Segmentation fault in recursive backtracking maze generator C++ - c++

I am trying to create a maze generator using recursive backtracking and have come across a problem that I just can't get my head around. For some reason my move function is returning the value "18446744073709551615". This is (of course) leading to a segmentation fault. Why is my move function returning such a large value when my move function can only increase or decrease the value by 2?
bool maze::generate(size_t x, size_t y) {
//mark the position as visited
labyrinth.s[y][x] = true;
//print to see progress
//this->print();
//if the position is not out of bounds
if (x < 0 || x > labyrinth.MAXWIDTH - 1 || y < 0 || y > labyrinth.MAXHIGHT - 1) {
//if the position is the endpoint return true
if (labyrinth.v[y][x - 1] == 'W' || labyrinth.v[y][x + 1] == 'W' || labyrinth.v[y - 1][x] == 'W' || labyrinth.v[y + 1][x] == 'W') {
return true;
}
}
//pick a random direction
do {
d = size_t(rand() % 4);
} while(!this->pos_test(x, y, d));
std::cout << x << ' ' << y << std::endl;
if (d == UP) {
y = move(x, y, UP);
}
else if (d == DOWN) {
y = move(x, y, DOWN);
}
else if (d == RIGHT) {
x = move(x, y, RIGHT);
}
else if (d == LEFT) {
x = move(x, y, LEFT);
}
else{
}
std::cout << x << ' ' << y << std::endl;
//recursively generate the maze
if (this->generate(x, y)) {
return true;
}
}
void maze::initialize(size_t x, size_t y) {
//set the maxhight and the maxwidth to y and x
labyrinth.MAXHIGHT = y;
labyrinth.MAXWIDTH = x;
//set all elements in the vector to #
for (size_t i = 0; i < labyrinth.MAXHIGHT; i++) {
std::vector<char> temp;
for (size_t j = 0; j < labyrinth.MAXWIDTH; j++) {
temp.push_back(labyrinth.wall);
}
labyrinth.v.push_back(temp);
}
for (size_t i = 0; i < labyrinth.MAXHIGHT; i++) {
for (size_t j = 0; j < labyrinth.MAXWIDTH; j++) {
if (j % 2 == 1 && i % 2 == 1 && j != labyrinth.MAXWIDTH - 1 && j != 0 && i != labyrinth.MAXHIGHT - 1 && i != 0) {
labyrinth.v[j][i] = labyrinth.path;
}
}
}
//set all posistions to unvisited
for (size_t i = 0; i < labyrinth.MAXHIGHT; i++) {
std::vector<bool> temp2;
for (size_t j = 0; j < labyrinth.MAXWIDTH; j++) {
temp2.push_back(false);
}
labyrinth.s.push_back(temp2);
}
//setup the start point
labyrinth.v[0][1] = 'S';
//setup the endpoint
labyrinth.v[labyrinth.MAXHIGHT - 2][labyrinth.MAXWIDTH - 1] = 'W';
}
//if a position has been visited or if not possible to go to return true
bool maze::pos_test(size_t x, size_t y, size_t d) const {
//if the position is out of bounds return false
if (x < 0 || y < 0 || x > labyrinth.MAXWIDTH - 1 || y > labyrinth.MAXHIGHT - 1) {
return true;
}
else if (x == 1 && d == LEFT) {
return true;
}
else if (y == 1 && d == UP) {
return true;
}
else if (x == labyrinth.MAXWIDTH - 1 && d == RIGHT) {
return true;
}
else if (y == labyrinth.MAXHIGHT - 1 && d == DOWN) {
return true;
}
else if (d == UP) {
return labyrinth.s[y - 2][x];
}
else if (d == DOWN) {
return labyrinth.s[y + 2][x];
}
else if (d == RIGHT) {
return labyrinth.s[y][x + 2];
}
else if (d == LEFT) {
return labyrinth.s[y][x - 2];
}
else {
return true;
}
}
size_t maze::move(size_t x, size_t y, size_t d) {
//if the position is out of bounds return without modifying
if (x < 0 || x > labyrinth.MAXWIDTH - 1) {
return x;
}
else if (y < 0 || y > labyrinth.MAXHIGHT - 1) {
return y;
}
else if (d == UP) {
labyrinth.v[y - 1][x] = labyrinth.path;
return y = y - 2;
}
else if (d == DOWN) {
labyrinth.v[y + 1][x] = labyrinth.path;
return y = y + 2;
}
else if (d == RIGHT) {
labyrinth.v[y][x + 1] = labyrinth.path;
return x = x + 2;
}
else if (d == LEFT) {
labyrinth.v[y][x - 1] = labyrinth.path;
return x = x - 2;
}
else {
}
}

You are underflowing your unsigned 64-bit return type size_t.
