Basically, I am trying to read binary data of a file by using fread() and print it on screen using printf(), now, the problem is that when it prints it out, it actually don't show it as binary 1 and 0 but printing symbols and stuff which I don't know what they are.
This is how I am doing it:
#include <stdio.h>
#include <windows.h>
int main(){
size_t sizeForB, sizeForT;
char ForBinary[BUFSIZ], ForText[BUFSIZ];
char RFB [] = "C:\\users\\(Unknown)\\Desktop\\hi.mp4" ; // Step 1
FILE *ReadBFrom = fopen(RFB , "rb" );
if(ReadBFrom == NULL){
printf("Following File were Not found: %s", RFB);
return -1;
} else {
printf("Following File were found: %s\n", RFB); // Step 2
while(sizeForB = fread(ForBinary, 1, BUFSIZ, ReadBFrom)){ // Step 1
printf("%s", ForBinary);
}
fclose(ReadBFrom);
}
return 0;
}
I would really appreciate if someone could help me out to read the actual binary data of a file as binary (0,1).
while(sizeForB = fread(ForBinary, 1, BUFSIZ, ReadBFrom)){
printf("%s", ForBinary); }
This is wrong on many levels. First of all you said it is binary file - which means there might not be text in it in the first place, and you are using %s format specifier which is used to print null terminated strings. Again since this is binary file, and there might not be text in it in the first place, %s is the wrong format specifier to use. And even if there was text inside this file, you are not sure that fread would read a "complete" null terminated string that you could pass to printf with format specifier %s.
What you may want to do is, read each byte form a file, convert it to a binary representation (google how to convert integer to binary string say, e.g., here), and print binary representation for each that byte.
Basically pseudocode:
foreach (byte b in FileContents)
{
string s = convertToBinary(b);
println(s);
}
How to view files in binary in the terminal?
Either
"hexdump -C yourfile.bin" perhaps, unless you want to edit it of course. Most linux distros have hexdump by default (but obviously not all).
or
xxd -b file
To simply read a file and print it in binary (ones and zeros), read it one char at a time. Then for each bit, print a '0' or '1'. Can print Most or Least significant bit first. Suggest MSb.
if (ReadBFrom) {
int ch;
while ((ch = fgetc(ReadBFrom)) != EOF) {
unsigned mask = 1u << (CHAR_BIT - 1); // CHAR_BIT is typically 8
while (mask) {
putchar(mask & ch ? '1' : '0');
mask >>= 1;
}
}
fclose(ReadBFrom);
}
Related
I'm trying to write-to-disk an array containing 11.26 million uint16_t values. The total memory size should be ~22 MB. However, the size of my file is 52MB. I'm using fprintf to write the array to disk. I thought maybe the values were being promoted. I tried to be explicit but it seems to make no difference. The size of my file is stubbornly unchanged.
What am I doing wrong? Code follows.
#define __STDC_FORMAT_MACROS
...
uint32_t dbsize = 11262336;
uint16_t* db_ = new uint16_t[dbsize_];
...
char fname[256] = "foo";
FILE* f = fopen(fname, "wb");
if(f == NULL)
{
return;
}
fprintf(f, "%i\t", dbsize_);
for(uint32_t i = 0; i < dbsize_; i++)
{
fprintf(f, "%" SCNu16 "", db_[i]);
}
fclose(f);
You're writing ASCII to your file, not binary.
Try writing your array like this instead of using fprintf in a loop.
fwrite(db_, sizeof(db_[0]), dbsize, f);
fprintf always formats numbers and other types to text, whether you've opened the file in binary mode or not. Binary mode just keeps the runtime from doing things like converting \n to \r\n.
fprintf will convert you number to a series of ASCII characters and write them to a file. Depending on its value, a 32-bit int will be from 1 to 10 characters long when expressed as a string. You need to use fwrite to write raw binary values to a file.
The source of confusion is likely to be that the "b" in FILE* f = fopen(fname, "wb"); does not do what you think it does.
Most significantly, it doesn't change any of the print or scan statements to use binary values instead of ASCII values. Like others have said - use fwrite instead.
I'm writing a Huffman encoding program in C++, and am using this website as a reference:
http://algs4.cs.princeton.edu/55compression/Huffman.java.html
I'm now at the writeTrie method, and here is my version:
// write bitstring-encoded tree to standard output
void writeTree(struct node *tempnode){
if(isLeaf(*tempnode)){
tempfile << "1";
fprintf(stderr, "writing 1 to file\n");
tempfile << tempnode->ch;
//tempfile.write(&tempnode->ch,1);
return;
}
else{
tempfile << "0";
fprintf(stderr, "writing 0 to file\n");
writeTree(tempnode->left);
writeTree(tempnode->right);
}
}
Look at the line commented - let's say I'm writing to a text file, but I want to write the bytes that make up the char at tempnode->ch (which is an unsigned char, btw). Any suggestions for how to go about doing this? The line commented gives an invalid conversion error from unsigned char* to const char*.
Thanks in advance!
