Related
Is there a Progress profiling tool that allows me to see the queries executing against an OpenEdge database?
We're doing a migration from an OpenEdge database into a SQL database. In order to map the data correctly we'd like to run certain application reports on the OpenEdge database and see what database queries are being executed to retrieve the data.
Is this possible with some kind of Progress profiling tool (a la SQL Server Profiling)? Preferably free...
Progress is record oriented, not set oriented like SQL, so your reports aren't a single query or a set of queries, it is more likely a lot of record lookups combined with what you'd consider query-like operations.
Depending on the version you're running, there is a way to send a signal to the client to see what it is currently doing, however doing so will almost certainly not give you enough information to discern what's going on "under the hood."
Long story short, your options are to get a Dataserver product so you can attach the Progress client to an SQL database - this will enable you to use an SQL database w/out losing the Progress functionality. The second option is to get a copy of the program's source code to find out how the reports are structured.
Tim is quite right -- without the source code, looking at the queries is unlikely to provide you with much insight.
None the less there are some tools and capabilities that will provide information about queries. Probably the most useful for your purpose would be to specify something similar to:
-logentrytypes QryInfo -logginglevel 3 -clientlog "mylog.log"
at session startup.
You can use session triggers to identify almost anything done by any program, without modifying or having access to the source of those programs. Setting this up may be more work than is worth it for your purpose. We have a testing system built around this idea. One big flaw: triggers cannot be fired for CAN-FIND.
I'm writing a project in C++/Qt and it is able to connect to any type of SQL database supported by the QtSQL (http://doc.qt.nokia.com/latest/qtsql.html). This includes local servers and external ones.
However, when the database in question is external, the speed of the queries starts to become a problem (slow UI, ...). The reason: Every object that is stored in the database is lazy-loaded and as such will issue a query every time an attribute is needed. On average about 20 of these objects are to be displayed on screen, each of them showing about 5 attributes. This means that for every screen that I show about 100 queries get executed. The queries execute quite fast on the database server itself, but the overhead of the actual query running over the network is considerable (measured in seconds for an entire screen).
I've been thinking about a few ways to solve the issue, the most important approaches seem to be (according to me):
Make fewer queries
Make queries faster
Tackling (1)
I could find some sort of way to delay the actual fetching of the attribute (start a transaction), and then when the programmer writes endTransaction() the database tries to fetch everything in one go (with SQL UNION or a loop...). This would probably require quite a bit of modification to the way the lazy objects work but if people comment that it is a decent solution I think it could be worked out elegantly. If this solution speeds up everything enough then an elaborate caching scheme might not even be necessary, saving a lot of headaches
I could try pre-loading attribute data by fetching it all in one query for all the objects that are requested, effectively making them non-lazy. Of course in that case I will have to worry about stale data. How would I detect stale data without at least sending one query to the external db? (Note: sending a query to check for stale data for every attribute check would provide a best-case 0x performance increase and a worst-caste 2x performance decrease when the data is actually found to be stale)
Tackling (2)
Queries could for example be made faster by keeping a local synchronized copy of the database running. However I don't really have a lot of possibilities on the client machines to run for example exactly the same database type as the one on the server. So the local copy would for example be an SQLite database. This would also mean that I couldn't use an db-vendor specific solution. What are my options here? What has worked well for people in these kinds of situations?
Worries
My primary worries are:
Stale data: there are plenty of queries imaginable that change the db in such a way that it prohibits an action that would seem possible to a user with stale data.
Maintainability: How loosely can I couple in this new layer? It would obviously be preferable if it didn't have to know everything about my internal lazy object system and about every object and possible query
Final question
What would be a good way to minimize the cost of making a query? Good meaning some sort of combination of: maintainable, easy to implement, not too aplication specific. If it comes down to pick any 2, then so be it. I'd like to hear people talk about their experiences and what they did to solve it.
As you can see, I've thought of some problems and ways of handling it, but I'm at a loss for what would constitute a sensible approach. Since it will probable involve quite a lot of work and intensive changes to many layers in the program (hopefully as few as possible), I thought about asking all the experts here before making a final decision on the matter. It is also possible I'm just overlooking a very simple solution, in which case a pointer to it would be much appreciated!
Assuming all relevant server-side tuning has been done (for example: MySQL cache, best possible indexes, ...)
*Note: I've checked questions of users with similar problems that didn't entirely satisfy my question: Suggestion on a replication scheme for my use-case? and Best practice for a local database cache? for example)
If any additional information is necessary to provide an answer, please let me know and I will duly update my question. Apologies for any spelling/grammar errors, english is not my native language.