You are checking whether x and y are below zero, but that's not enough, because 0 and 1 will still be too low because you are subtracting 2!
The number you get is 0xFFFFFFFFFFFFFFFF in hexadecimal. This is the highest possible value for an unsigned 64-bit integer.
It comes from calculating 1 - 2. Yes, this is supposed to be -1, but because your move function doesn't return a signed number but an unsigned one (check the docs on size_t), it can't be negative! Instead, it wraps around to the highest possible number.
You can imagine this in the same way you would get ...99999999999 when you try to calculate 1 - 2 on paper ignoring the "you can't subtract a higher number from a smaller one on paper" rule.
As a side note: I guess the negative result is undesired anyway, because actually your huge number, once added to a pointer, will in turn overflow back into positive, so basically it will work the same is a real -1 in your case and the segmentation fault comes from accessing something right before the beginning of your buffer, not far beyond it, but it comes down to the same thing.
Apart from that, there is no need to do return y = y - 2 and such. Just return y - 2.

Related

Get co-ordinates surrounding specific matrix

Given an arbitrary matrix, how do I find the co-ordinates that surrounds each city accurately?
E.g. City 1 has surrounding matrix of (0, 0), (0, 3), (1, 0), (1, 3), (2,0), (2, 1), (2, 2), (2, 3).
I have tried using a hardcoded method. Which is loop through each city's co-ordinate, however there are still inaccuracy in this method.
E.g. (0, 1) and from there check all 8 directions, up, down, left, right, upper left, upper right, bottom left, bottom right.
And if the char value is ' ', it is not a city which means it is part of a surrounding.
Is there any way which is much more efficient and more accurate in finding the surrounding?
void surroundings(int x, int y) {
// Initiate the first city struct information
citySummInfo.cityId = cityLocList[0].cityId;
citySummInfo.cityName = cityLocList[0].cityName;
citySummInfoList.push_back(citySummInfo);
// Add unique cityID & cityName into vector
for (size_t i = 0; i < cityLocList.size(); i++) {
for (size_t j = 0; j < citySummInfoList.size(); j++) {
if (cityLocList[i].cityId == citySummInfoList[j].cityId && cityLocList[i].cityName == citySummInfoList[j].cityName) {
break;
}
else if (j == citySummInfoList.size() - 1) {
citySummInfo.cityId = cityLocList[i].cityId;
citySummInfo.cityName = cityLocList[i].cityName;
citySummInfoList.push_back(citySummInfo);
}
}
}
// To populate the entire matrix with city ID
for (int i = 0; i < x; i++) {
for (int j = 0; j < y; j++) {
for (size_t k = 0; k < cityLocList.size(); k++) {
if (cityLocList[k].xGrid == i && cityLocList[k].yGrid == j)
mapPtr[j][i] = cityLocList[k].cityId + '0';
}
}
}
// Main process of getting the surrounding
for (size_t i = 0; i < citySummInfoList.size(); i++) {
for (size_t j = 0; j < cityLocList.size(); j++) {
if (citySummInfoList[i].cityId == cityLocList[j].cityId)
citySummInfoList[i].coOrdinates.push_back(to_string(cityLocList[j].xGrid) + "." + to_string(cityLocList[j].yGrid));
}
}
for (size_t i = 0; i < citySummInfoList.size(); i++) {
vector<string> temp;
for (size_t j = 0; j < citySummInfoList[i].coOrdinates.size(); j++) {
char cityId = citySummInfoList[i].cityId + '0';
char delim[] = { '.' };
vector<string> tempAxis = tokenizer(citySummInfoList[i].coOrdinates[j], delim, 1);
int xAxis = stoi(tempAxis[0]);
int yAxis = stoi(tempAxis[1]);
if (xAxis - 1 < 0 || yAxis - 1 < 0) {
continue;
}
if (mapPtr[xAxis - 1][yAxis + 1] != cityId) {
