with x.
int y = n - x,
y_rightmost = y % 10;
if(y_rightmost == x % 10 || y_rightmost == (x % 100) / 10)
{
//Determines the number of digits in x and y without division. places[] = {1, 10, 100, 1000, ... 1000000000}
int x_numDigits = 0,
y_numDigits = 0;
while(x >= places[x_numDigits])
{
if(y >= places[x_numDigits])
y_numDigits++;
x_numDigits++;
}
//y must have less digits than x to be a possible solution.
if(y_numDigits < x_numDigits)
{
if(func(x, y))
{
//x and y are a solution.
}
}
}
Where func is a function to determine if x and y only have a one digit difference. Here's my current method for calculating that:
bool func(int x, int y)
{
int diff = 0;
while(y > 0)
{
if(x % 10 != y % 10)
{
//If the rightmost digits do not match, move x to the left once and check again.
x /= 10;
diff++;
if(diff > 1)
return false;
}
else
{
//If they matched, both move to the next digit.
x /= 10;
y /= 10;
}
}
//If the last digit in x is the only difference or x is composed of 0's led by 1 number, then x, y is a solution.
if((x < 10 && diff == 0) || (x % 10 == 0))
return true;
else
return false;
}
This is the fastest solution that I've been able to find so far (other methods I tried included converting X and Y into strings and using a custom subsequence function, along with dividing X into a prefix and suffix without each digit from the right to the left and seeing if any of these summed to Y, but neither worked as quickly). However, it still doesn't scale as well as I need it to with larger numbers, and I'm struggling to think of any other ways to optimize the code or underlying mathematical reasoning. Any advice would be greatly appreciated.
Consider solving a simpler solution first:
Finding X and Y such that X + Y = N
In pseudo-code you steps should look like this:
loop through the array and with every given item do the next:
add this number to Set and check whether there is N - item
This will work as O(n) complexity for unique array.
So improve it to work with duplicated numbers by looping through an array first and adding counter of duplicates for every number. Use some kind of Dictionary for c++ or extend Set. And every time you find the necessary number check for counter.
After doing that you will just have to write this "digit check" function and apply it when finding the value in Set.
Question:
Fox Ciel is writing an AI for the game Starcraft and she needs your help.
In Starcraft, one of the available units is a mutalisk. Mutalisks are very useful for harassing Terran bases. Fox Ciel has one mutalisk. The enemy base contains one or more Space Construction Vehicles (SCVs). Each SCV has some amount of hit points.
When the mutalisk attacks, it can target up to three different SCVs.
The first targeted SCV will lose 9 hit points.
The second targeted SCV (if any) will lose 3 hit points.
The third targeted SCV (if any) will lose 1 hit point.
If the hit points of a SCV drop to 0 or lower, the SCV is destroyed. Note that you may not target the same SCV twice in the same attack.
You are given a int[] HP containing the current hit points of your enemy's SCVs. Return the smallest number of attacks in which you can destroy all these SCVs.
Constraints-
- x will contain between 1 and 3 elements, inclusive.
- Each element in x will be between 1 and 60, inclusive.
And the solution is:
int minimalAttacks(vector<int> x)
{
int dist[61][61][61];
memset(dist, -1, sizeof(dist));
dist[0][0][0] = 0;
for (int total = 1; total <= 180; total++) {
for (int i = 0; i <= 60 && i <= total; i++) {
for (int j = max(0, total - i - 60); j <= 60 && i + j <= total; j++) {
// j >= max(0, total - i - 60) ensures that k <= 60
int k = total - (i + j);
int & res = dist[i][j][k];
res = 1000000;
// one way to avoid doing repetitive work in enumerating
// all options is to use c++'s next_permutation,
// we first createa vector:
vector<int> curr = {i,j,k};
sort(curr.begin(), curr.end()); //needs to be sorted
// which will be permuted
do {
int ni = max(0, curr[0] - 9);
int nj = max(0, curr[1] - 3);
int nk = max(0, curr[2] - 1);
res = std::min(res, 1 + dist[ni][nj][nk] );
} while (next_permutation(curr.begin(), curr.end()) );
}
}
}
// get the case's respective hitpoints:
while (x.size() < 3) {
x.push_back(0); // add zeros for missing SCVs
}
int a = x[0], b = x[1], c = x[2];
return dist[a][b][c];
}
As far as i understand, this solution calculates all possible state's best outcome first then simply match the queried position and displays the result. But I dont understand the way this code is written. I can see that nowhere dist[i][j][k] value is edited. By default its -1. So how come when i query any dist[i][j][k] I get a different value?.