EDIT: To clarify: For instance, I'd like my final text file to be in binary -- 1's and 0's only. If you look at the header of the link I provided, they give an example of "ABRACADABRA!" and the resulting compression. I'd like to take the char (such as in the example above 'A'), use it's unsigned int number (A='65'), and write 65 in binary, as a byte.
A char is identical to a byte. The preceding line tempfile << tempnode->ch; already does exactly what you seem to want.
There is no overload of write for unsigned char, but if you want, you can do
tempfile.write(reinterpret_cast< char * >( &tempnode->ch ),1);
This is rather ugly, but it does exactly the same thing as tempfile << tempnode->ch.
EDIT: Oh, you want to write a sequence of 1 and 0 characters for the bits in the byte. C++ has an obscure trick for that:
#include <bitset>
tempfile << std::bitset< 8 >( tempnode->ch );
I'm trying to load an image file into a buffer in order to send it through a scket. The problem that I'm having is that the program creates a buffer with a valid size but it does not copy the whole file into the buffer. My code is as follow
//imgload.cpp
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
using namespace std;
int main(int argc,char *argv){
FILE *f = NULL;
char filename[80];
char *buffer = NULL;
long file_bytes = 0;
char c = '\0';
int i = 0;
printf("-Enter a file to open:");
gets(filename);
f = fopen(filename,"rb");
if (f == NULL){
printf("\nError opening file.\n");
}else{
fseek(f,0,SEEK_END);
file_bytes = ftell(f);
fseek(f,0,SEEK_SET);
buffer = new char[file_bytes+10];
}
if (buffer != NULL){
printf("-%d + 10 bytes allocated\n",file_bytes);
}else{
printf("-Could not allocate memory\n");
// Call exit?.
}
while (c != EOF){
c = fgetc(f);
buffer[i] = c;
i++;
}
c = '\0';
buffer[i-1] = '\0'; // helps remove randome characters in buffer when copying is finished..
i = 0;
printf("buffer size is now: %d\n",strlen(buffer));
//release buffer to os and cleanup....
return 0;
}
> output
c:\Users\Desktop>imgload
-Enter a file to open:img.gif
-3491 + 10 bytes allocated
buffer size is now: 9
c:\Users\Desktop>imgload
-Enter a file to open:img2.gif
-1261 + 10 bytes allocated
buffer size is now: 7
From the output I can see that it's allocating the correct size for each image 3491 and 1261 bytes (i doubled checked the file sizes through windows and the sizes being allocated are correct) but the buffer sizes after supposedly copying is 9 and 7 bytes long. Why is it not copying the entire data?.
You are wrong. Image is binary data, nor string data. So there are two errors:
1) You can't check end of file with EOF constant. Because EOF is often defined as 0xFF and it is valid byte in binary file. So use feof() function to check for end of file. Or also you may check current position in file with maximal possible (you got it before with ftell()).
2) As file is binary it may contain \0 in middle. So you can't use string function to work with such data.
Also I see that you use C++ language. Tell me please why you use classical C syntax for file working? I think that using C++ features such as file streams, containers and iterators will simplify your program.
P.S. And I want to say that you program will have problems with really big files. Who knows maybe you will try to work with them. If 'yes', rewrite ftell/fseek functions to their int64 (long long int) equivalents. Also you'll need to fix array counter. Another good idea is to read file by blocks. Reading byte by byte is dramatically slower.
All this is unneeded and actually makes no sense:
c = '\0';
buffer[i-1] = '\0';
i = 0;
printf("buffer size is now: %d\n",strlen(buffer));
Don't use strlen for binary data. strlen stops at the first NUL (\0) byte. A binary file may contain many such bytes, so NUL can't be used.
-3491 + 10 bytes allocated /* There are 3491 bytes in the file. */
buffer size is now: 9 /* The first byte with the value 0. */
In conclusion, drop that part. You already have the size of the file.
You are reading a binary file like a text file. You can't check for EOF as this could be anywhere in the binary file.
I have a dat(binary) file but i wish to convert this file into Ascii (txt) file using c++ but i am very new in c++ programming.so I juct opend my 2 files:myBinaryfile and myTxtFile but I don't know how to read data from that dat file and then how to write those data into new txt file.so i want to write a c+ codes that takes in an input containing binary dat file, and converts it to Ascii txt in an output file. if this possible please help to write this codes. thanks
Sorry for asking same question again but still I didn’t solve my problem, I will explain it more clearly as follows: I have a txt file called “A.txt”, so I want to convert this into binary file (B.dat) and vice verse process. Two questions:
1. how to convert “A.txt” into “B.dat” in c++
2. how to convert “B.dat” into “C.txt” in c++ (need convert result of the 1st output again into new ascii file)
my text file is like (no header):
1st line: 1234.123 543.213 67543.210 1234.67 12.000
2nd line: 4234.423 843.200 60543.232 5634.60 72.012
it have more than 1000 lines in similar style (5 columns per one line).
Since I don’t have experiences in c++, I am struggle here, so need your helps. Many Thanks
All files are just a stream of bytes. You can open files in binary mode, or text mode. The later simply means that it may have extra newline handling.