if (xAxis + 1 == x || yAxis + 1 == y || xAxis - 1 < 0 || yAxis - 1 < 0)
continue;
string coOrd = to_string(xAxis - 1) + "." + to_string(yAxis + 1);
if (find(temp.begin(), temp.end(), coOrd) == temp.end()) {
temp.push_back(coOrd);
}
}
if (mapPtr[xAxis - 1][yAxis] != cityId) {
if (xAxis + 1 == x || yAxis + 1 == y || xAxis - 1 < 0 || yAxis - 1 < 0)
continue;
string coOrd = to_string(xAxis - 1) + "." + to_string(yAxis);
if (find(temp.begin(), temp.end(), coOrd) == temp.end()) {
temp.push_back(coOrd);
}
}
if (mapPtr[xAxis - 1][yAxis - 1] != cityId) {
if (xAxis + 1 == x || yAxis + 1 == y || xAxis - 1 < 0 || yAxis - 1 < 0)
continue;
string coOrd = to_string(xAxis - 1) + "." + to_string(yAxis - 1);
if (find(temp.begin(), temp.end(), coOrd) == temp.end()) {
temp.push_back(coOrd);
}
}
if (mapPtr[xAxis][yAxis + 1] != cityId) {
if (xAxis + 1 == x || yAxis + 1 == y || xAxis - 1 < 0 || yAxis - 1 < 0)
continue;
string coOrd = to_string(xAxis) + "." + to_string(yAxis + 1);
if (find(temp.begin(), temp.end(), coOrd) == temp.end()) {
temp.push_back(coOrd);
}
}
if (mapPtr[xAxis][yAxis - 1] != cityId) {
if (xAxis + 1 == x || yAxis + 1 == y || xAxis - 1 < 0 || yAxis - 1 < 0)
continue;
string coOrd = to_string(xAxis) + "." + to_string(yAxis - 1);
if (find(temp.begin(), temp.end(), coOrd) == temp.end()) {
temp.push_back(coOrd);
}
}
if (mapPtr[xAxis + 1][yAxis + 1] != cityId) {
if (xAxis + 1 == x || yAxis + 1 == y || xAxis - 1 < 0 || yAxis - 1 < 0)
continue;
string coOrd = to_string(xAxis + 1) + "." + to_string(yAxis + 1);
if (find(temp.begin(), temp.end(), coOrd) == temp.end()) {
temp.push_back(coOrd);
}
}
if (mapPtr[xAxis + 1][yAxis] != cityId) {
if (xAxis + 1 == x || yAxis + 1 == y || xAxis - 1 < 0 || yAxis - 1 < 0)
continue;
string coOrd = to_string(xAxis + 1) + "." + to_string(yAxis);
if (find(temp.begin(), temp.end(), coOrd) == temp.end()) {
temp.push_back(coOrd);
}
}
if (mapPtr[xAxis + 1][yAxis - 1] != cityId) {
if (xAxis + 1 == x || yAxis + 1 == y || xAxis - 1 < 0 || yAxis - 1 < 0)
continue;
string coOrd = to_string(xAxis + 1) + "." + to_string(yAxis - 1);
if (find(temp.begin(), temp.end(), coOrd) == temp.end()) {
temp.push_back(coOrd);
}
}
}
citySummInfoList[i].coOrdinates.reserve(temp.size());
citySummInfoList[i].coOrdinates.insert(citySummInfoList[i].coOrdinates.end(), temp.begin(), temp.end());
}
}
Also, is there a possibility that my print function may cause such unreliability?
void print(int x, int y) {
for (int i = 0; i <= x + 2; i++) {
if (i == 0 || i >= x + 1) // Indentation for 1st and last row of non city locations
cout << setw(4) << " ";
for (int j = 0; j <= y + 2; j++) {
if ((i == 0 || i == x + 1) && j <= y + 1) { // Layout for first and last row
cout << "# ";
}
else if ((j == 0 && (i != 0 || i <= x))) { // Numbering for each row
if (x - i >= 0) {
cout << setw(3) << left << x - i << " ";
}
else {
cout << " "; // Indentation for last row of #s
}
}
else if (j == 1 && i < x + 2) { // Layout for first column
cout << "#";
}
else if (j == y + 2 && i != 0 && i < x + 1) { // Layout for last column
cout << " #";
}
else if (i == x + 2 && j < y + 1) { // Numbering for each column
cout << j - 1 << " ";
}
else if ((i != 0 && i != x + 2 && j != y + 2)) {
cout << " " << mapPtr[x - i][j - 2]; // Plot map value
}
}
cout << endl;
}
cout << endl;
}
This is an O(n) answer for your problem. The idea behind it is to find all points that are edges (a point is an edge if it is adjacent to anything which is not its own city).
After finding all edge points, loop through each of them and add all points adjacent to them which are whitespace characters.