Note about "lazy"
A small example of what my code looks like (simplified of course):
QList<MyObject> myObjects = database->getObjects(20, 40); // fetch and construct object 20 to 40 from the db
// ...some time later
// screen filling time!
foreach (const MyObject& o, myObjects) {
o->getInt("status", 0); // == db request
o->getString("comment", "no comment!"); // == db request
// about 3 more of these
}
At first glance it looks like you have two conflicting goals: Query speed, but always using up-to-date data. Thus you should probably fall back to your needs to help decide here.
1) Your database is nearly static compared to use of the application. In this case use your option 1b and preload all the data. If there's a slim chance that the data may change underneath, just give the user an option to refresh the cache (fully or for a particular subset of data). This way the slow access is in the hands of the user.
2) The database is changing fairly frequently. In this case "perhaps" an SQL database isn't right for your needs. You may need a higher performance dynamic database that pushes updates rather than requiring a pull. That way your application would get notified when underlying data changed and you would be able to respond quickly. If that doesn't work however, you want to concoct your query to minimize the number of DB library and I/O calls. For example if you execute a sequence of select statements your results should have all the appropriate data in the order you requested it. You just have to keep track of what the corresponding select statements were. Alternately if you can use a looser query criteria so that it returns more than one row for your simple query that ought to help performance as well.
Imagine to have a Desktop application - could be best described as record keeping where the user inserts/views the records - that relies on a DB back-end which will contain large objects' hierarchies and properties. How should data retrieval be handled?
Should all the data be loaded at start-up and stored in corresponding Classes/Structures for later manipulation or should the data be retrieved only at need, stored in mock-up Classes/Structures and then reused later instead of being asked to the DB again?
As far as I can see the former approach would require a bigger memory portion used and possible waiting time at start-up (not so bad if a splash screen is displayed), while the latter could possibly subject the user to delays during processing due to data retrieval and would require to perform some expensive queries on the database, whose results and/or supporting data structures will most probably serve no purpose once used*.
Something tells me that the solution lies on an in-depth analysis which will lead to a mixture of the two approaches listed above based on data most frequently used, but I am very interested in reading your thoughts, tips and real life experiences on the topic.
For discussion's sake, I'm thinking about C++ and SQLite.
Thanks!
*assuming that you can perform on Classes/Objects faster operations rather than have to perform complicated queries on the DB.
EDIT
Some additional details:
No concurrent access to the data, meaning only 1 user works on the data which is stored locally.
Data is sent back depending on changes made humanly - i.e. with low frequency. This is not necessarily true for reading data from the DB, where I can expect to have few peaks of lots of reads which I'd like to be fast.
What I am most afraid of is the user getting the feeling of slowness when displaying a complex record (because this has to be read in from the DB).
Use Lazy Load and Data Mapper (pg.165) patterns.
I think this question depends on too many variables to be able to give a concrete answer. What you should consider first is how much data you need to read from the database in to your application. Further, how often are you sending that data back to the database and requesting new data? Also, will users be working on the data concurrently? If so, loading the data initially is probably not a good idea.
After your edits I would say it's probably better to leave the data at the database. If you are going to be accessing it with relatively low frequency there is no reason to load up or otherwise try to cache it in your application at launch. Of course, only you know your application best and should decide what bits may be loaded up front to increase performance.
You might consider to user intermediate server (WCF) that will contain cached data from the database in memory, this way users don't have to go every time to the database. Also since it is only one access point to for all users if somebody changes/added record you can update cache as well. Static data can be reloaded every x hours (for example every hour). It still might not the best option, since data needs to be marshaled from Server to the Client, but you can use netTcp binding if you can, which is fast and small.
I'm looking for some architecture ideas on a problem at work that I may have to solve.
the problem.
1) our enterprise LDAP has become a "contact master" filled with years of stale data and unused and unmaintained attributes.
2) management has decided that LDAP will no longer serve as a company phone book. it is for authorization purposes only.
3) the company has contact type data about people in hundreds of different sources. we need to scrub all the junk out of LDAP and give the other applications a central repo to store all this data about a person.
the ideal goal
1) have a single source to store all the various attributes about a person
2) the company probably has info on 500k people ( read 500K rows)
3) i estimate there could be 500 to 1000 optional attributes on these people. (read 500+ columns)
4) data would primarily be set/get via xml over jms (this infrastructure is already in place)
5) individual groups within the company could "own" columns. only they would be allowed to write to their columns, they would be responsible for keeping the data clean.