If you want your text file to contain only safe human readable characters you could do something like base64 encode your binary data before saving it in the text file.
Very easy:
Create target or destination file
(a.k.a. open).
Open source file in binary mode,
which prevents OS from translating
the content.
Read an octet (byte) from source
file; unsigned char is a good
variable type for this.
Write the octet to the destination
using your favorite conversion, hex,
decimal, etc.
Repeat at 3 until the read fails.
Close all files.
Research these keywords: ifstream, ofstream, hex modifier, dec modifier, istream::read, ostream::write.
There are utilities and applications that already perform this operation. On the *nix and Cygwin side try od, *octal dump` and pipe the contents to a file.
There is the debug utility on MS-DOS system.
A popular format is:
AAAAAA bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb cccccccccccccccc
where:
AAAAAA -- Offset from beginning of file in hexadecimal or decimal.
bb -- Hex value of byte using ASCII text.
c -- Character representation of byte, '.' if the value is not printable.
Please edit your post to provide more details, including an example layout for the target file.
Edit:
A complex example (not tested):
#include <iostream>
#include <fstream>
#include <cstdio>
#include <cstdlib>
using namespace std;
const unsigned int READ_BUFFER_SIZE = 1024 * 1024;
const unsigned int WRITE_BUFFER_SIZE = 2 * READ_BUFFER_SIZE;
unsigned char read_buffer[READ_BUFFER_SIZE];
unsigned char write_buffer[WRITE_BUFFER_SIZE];
int main(void)
{
int program_status = EXIT_FAILURE;
static const char hex_chars[] = "0123456789ABCDEF";
do
{
ifstream srce_file("binary.dat", ios::binary);
if (!srce_file)
{
cerr << "Error opening input file." << endl;
break;
}
ofstream dest_file("binary.txt");
if (!dest_file)
{
cerr << "Error creating output file." << endl;
}
// While no read errors from reading a block of source data:
while (srce_file.read(&read_buffer[0], READ_BUFFER_SIZE))
{
// Get the number of bytes actually read.
const unsigned int bytes_read = srce_file.gcount();
// Define the index and byte variables outside
// of the loop to maybe save some execution time.
unsigned int i = 0;
unsigned char byte = 0;
// For each byte that was read:
for (i = 0; i < bytes_read; ++i)
{
// Get source, binary value.
byte = read_buffer[i];
// Convert the Most Significant nibble to an
// ASCII character using a lookup table.
// Write the character into the output buffer.
write_buffer[i * 2 + 0] = hex_chars[(byte >> 8)];
// Convert the Least Significant nibble to an
// ASCII character and put into output buffer.
write_buffer[i * 2 + 1] = hex_chars[byte & 0x0f];
}
// Write the output buffer to the output, text, file.
dest_file.write(&write_buffer[0], 2 * bytes_read);
// Flush the contents of the stream buffer as a precaution.
dest_file.flush();
}
dest_file.flush();
dest_file.close();
srce_file.close();
program_status = EXIT_SUCCESS;
} while (false);
return program_status;
}
The above program reads 1MB chunks from the binary file, converts to ASCII hex into an output buffer, then writes the chunk to the text file.
I think you are misunderstanding that the difference between a binary file and a test file is in the interpretation of the contents.
What is an efficient, proper way of reading in a data file with mixed characters? For example, I have a data file that contains a mixture of data loaded from other files, 32-bit integers, characters and strings. Currently, I am using an fstream object, but it gets stopped once it hits an int32 or the end of a string. if i add random data onto the end of the string in the data file, it seems to follow through with the rest of the file. This leads me to believe that the null-termination added onto strings is messing it up. Here's an example of loading in the file:
void main()
{
fstream fin("C://mark.dat", ios::in|ios::binary|ios::ate);
char *mymemory = 0;
int size;
size = 0;
if (fin.is_open())
{
size = static_cast<int>(fin.tellg());
mymemory = new char[static_cast<int>(size+1)];
memset(mymemory, 0, static_cast<int>(size + 1));
fin.seekg(0, ios::beg);
fin.read(mymemory, size);
fin.close();
printf(mymemory);
std::string hithere;
hithere = cin.get();
}
}
Why might this code stop after reading in an integer or a string? How might one get around this? Is this the wrong approach when dealing with these types of files? Should I be using fstream at all?
Have you ever considered that the file reading is working perfectly and it is printf(mymemory) that is stopping at the first null?
Have a look with the debugger and see if I am right.
Also, if you want to print someone else's buffer, use puts(mymemory) or printf("%s", mymemory). Don't accept someone else's input for the format string, it could crash your program.
Try
for (int i = 0; i < size ; ++i)
{
// 0 - pad with 0s
// 2 - to two zeros max
// X - a Hex value with capital A-F (0A, 1B, etc)
printf("%02X ", (int)mymemory[i]);
if (i % 32 == 0)
printf("\n"); //New line every 32 bytes
}
as a way to dump your data file back out as hex.