#include <bits/stdc++.h>
#define x first
#define y second
using namespace std;
typedef pair<int, int> point;
string m[] = {
" ",
" 555 ",
" 555 ",
" 222 555 ",
" 222 ",
" 222 ",
" 222 ",
" ",
"11 33 ",
"11 44",
" 44"
};
//hash function for pairs
struct hash_pair {
template <class T1, class T2>
size_t operator()(const pair<T1, T2>& p) const {
auto hash1 = hash<T1>{}(p.first);
auto hash2 = hash<T2>{}(p.second);
return hash1 ^ hash2;
}
};
bool insideBounds(int x, int y, point &size){
if(x < 0 || x >= size.x || y < 0 || y >= size.y) return false;
return true;
}
bool isEdge(int x, int y, point &size){
for(int i = -1; i < 2; ++i){
for(int j = -1; j < 2; ++j){
if(!insideBounds(x + j, y + i, size)) return true;
if(m[y + i][x + j] == ' ') return true;
}
}
return false;
}
void FindSurrounding(int x, int y){
//size of map
point size = make_pair(11, 11);
//current city id
char city = m[y][x];
//finding a point in edge of the city
point edge = make_pair(x, y);
for(int i = x - 1; i >= 0; --i)
if(m[y][i] == city) edge = make_pair(i, y);
//find all edge points
unordered_set<point, hash_pair> visited;
stack<point> toVisit;
toVisit.push(edge);
while(toVisit.size()){
point current = toVisit.top();
visited.insert(current);
toVisit.pop();
for(int i = -1; i < 2; ++i){
for(int j = -1; j < 2; ++j){
point p = make_pair(current.x + j, current.y + i);
if(!insideBounds(p.x, p.y, size) || m[p.y][p.x] != city) continue;
if(visited.find(p) == visited.end() && isEdge(p.x, p.y, size)){
toVisit.push(p);
}
}
}
}
//find surrounding slots
unordered_set<point, hash_pair> surrounding;
for (const auto& p: visited) {
for(int i = -1; i < 2; ++i){
for(int j = -1; j < 2; ++j){
point curr = make_pair(p.x + j, p.y + i);
if(insideBounds(curr.x, curr.y, size) && m[curr.y][curr.x] == ' '){
surrounding.insert(curr);
}
}
}
}
//print answer
for (const auto& p: surrounding) {
cout<<"("<<p.x<<", "<<p.y<<"), ";
}
}
int main()
{
FindSurrounding(0, 8);
return 0;
}
OUTPUT: (2, 10), (1, 10), (2, 9), (0, 10), (2, 8), (2, 7), (1, 7), (0, 7),

C++ Vector subtraction

I've been trying to make my vector calculator subtract. It was doing it fine with vectors that store the same amount of numbers, for example: (+) 503 - (-) 305. It would give me a good result on this kind of cases.
But when I tried subtracting different size vectors the problems appeared. I tried to solve the problem by making different filters to make the program act how I want it. But now, instead of subtracting all it does is add.
This is my setup:
const int MAX = 102;
typedef int vector[MAX];
A(0): Puts all the values of a vector at 0. For example:
Before using it:
[0][3][5][0][5]
Where the first 0 means it is a positive number, if it was [1] it would mean its negative, that [3] means that there are 3 numbers stored in the vector.
After using A0:
[0][1][0][0][0][0][0]...[0]
ES_MAJOR_VECTOR checks if vector Z > X. On that case returns true, else it's going to return false.
SUMA_VEC basically adds Z to X and then assings the value to W.