Can someone explain me the code please?
Thank you!
I have a 2D matrix stored in a flat buffer along diagonals. For example a 4x4 matrix would have its indexes scattered like so:
0 2 5 9
1 4 8 12
3 7 11 14
6 10 13 15
With this representation, what is the most efficient way to calculate the index of a neighboring element given the original index and a X/Y offset? For example:
// return the index of a neighbor given an offset
int getNGonalNeighbor(const size_t index,
const int x_offset,
const int y_offset){
//...
}
// for the array above:
getNGonalNeighbor(15,-1,-1); // should return 11
getNGonalNeighbor(15, 0,-1); // should return 14
getNGonalNeighbor(15,-1, 0); // should return 13
getNGonalNeighbor(11,-2,-1); // should return 1
We assume here that overflow never occurs and there is no wrap-around.
I have a solution involving a lot of triangular number and triangular root calculations. It also contains a lot of branches, which I would prefer to replace with algebra if possible (this will run on GPUs where diverging control flow is expensive). My solution is working but very lengthy. I feel like there must be a much simpler and less compute intensive way of doing it.
Maybe it would help me if someone can put a name on this particular problem/representation.
I can post my full solution if anyone is interested, but as I said it is very long and relatively complicated for such a simple task. In a nutshell, my solution does:
translate the original index into a larger triangular matrix to avoid dealing with 2 triangles (for example 13 would become 17)
For the 4x4 matrix this would be:
0 2 5 9 14 20 27
1 4 8 13 19 26
3 7 12 18 25
6 11 17 24
10 16 23
15 22
21
calculate the index of the diagonal of the neighbor in this representation using the manhattan distance of the offset and the triangular root of the index.
calculate the position of the neighbor in this diagonal using the offset
translate back to the original representation by removing the padding.
For some reason this is the simplest solution i could come up with.
Edit:
having loop to accumulate the offset:
I realize that given the properties of the triangle numbers, it would be easier to split up the matrix in two triangles (let's call 0 to 9 'upper triangle' and 10 to 15 'lower triangle') and have a loop with a test inside to accumulate the offset by adding one while in the upper triangle and subtracting one in the lower (if that makes sense). But for my solution loops must be avoided at all cost, especially loops with unbalanced trip counts (again, very bad for GPUs).
So I am looking more for an algebraic solution rather than an algorithmic one.
Building a lookup table:
Again, because of the GPU, it is preferable to avoid building a lookup table and have random accesses in it (very expensive). An algebraic solution is preferable.
Properties of the matrix:
The size of the matrix is known.
For now I only consider square matrix, but a solution for rectangular ones as well would be nice.
as the name of the function in my example suggests, extending the solution to N-dimensional volumes (hence N-gonal flattening) would be a big plus too.