6) a single record lookup should be returned in sub seconds
7) system should support 1 million requests per hour at peak.
8) the primary goal is to serve real time data to the enterprise, reporting is a secondary goal.
9) we are a java, oracle, terradata shop. we are your typical big IT shop.
my thoughts:
1) originally i thought LDAP might work, but it doesn't scale when new columns are added.
2) my next thought was some kind of no-sql solution, but from what i have read, I don't think i cant get the performance I need, and its still relatively new. I'm not sure i can get my manager to sign off on something like that for such a critical project.
3) i think there will be a meta-data component to the solution that will track who owns the columns and what each column represents, and the original source system.
Thanks for reading, and thanks in advance for any thoughts.
SQL
With Teradata-grade tools an SQL-based solution may be feasible. I came across an article on database design awhile ago that discussed "anchor modeling".
Basically, the idea is to create a single, dumb, synthetic primary key table, while all real or meta data lives in other tables (subsets) and is attached by way of a foreign key + join.
I see the benefit of this design being two-fold. First, you can more easily compartmentalize data storage either for organizational or performance reasons. Second, you only create additional rows for records that have data in any given subset, so you use less space and indexing and searching are faster.
Subsets might be based on maintainer or some other criteria. XML set/get would be per-subset/record (rather than global record). All subsets for a given records can be composited and cached. Additional subsets can be created for metadata, search indexes, etc., and these can be queried independently.
NoSQL
NoSQL seems similar to LDAP (in theory, at least) but the benefit of a good NoSQL tool would include greater abstraction of metadata, versioning, and organization. In fact, from what I've read it seems that NoSQL datastores are designed to address some of the issues you've raised with respect to scaling and loosely structured data. There's a good question on SO regarding datastores.
Production NoSQL
Off-hand, there are a handful of large companies using NoSQL in massively-scaled environments, such as Google's Bigtable. It seems like the perfect tool for:
6) a single record lookup should be returned in sub seconds
7) system should support 1 million requests per hour at peak.
Bigtable is only available (to my knowledge) through AppEngine. Other, similar technologies are listed here.
Other Thoughts
The bigger picture view looks more or less the same regardless of the technology you decide to use. E.g. compartmentalize storage, composite views, cache views, stick metadata somewhere so you can find things.
The performance characteristics you're targeting are going to require some kind of caching and/or optimization based on real-world usage patterns. Regardless of the solution you choose, you probably can't resolve that in the design phase.
A couple thoughts:
1) our enterprise LDAP has become a "contact master" filled with years of stale data and unused and unmaintained attributes.
This isn't really a technological problem. You will have this problem with a new system as well, LDAP or not.
"LDAP ... doesn't scale"
There are lots of huge LDAP systems out there. LDAP is surely a dark art, but I'd willing to bet that it scales better than any SQL equivalent in this situation. Not to mention that LDAP is a standard for this kind of info, and as such it is accessible from zillions of different kinds of systems.
Maybe what you're looking for is a new LDAP system that's easier to manage / has better admin tools?
You may want to look into Len Silverston's Party Model. Here's a link to his book: http://www.amazon.com/Data-Model-Resource-Book-Vol/dp/0471380237.
I have no experience building something on that scale, though I think that thinking of it as 500k rows x 500 - 1000 columns sounds a bit ridiculous.
I have a question relating to databases and at what point is worth diving into one. I am primarily an embedded engineer, but I am writing an application using Qt to interface with our controller.
We are at an odd point where we have enough data that it would be feasible to implement a database (around 700+ items and growing) to manage everything, but I am not sure it is worth the time right now to deal with. I have no problems implementing the GUI with files generated from excel and parsed in, but it gets tedious and hard to track even with VBA scripts. I have been playing around with converting our data into something more manageable for the application side with Microsoft Access and that seems to be working well. If that works out I am only a step (or several) away from using an SQL database and using the Qt library to access and modify it.
I don't have much experience managing data at this level and am curious what may be the best way to approach this. So what are some of the real benefits of using a database if any in this case? I realize much of this can be very application specific, but some general ideas and suggestions on how to straddle the embedded/application programming line would be helpful.
This is not about putting a database in an embedded project. It is also not a business type application where larger databases are commonly used. I am designing a GUI for a single user on a desktop to interface with a micro-controller for monitoring and configuration purposes.
I decided to go with SQLite. You can do some very interesting things with data that I didn't really consider an option when first starting this project.
A database is worthwhile when:
Your application evolves to some
form of data driven execution.