void RESTA_VEC(vector Z, vector X, vector W) {
int ZigualX(0), Xmes1(0), Xactual(0), ZmajorX(0), XmajorZ(0), contador(0);
vector copia_Z, copia_X;
A0(copia_Z);
A0(copia_X);
for (int k = 0; k < MAX; k++)
{
copia_Z[k] = Z[k];
copia_X[k] = X[k];
}
if (Z[0] == X[0])
{
if (Z[0] == 0)
{
for (int y = MAX; y >= 2; y--)
{
if (Z[y] < X[y])
{//RESTA
Z[y] = Z[y] + 10;
W[y] = Z[y] - X[y];
X[y + 1] = X[y + 1] + 1;
}
if (Z[y] > X[y])
{
W[y] = Z[y] - X[y];
}
if (Z[y] == X[y])
{
W[y] = 0;
}
}
}
if (Z[0] == 1)
{
SUMA_VEC(Z, X, W);
}
}
if (Z[0] != X[0])
{
if (ES_MAJOR_VECTOR(Z, X) == true)
{
for (int y = MAX; y >= 2; y--)
{
if (Z[y] < X[y])
{
Z[y] = Z[y] + 10;
W[y] = Z[y] - X[y];
X[y + 1] = X[y + 1] + 1;
}
if (Z[y] > X[y])
{
W[y] = Z[y] - X[y];
}
if (Z[y] == X[y])
{
W[y] = 0;
}
}
}
else
{
for (int y = MAX; y >= 2; y--)
{
if (X[y] < Z[y])
{
X[y] = X[y] + 10;
W[y] = X[y] - Z[y];
Z[y + 1] = Z[y + 1] + 1;
}
if (X[y] > Z[y])
{
W[y] = X[y] - Z[y];
}
if (X[y] == Z[y])
{
W[y] = 0;
}
}
}
}
for (int h = 0; h < MAX; h++)
{
Z[h] = copia_Z[h];
X[h] = copia_X[h];
}
}
How can I solve this? I've thought that I need to check: If they are positive or negative, if they're both positive I have to execute a subtraction, if they're negative I have to add Z to X and assign it to W.
If the vectors are different (Meaning one is positive and the another one is negative) I have to check which one is bigger, do the subtraction and then assign either 0 or 1 depending on the bigger vector of the two used earlier.
For example:
+5050
-305
W[0] = +
-5050
+305
W[0] = -
After getting helped by a very kind user I could get to this conclusion:
void RESTA_ABS(vector Z, vector X, vector W) {
int error(0);
A0(W);
if (ES_MAJOR_VECTOR(Z,X))
{
for (int i = MAX-1; i >= 2; i--)
{
if (Z[i] < X[i]) {
Z[i] = Z[i] + 10;
W[i] = Z[i] - X[i];
X[i - 1] = X[i - 1] + 1;
}
else
{
W[i] = Z[i] - X[i];
}
}
}
else
{
cout << "ERROR - VECTOR 2 > VECTOR 1" << endl;
}
}
This module doesn't mind about the vector being positive or negative. It just does the subtraction.
So, to solve this, I used another module:
void RESTA_VEC(vector Z, vector X, vector W) {
if (X[0] == 0)
{
X[0] = 1;
}
else
{
X[0] = 0;
}
RESTA_ABS(Z, X, W);
if (ES_MAJOR_VECTOR(Z, X) == true)
{
W[0] = Z[0];
}
else
{
W[0] = X[0];
}
}
This one changes the number's sign of the second vector, making it negative if its positive, and positive if its negative. (This is determined by having a 0 or a 1 on the first vector position).
And then finally, what it does is to check the sign of the greater vector and assign it to the output vector W.
The only part left is checking which of the two vectors is greaters, because as I was testing it, on some cases, it would give me a wrong answer.
For example:
[+][9][1][2][3][4][5][6][7][8][9]
[+][9][1][1][2][3][4][5][6][7][8]
Would give:
[+][8][1][1][1][1][1][1][1][1]
But it doesn't make the opperation cause it thinks that the second vector is greater.
Translation: Is Z greater than X?
bool ES_MAJOR_VECTOR_SIGNE(vector Z, vector X) {
int END(0), UP(2);
return false;
if (Z[1] > X[1])
{
return true;
}
else
{
while (END != 1)
{
if (Z[UP] > X[UP])
{
return true;
END = 1;
}
UP++;
}
}
}

Recursively mapping mines on a minesweeper board

I have been trying to make a minesweeper game where given coordinates for a cell it will recursively reveal adjacent cells until a cell adjacent to a bomb is found. I have a method that given coordinates x and y calculates how many mines are surrounding it.
// Counts how many mines are adjacent to a given coordinate cell if any
void board::mineCount(int x, int y) {
// North
if (y > 0) {
if (board[x][y - 1].hasMine) {
board[x][y].mineCount++;
}
}
// South
if (y < dimensions[1] - 1) {
if (board[x][y + 1].hasMine) {
board[x][y].mineCount++;
}
}
// East
if (x < dimensions[0] - 1) {
if (board[x + 1][y].hasMine) {
board[x][y].mineCount++;
}
}
// West
if (x > 0) {
if (board[x - 1][y].hasMine) {
board[x][y].mineCount++;
}
}
// North East
if (x < dimensions[0] - 1 && y > 0) {
if (board[x + 1][y - 1].hasMine) {
board[x][y].mineCount++;
}
}
// North West
if (x > 0 && y > 0) {
if (board[x - 1][y - 1].hasMine) {
board[x][y].mineCount++;
}
}
// South East
if (x < dimensions[0] - 1 && y < dimensions[1] - 1) {
if (board[x + 1][y + 1].hasMine) {
board[x][y].mineCount++;
}
}
// South West
if (x > 0 && y < dimensions[1] - 1) {
if (board[x - 1][y + 1].hasMine) {
board[x][y].mineCount++;
}
}
}
Each cell is a struct which has a mineCount field that gets incremented by 1 each time a mine is found adjacent to it. I am having trouble figuring out where my recursion logic would go. I tried doing something like:
// North
if (y > 0) {
if (board[x][y - 1].hasMine) {
board[x][y].mineCount++;
} else {
minecount(x, y-1);
}
}
for each position but to no avail. Any pointers would be appreciated.