Table lookup
#include <stdio.h>
#define SIZE 16
#define SIDE 4 //sqrt(SIZE)
int table[SIZE];
int rtable[100];// {x,y| x<=99, y<=99 }
void setup(){
int i, x, y, xy, index;//xy = x + y
x=y=xy=0;
for(i=0;i<SIZE;++i){
table[i]= index= x*10 + y;
rtable[x*10+y]=i;
x = x + 1; y = y - 1;//right up
if(y < 0 || x >= SIDE){
++xy;
x = 0;
y = xy;;
while(y>=SIDE){
++x;
--y;
}
}
}
}
int getNGonalNeighbor(int index, int offsetX, int offsetY){
int x,y;
x=table[index] / 10 + offsetX;
y=table[index] % 10 + offsetY;
if(x < 0 || x >= SIDE || y < 0 || y >= SIDE) return -1; //ERROR
return rtable[ x*10+y ];
}
int main() {
int i;
setup();
printf("%d\n", getNGonalNeighbor(15,-1,-1));
printf("%d\n", getNGonalNeighbor(15, 0,-1));
printf("%d\n", getNGonalNeighbor(15,-1, 0));
printf("%d\n", getNGonalNeighbor(11,-2,-1));
printf("%d\n", getNGonalNeighbor(0, -1,-1));
return 0;
}
don't use table version.
#include <stdio.h>
#define SIZE 16
#define SIDE 4
void num2xy(int index, int *offsetX, int *offsetY){
int i, x, y, xy;//xy = x + y
x=y=xy=0;
for(i=0;i<SIZE;++i){
if(i == index){
*offsetX = x;
*offsetY = y;
return;
}
x = x + 1; y = y - 1;//right up
if(y < 0 || x >= SIDE){
++xy;
x = 0;
y = xy;;
while(y>=SIDE){
++x;
--y;
}
}
}
}
int xy2num(int offsetX, int offsetY){
int i, x, y, xy, index;//xy = x + y
x=y=xy=0;
for(i=0;i<SIZE;++i){
if(offsetX == x && offsetY == y) return i;
x = x + 1; y = y - 1;//right up
if(y < 0 || x >= SIDE){
++xy;
x = 0;
y = xy;;
while(y>=SIDE){
++x;
--y;
}
}
}
return -1;
}
int getNGonalNeighbor(int index, int offsetX, int offsetY){
int x,y;
num2xy(index, &x, &y);
return xy2num(x + offsetX, y + offsetY);
}
int main() {
printf("%d\n", getNGonalNeighbor(15,-1,-1));
printf("%d\n", getNGonalNeighbor(15, 0,-1));
printf("%d\n", getNGonalNeighbor(15,-1, 0));
printf("%d\n", getNGonalNeighbor(11,-2,-1));
printf("%d\n", getNGonalNeighbor(0, -1,-1));
return 0;
}
I actually already had the elements to solve it somewhere else in my code. As BLUEPIXY's solution hinted, I am using scatter/gather operations, which I had already implemented for layout transformation.
This solution basically rebuilds the original (x,y) index of the given element in the matrix, applies the index offset and translates the result back to the transformed layout. It splits the square in 2 triangles and adjust the computation depending on which triangle it belongs to.
It is an almost entirely algebraic transformation: it uses no loop and no table lookup, has a small memory footprint and little branching. The code can probably be optimized further.
Here is the draft of the code:
#include <stdio.h>
#include <math.h>
// size of the matrix
#define SIZE 4
// triangle number of X
#define TRIG(X) (((X) * ((X) + 1)) >> 1)
// triangle root of X
#define TRIROOT(X) ((int)(sqrt(8*(X)+1)-1)>>1);
// return the index of a neighbor given an offset
int getNGonalNeighbor(const size_t index,
const int x_offset,
const int y_offset){
// compute largest upper triangle index
const size_t upper_triangle = TRIG(SIZE);
// position of the actual element of index
unsigned int x = 0,y = 0;
// adjust the index depending of upper/lower triangle.
const size_t adjusted_index = index < upper_triangle ?