You're spending time designing and
developing external data storage
structures.
Sharing data between applications or
organizations (including individual
people)
The data is no longer short and
simple.
Data Duplication
Evolution to Data Driven Execution
When the data is changing but the execution is not, this is a sign of a data driven program or parts of the program are data driven. A set of configuration options is a sign of a data driven function, but the whole application may not be data driven. In any case, a database can help manage the data. (The database library or application does not have to be huge like Oracle, but can be lean and mean like SQLite).
Design & Development of External Data Structures
Posting questions to Stack Overflow about serialization or converting trees and lists to use files is a good indication your program has graduated to using a database. Also, if you are spending any amount of time designing algorithms to store data in a file or designing the data in a file is a good time to research the usage of a database.
Sharing Data
Whether your application is sharing data with another application, another organization or another person, a database can assist. By using a database, data consistency is easier to achieve. One of the big issues in problem investigation is that teams are not using the same data. The customer may use one set of data; the validation team another and development using a different set of data. A database makes versioning the data easier and allows entities to use the same data.
Complex Data
Programs start out using small tables of hard coded data. This evolves into using dynamic data with maps, trees and lists. Sometimes the data expands from simple two columns to 8 or more. Database theory and databases can ease the complexity of organizing data. Let the database worry about managing the data and free up your application and your development time. After all, how the data is managed is not as important as to the quality of the data and it's accessibility.
Data Duplication
Often times, when data grows, there is an ever growing attraction for duplicate data. Databases and database theory can minimize the duplication of data. Databases can be configured to warn against duplications.
Moving to using a database has many factors to be considered. Some include but are not limited to: data complexity, data duplication (including parts of the data), project deadlines, development costs and licensing issues. If your program can run more efficiently with a database, then do so. A database may also save development time (and money). There are other tasks that you and your application can be performing than managing data. Leave data management up to the experts.
What you are describing doesn't sound like a typical business application, and many of the answers already posted here assume that this is the kind of application you are talking about, so let me offer a different perspective.
Whether or not you use a database for 700 items is going to depend greatly on the nature of the data.
I would say that, about 90% of the time at this scale, you will benefit from a light-weight database like SQLite, provided that:
The data may potentially grow substantially larger than what you are describing,
The data may be shared by more than one user,
You may need to run queries against the data (which I don't think you're doing right now), and
The data can easily be described in table form.
The other 10% of the time, your data will be highly structured, hierarchical, object-based, and doesn't neatly fit into the table model of a database or Excel table. If this is the case, consider using XML files.
I know developers instinctively like to throw databases at problems like this, but if you are currently using Excel data to design user interfaces (or display configuration settings), rather than display a customer record, XML may be a better fit. XML is more expressive than either Excel or database tables, and can be easily manipulated with a simple text editor.
XML parsers and data binders for C++ are easy to find.
I recommend you to introduce a Database in your app, your application will gain flexibility and will be easier to maintain and to improve with new features in the future.
I would start with a lightweight file based db like Sqlite.
With a well designed db you'll have:
Reduced data redundancy
Greater data integrity
Improved data security
Last but not least, using a database will save you from the Excel import/update/export Hell!
Reasons for using a database:
Concurrent writes. It's easy to achieve concurrency in databases
Easy querying. SQL queries tend to be much concise than procedural code to search data. UPDATEs, INSERT INTOs can also do lots of stuff with very little code
Integrity. Constraints are very easy to define and are enforced without writing code. If you have a non-null constraint, you can rest assured that the value won't be null, no need to write checks anywhere. If you have a foreign key constraint in place, you won't have "dangling references".
Performance over large datasets. Indexing is very simple to add to an SQL database
Reasons for not using a database:
It tends to be an extra dependency (although there exist very lightweight databases- I like H2 for Java, for instance)
Data not well suited to a relational schema. Things that are basically key/value maps. XML (although databases often support XPath, etc.).
Sometimes files are more convenient. They can be diff'ed, merged, edited with a plain text editor, etc. Sometimes spreadsheets can be more practical (you don't have to build an editor- you can use a spreadsheet program)
Your data is already somewhere else
When you have a lot of data that you're not sure how they will be exploited in the future.
For example you might want to add an SQLite database in an embedded application that need to register statistics that you're not sure how will be used. Later you send the full database for injection in a bigger one running on a central server and those data can easily be exploited, using requests.
In fact, if your application's purpose is to "gather data" then having a database is a must have.