The recursion shouldn't be a part of the code that performs the mine count itself. It should be part of the function that's responsible for revealing nearby tiles.
int get_adjacent_mine_count(point p) {
int mine_count = 0;
for(int i = -1; i <= 1; i++) {
for(int j = -1; j <= 1; j++) {
point this_point(p.x + i, p.y + j);
//is_inside_board checks to see if the point's coordinates are less than 0
//or greater than the board size
if(!is_inside_board(board, this_point)) continue;
//We ignore the center tile
if(i == 0 && j == 0) continue;
if(board(this_point).hasMine)
mine_count++;
}
}
return mine_count;
}
void reveal_tiles(point p) {
//We shouldn't throw if the recursion is correct
if(board(p).hasMine) throw Explosion("Stepped on a Mine!");
//Single call to previously defined function
int num_of_adjacent_mines = get_adjacent_mine_count(p);
//I'm assuming this gets initialized to -1 beforehand
board(p).revealed = num_of_adjacent_mines;
if(num_of_adjacent_mines == 0) {
for(int i = -1; i <= 1; i++) {
for(int j = -1; j <= 1; j++) {
point this_point(p.x + i, p.y + j);
if(!is_inside_board(board, this_point)) continue;
if(i == 0 && j == 0) continue;
if(board(this_point).revealed == -1)
reveal_tiles(this_point);
}
}
}
}
I'm going to strongly recommend you write a simple Matrix class to represent board, which my code implies you've done, because that's a much more robust solution than just trying to interact with a 2D array the C-style way you're doing it.

Different results VS C++ and GNU g++

I have a program that works in VS C++ and does not work with g++. Here is the code:
#define _USE_MATH_DEFINES
#include <cmath>
#include <iostream>
#include <vector>
#include <cstdio>
#include <algorithm>
#include <set>
#define EP 1e-10
using namespace std;
typedef pair<long long, long long> ii;
typedef pair<bool, int> bi;
typedef vector<ii> vii;
// Returns the orientation of three points in 2D space
int orient2D(ii pt0, ii pt1, ii pt2)
{
long long result = (pt1.first - pt0.first)*(pt2.second - pt0.second)
- (pt1.second - pt0.second)*(pt2.first - pt0.first);
return result == 0 ? 0 : result < 0 ? -1 : 1;
}
// Returns the angle derived from law of cosines center-pt1-pt2.
// Defined to be negative if pt2 is to the right of segment pt1 to center
double angle(ii center, ii pt1, ii pt2)
{
double aS = pow(center.first - pt1.first, 2) + pow(center.second - pt1.second, 2);
double bS = pow(pt2.first - pt1.first, 2) + pow(pt2.second - pt1.second, 2);
double cS = pow(center.first - pt2.first, 2) + pow(center.second - pt2.second, 2);
/* long long aS = (center.first - pt1.first)*(center.first - pt1.first) + (center.second - pt1.second)*(center.second - pt1.second);
long long bS = (pt2.first - pt1.first)*(pt2.first - pt1.first) + (pt2.second - pt1.second)*(pt2.second - pt1.second);
long long cS = (center.first - pt2.first)*(center.first - pt2.first) + (center.second - pt2.second)*(center.second - pt2.second);*/
int sign = orient2D(pt1, center, pt2);
return sign == 0 ? 0 : sign * acos((aS + bS - cS) / ((sqrt(aS) * sqrt(bS) * 2)));
}
// Computes the average point of the set of points
ii centroid(vii &pts)
{
ii center(0, 0);
for (int i = 0; i < pts.size(); ++i)
{
center.first += pts[i].first;
center.second += pts[i].second;
}
center.first /= pts.size();
center.second /= pts.size();
return center;
}
// Uses monotone chain to convert a set of points into a convex hull, ordered counter-clockwise
vii convexHull(vii &pts)
{
sort(pts.begin(), pts.end());
vii up, dn;
for (int i = 0; i < pts.size(); ++i)
{
while (up.size() > 1 && orient2D(up[up.size()-2], up[up.size()-1], pts[i]) >= 0)
up.pop_back();
while (dn.size() > 1 && orient2D(dn[dn.size()-2], dn[dn.size()-1], pts[i]) <= 0)
dn.pop_back();
up.push_back(pts[i]);
dn.push_back(pts[i]);
}
for (int i = up.size()-2; i > 0; --i)
{
dn.push_back(up[i]);
}
return dn;
}
// Tests if a point is critical on the polygon, i.e. if angle center-qpt-polygon[i]
// is larger (smaller) than center-qpt-polygon[i-1] and center-qpt-polygon[i+1].