index :
SIZE * SIZE - index - 1;
// compute triangular root
const size_t triroot = TRIROOT(adjusted_index);
const size_t trig = TRIG(triroot);
const size_t offset = adjusted_index - trig;
// upper triangle
if(index < upper_triangle){
x = offset;
y = triroot-offset;
}
// lower triangle
else {
x = SIZE - offset - 1;
y = SIZE - (trig + triroot + 1 - adjusted_index);
}
// adjust the offset
x += x_offset;
y += y_offset;
// manhattan distance
const size_t man_dist = x+y;
// calculate index using triangular number
return TRIG(man_dist) +
(man_dist >= SIZE ? x - (man_dist - SIZE + 1) : x) -
(man_dist > SIZE ? 2* TRIG(man_dist - SIZE) : 0);
}
int main(){
printf("%d\n", getNGonalNeighbor(15,-1,-1)); // should return 11
printf("%d\n", getNGonalNeighbor(15, 0,-1)); // should return 14
printf("%d\n", getNGonalNeighbor(15,-1, 0)); // should return 13
printf("%d\n", getNGonalNeighbor(11,-2,-1)); // should return 1
}
And the output is indeed:
11
14
13
1
If you think this solution looks over complicated and inefficient, I remind you that the target here is GPU, where computation costs virtually nothing compared to memory accesses, and all index computations are computed at the same time using massively parallel architectures.
I have a picture of 2600x2600 in gray.
Or it can be seen as a matrix of unsigned short.
I would like to find the darkest (or the brightest by computing the inverse picture) square are of a fixed size N. N could be parametrized (if there is more than one darkest square I would like all).
I read detection-of-rectangular-bright-area-in-a-image-using-opencv
but it needs to a threshold value I don't have and furthermore I search a fixed size.
Do anyone as a way to find it in c++ or python ?
For each row of the image,
Add up the N consecutive pixels, so you get W - N + 1 pixels.
For each column of the new image,
For each consecutive sequence of N pixels, (H - N + 1)
Add them up and compare to the current best.
To add up each consecutive sequence of pixels, you could subtract the last pixel, and add the next pixel.
You could also reuse the image array as storage, if it can be modified. If not, a memory-optimization would be to just store the latest column, and go trough it for each step in the first loop.
Runtime: O(w·h)
Here is some code in C#, to demonstrate this (ignoring the pixel format, and any potential overflows):
List<Point> FindBrightestSquare(int[,] image, int N, out int squareSum)
{
int width = image.GetLength(0);
int height = image.GetLength(1);
if (width < N || height < N)
{
return false;
}
int currentSum;
for (int y = 0; y < height; y++)
{
currentSum = 0;
for (int x = 0; x < width; x++)
{
currentSum += image[x,y];
if (x => N)
{
currentSum -= image[x-N,y];
image[x-N,y] = currentSum;
}
}
}
int? bestSum = null;
List<Point> bestCandidates = new List<Point>();
for (int x = 0; x <= width-N; x++)
{
currentSum = 0;
for (int y = 0; y < height; y++)
{
currentSum += image[x,y];
if (y >= N)
{
currentSum -= image[x, y-N];
if (bestSum == null || currentSum > bestSum)
{
bestSum = currentSum;
bestCandidates.Clear();
bestCandidates.Add(new Point(x, y-N));
}
else if (currentSum == bestSum)
{
bestCandidates.Add(new Point(x, y-N));
}
}
}
}
squareSum = bestSum.Value;
return bestCandidates;
}
You could increment the threshold until you find a square, and use a 2D FSM to detect the square.
This will produce a match in O(width * height * bpp) (binary search on the lowest possible threshold, assuming a power-of-two range):
- set threshold to its maximum value
- for every bit of the threshold
- clear the bit in the threshold
- if there is a match
- record the set of matches as a result
- else
- set the bit
- if there is no record, then the threshold is its maximum.
to detect a square:
- for every pixel:
- if the pixel is too bright, set its line-len to 0
- else if it's the first column, set its line-len to 1
- else set its line-len to the line-len of the pixel to the left, plus one
- if the pixel line-len is less than N, set its rect-len to 0
- else if it's the first row, set its rect-len to 1
- else set its rect-len to the rect-len of the pixel above, plus one
- if the rect-len is at least N, record a match.
line-len represents the number of consecutive pixels that are dark enough.
rect-len represents the number of consecutive rows of dark pixels that are long enough and aligned.