I see quite a few requirements that well met by databases:
1). Ad hoc queries. Find me all the {X} that meet criteria Y
2). Data with structure that can benefit from normalisation - factoring out common values into separate "tables". You can save space and reduce the possibility of inconsistency this way. Once you've done this then those ad-hoc queries start to be really useful.
3). Large data volumes. Professional database are very good at making good use of resoruces, clever query optmisations and paging strategies. Trying to write this stuff yourself is a real challenge.
You're clearly not needing that last one, but the other two, maybe do apply to you.
Don't forget that the appropriate database can be quite different depending on your requirements (and don't forget that a text file could be used as a database if you're requirements are simple enough - for example, config files are just a specific kind of database). Such parameters might be:
number of records
size of data items
does the database need to be shared with other devices? Concurrently?
how complex are the relationships between the various pieces of data
is the database read only (created at build time and not changed, for example)?
does the database need to be updated by multiple entities concurrently?
do you need to support complex queries?
For a database with 700 entries, an in-memory sorted array loaded from a text file might well be appropriate. But I could also see the need for an embedded SQL database or maybe having the controller request data from the database over a network connection depending on what the various requirements (and resource limitations) are.
There isn't a specific point at which a database is worthwhile. Instead I usually ask the following questions:
Is the amount of data the application uses/creates growing?
Is the upper limit of this data growth unknown (or unclear)?
Will the application need to aggregate or filter this data?
Could there be future uses of the data that may not be obvious right now?
Is performance of data retrieval and/or storage important?
Are there (or could there be) multiple users of the application who share data?
If I answer 'Yes' to most of these questions I almost always choose a database (as opposed to other options such as XML/ini/CSV/Excel/text files or the filesystem).
Also, if the application will have many users who could be accessing the data concurrently, I'll lean towards a full database server (MySQL, SQl Server, Oracle etc).
But often in a single user (or small concurrency) situation, a local database such as SQLite cannot be beaten for portability and ease of deployment.
To add a negative: not suitable for real-time processing, due to non-deterministic latency. However, It would be quite ample for looking up and setting operating parameters, for instance during startup. I would not put database accesses on critical time paths.
You don't need a database if you have a few thousand rows in one or two tables to handle in a single user app (for the embedded point).
If it is for multiple users (concurrent access, locking) or the need of transactions you definitly should consider a database.
Handling complex datastructures in normalized tables and maintain integrety, or a huge amount of data would be another indication you should use a database.
It sounds like your application is running on a desktop computer and simply communicating to the embedded device.
As such using a database is much more feasible. Using one on an embedded platform is a much more complex issue.
On the desktop front I use a database when there is the need to store new information continuously and the need to extract that information in a relational way. What i don't use databases for is storing static information, information i read once at load and thats it. The exception is when the application has many users and there is the need to storage this information on a per user basis.
It sounds be to me like your collecting information from your embedded device, storing it somehow, then using it later to display via a GUI.
This is a good case for using a database, especially if you can architect the system such that there is a data collection daemon that manages the continuous communication with the embedded device. This app can then just write the data into the database. When the GUI is launched it can extract the data for display.
Using the database will also ease your GUI develop if you need to display different views, such as "show me all the entries between 2 dates". With a database you just ask it for the correct values to display with a proper SQL query and the GUI displays whatever comes back allowing you to decouple much of the "business logic" code from the GUI.
We are also facing a similar situation. We have set of data coming from different test setups and it is currently being dumped into excel sheets, processed using Perl or VBA.
We found out this method had lot of problems:
i. Managing data using excel sheets is quite cumbersome. After some time you have a whole lot of excel sheets and there is no easy way to retrieve required data from it.
ii. People start sending the excel sheets to and fro for comments and review through e-mails. E-Mail becomes the primary mode of managing the comments related to the data. These comments are lost at a later point of time and there is no way of retrieving it back.
iii. Multiple copies of the files get created and changes in one copy are not reflected in the other - there is no versioning.
This is for the same reasons we have decided to move to a database based solution and are currently working on it. Let me summaries what we are trying to do:
i. The database is in a central server accessible by PC in all the test setups.
ii. All the data goes into a temporary location (local hard disk in files) as soon as it is generated. From the files, it is pushed into database by a process running in the background (so even if there is a network problem, data will be present in the local files system).
iii. We have a web based application which allows users to log in and access data in the format they want. The portal will allow them to add comment, generate different kind of reports, share it with other users after review etc. It will also have the ability to export data into excel sheet, just in case you need to take it with you.
Let know if this can be better implemented.
"At what point is it worth using a database?"
If and when you've got data to manage ?