// This is true iff qpt-polygon[i]-polygon[i+1] and qpt-polygon[i]-polygon[i-1]
// are both left turns (min) or right turns (max)
bool isCritical(vii &polygon, bool mx, int i, ii qpt, ii center)
{
int ip1 = (i + 1) % polygon.size();
int im1 = (i + polygon.size() - 1) % polygon.size();
int p1sign = orient2D(qpt, polygon[i], polygon[ip1]);
int m1sign = orient2D(qpt, polygon[i], polygon[im1]);
if (p1sign == 0 && m1sign == 0)
{
return false;
}
if (mx)
{
return p1sign <= 0 && m1sign <= 0;
}
else
{
return p1sign >= 0 && m1sign >= 0;
}
}
// Conducts modified binary search on the polygon to find tangent lines in O(log n) time.
// This is equivalent to finding a max or min in a "parabola" that is rotated and discrete.
// Vanilla binary search does not work and neither does vanilla ternary search. However, using
// the fact that there is only a single max and min, we can use the slopes of the points at start
// and mid, as well as their values when compared to each other, to determine if the max or min is
// in the left or right section
bi find_tangent(vii &polygon, bool mx, ii qpt, int start, int end, ii center)
{
// When query is small enough, iterate the points. This avoids more complicated code dealing with the cases not possible as
// long as left and right are at least one point apart. This does not affect the asymptotic runtime.
if (end - start <= 4)
{
for (int i = start; i < end; ++i)
{
if (isCritical(polygon, mx, i, qpt, center))
{
return bi(true, i);
}
}
return bi(false, -1);
}
int mid = (start + end) / 2;
// use modulo to wrap around the polygon
int startm1 = (start + polygon.size() - 1) % polygon.size();
int midm1 = (mid + polygon.size() - 1) % polygon.size();
// left and right angles
double startA = angle(center, qpt, polygon[start]);
double midA = angle(center, qpt, polygon[mid]);
// minus 1 angles, to determine slope
double startm1A = angle(center, qpt, polygon[startm1]);
double midm1A = angle(center, qpt, polygon[midm1]);
int startSign = abs(startm1A - startA) < EP ? 0 : (startm1A < startA ? 1 : -1);
int midSign = abs(midm1A - midA) < EP ? 0 : (midm1A < midA ? 1 : -1);
bool left = true;
// naively 27 cases: left and left angles can be <, ==, or >,
// slopes can be -, 0, or +, and each left and left has slopes,
// 3 * 3 * 3 = 27. Some cases are impossible, so here are the remaining 18.