For video-capture, replace the binary search by a linear search from the threshold for the previous frame.
Obviously, you can't get better than theta(width/N * height/N) best case (as you'll have to rule out every possible position for a darker square) and the bit depth can be assumed constant, so this algorithm is asymptotically optimal for a fixed N. It's probably asymptotically optimal for N as a part of the input as well, as (intuitively) you have to consider almost every pixel in the average case.
I'm looking for an algorithm to find two integer values x,y such that their product is as close as possible to a given double k while their difference is low.
Example: The area of a rectangle is k=21.5 and I want to find the edges length of that rectangle with the constraint that they must be integer, in this case some of the possible solutions are (excluding permutations) (x=4,y=5),(x=3,y=7) and the stupid solution (x=21,y=1)
In fact for the (3,7) couple we have the same difference as for the (21,1) couple
21.5-3*7=0.5 = 21.5-21*1
while for the (4,5) couple
21.5-4*5=1.5
but the couple (4,5) is preferable because their difference is 1, so the rectangle is "more squared".
Is there a method to extract those x,y values for which the difference is minimal and the difference of their product to k is also minimal?
You have to look around square root of the number in question. For 21.5 sqrt(21.5) = 4.6368 and indeed the numbers you found are just around this value.
You want to minimize
the difference of the factors X and Y
the difference of the product X × Y and P.
You have provided an example where these objectives contradict each other. 3 × 7 is closer to 21 than 4 × 5, but the latter factors are more square. Thus, there cannot be any algorithm which minimizes both at the same time.
You can weight the two objectives and transform them into one, and then solve the problem via non-linear integer programming:
min c × |X × Y - P| + d × |X – Y|
subject to X, Y ∈ ℤ
X, Y ≥ 0
where c, d are non-negative numbers that define which objective you value how much.
Take the square root, floor one integer, ceil the other.
#include <iostream>
#include <cmath>
int main(){
double real_value = 21.5;
int sign = real_value > 0 ? 1 : -1;
int x = std::floor(std::sqrt(std::abs(real_value)));
int y = std::ceil(std::sqrt(std::abs(real_value)));
x *= sign;
std::cout << x << "*" << y << "=" << (x*y) << " ~~ " << real_value << "\n";
return 0;
}
Note that this approach only gives you a good distance between x and y, for example if real_value = 10 then x=3 and y=4, but the product is 12. If you want to achieve a better distance between the product and the real value you have to adjust the integers and increase their difference.
double best = DBL_MAX;
int a, b;
for (int i = 1; i <= sqrt(k); i++)
{
int j = round(k/i);
double d = abs(k - i*j);
if (d < best)
{
best = d;
a = i;
b = j;
}
}
Let given double be K.
Take floor of K, let it be F.
Take 2 integer arrays of size F*F. Let they be Ar1, Ar2.
Run loop like this
int z = 0 ;
for ( int i = 1 ; i <= F ; ++i )
{
for ( int j = 1 ; j <= F ; ++j )
{
Ar1[z] = i * j ;
Ar2[z] = i - j ;
++ z ;
}
}
You got the difference/product pairs for all the possible numbers now. Now assign some 'Priority value' for product being close to value K and some other to the smaller difference. Now traverse these arrays from 0 to F*F and find the pair you required by checking your condition.
For eg. Let being closer to K has priority 1 and being smaller in difference has priority .5. Consider another Array Ar3 of size F*F. Then,
for ( int i = 0 ; i <= F*F ; ++i )
{
Ar3[i] = (Ar1[i] - K)* 1 + (Ar2[i] * .5) ;
}
Traverse Ar3 to find the greatest value, that will be the pair you are looking for.