if (abs(startA - midA) < EP)
{
if (startSign == -1)
{
left = !mx;
}
else
{
left = mx;
}
}
else if (startA < midA)
{
if (startSign == 1)
{
if (midSign == 1)
{
left = false;
}
else if (midSign == -1)
{
left = mx;
}
else
{
left = false;
}
}
else if (startSign == -1)
{
if (midSign == -1)
{
left = true;
}
else if (midSign == 1)
{
left = !mx;
}
else
{
left = true;
}
}
else
{
if (midSign == -1)
{
left = false;
}
else
{
left = true;
}
}
}
else
{
if (startSign == 1)
{
if (midSign == 1)
{
left = true;
}
else if (midSign == -1)
{
left = mx;
}
else
{
left = true;
}
}
else if (startSign == -1)
{
if (midSign == -1)
{
left = false;
}
else if (midSign == 1)
{
left = !mx;
}
else
{
left = false;
}
}
else
{
if (midSign == 1)
{
left = true;
}
else
{
left = false;
}
}
}
if (left)
{
return find_tangent(polygon, mx, qpt, start, mid+1, center);
}
else
{
return find_tangent(polygon, mx, qpt, mid, end, center);
}
}
int main(){
int n, m;
cin >> n >> m;
vii rawPoints(n);
for (int i = 0; i < n; ++i)
{
cin >> rawPoints[i].first >> rawPoints[i].second;
}
vii polygon = convexHull(rawPoints);
set<ii> points(polygon.begin(), polygon.end());
ii center = centroid(polygon);
for (int i = 0; i < m; ++i)
{
ii pt;
cin >> pt.first >> pt.second;
bi top = find_tangent(polygon, true, pt, 0, polygon.size(), center);
bi bot = find_tangent(polygon, false, pt, 0, polygon.size(), center);
// a query point is inside if it is collinear with its max (top) and min (bot) angled points, it is a polygon point, or if none of the points are critical
if (!top.first || orient2D(polygon[top.second], pt, polygon[bot.second]) == 0 || points.count(pt))
{
cout << "INSIDE" << endl;
}
else
{
cout << polygon[top.second].first << " " << polygon[top.second].second << " " << polygon[bot.second].first << " " << polygon[bot.second].second << endl;
}
}
}
My suspicion is there's something wrong with the angle function. I have narrowed it down to either that or find_tangent. I also see different results in g++ when I switch from double to long long in the angle function. The double results are closer to correct, but I can't see why it should be any different. The values I'm feeding in are small and no overflow/ rounding should be causing issues. I have also seen differences in doing pow(x, 2) or x*x when I assign to a double. I don't understand why this would make a difference.
Any help would be appreciated!
EDIT: Here is the input file: https://github.com/brycesandlund/Coursework/blob/master/Java/PrintPoints/points.txt
Here is the correct result:
https://github.com/brycesandlund/Coursework/blob/master/CompGeo/CompGeo/correct.txt
Here is the incorrect result:
https://github.com/brycesandlund/Coursework/blob/master/CompGeo/CompGeo/fast.txt
The problem was with this piece of code:
// Computes the average point of the set of points
ii centroid(vii &pts)
{
ii center(0LL, 0LL);
for (int i = 0; i < pts.size(); ++i)
{
center.first += pts[i].first;
center.second += pts[i].second;
}
center.first /= pts.size(); //right here!!
center.second /= pts.size();
return center;
}
I don't know why but g++ was taking the negative center.first and turning it into a positive, overflowed long long when dividing by the unsigned integer pts.size. By converting the statements into:
center.first /= (long long)pts.size();
center.second /= (long long)pts.size();
The output from g++ and VS c++ matches.

My c++ program runs, but say "8queens.exe has stopped working"

this code attempts to solve the 4 queens problem, placing 4 queens on a 4*4 chessboard without any of them being able to capture eachother
#include <iostream>
using namespace std;
int Place(int Chess[][4], int collumn, int i);
bool Check(int Chess[][4], int collumn, int i);
int findrow(int Chess[][4], int collumn);
const int size = 3;
int main()
{
int Chess[4][4];
int collumn;
int i = 0;
collumn = 0;
for(int s = 0; s < 4; s++)
{
for(int j = 0; j < 4; j ++)
{
Chess[s][j] = 0;
}
}
//Chess[0][0] = 1;
//Chess[3][3] = 1;
//if(Check(Chess, 3, 3) == false)
Place(Chess, collumn, i);
for(int z = 0; z < 4; z++)
{
for(int a = 0; a < 4; a++)
{
if(Chess[z][a] == 1)
cout<<"Row: "<<z<<"Collumn: "<<a<<"."<<endl;
}
cout<<endl;
}
system("pause");
return 0;
}
int Place(int Chess[][4], int collumn, int i)
{
if(collumn > size)
return 0;
while(i <= size)
{
if(Check(Chess, collumn, i) == true)
{
//cout<<"hi"<<endl;
Chess[collumn][i] = 1;
return(Place(Chess, (collumn + 1), i));
}
i ++;
}
if(i>= size)
{
//cout<<"hilo"<<endl;
return Place(Chess, collumn-1, findrow(Chess, collumn-1));
}
}
bool Check(int Chess[][4], int collumn, int i)//checks to see if it can be captured
{// very inneficitnt
int x = collumn;// this is so we can now work in terms of x and y
int y = i;
bool found = true;
// checks all the diagonal captures
if(Chess[x -1 ][y -1]== 1&& x>=1 && y >=1 )
found = false;
if(Chess[x -2 ][y - 2]== 1&& x>=2 && y>=2 )
found = false;
if(Chess[x - 3][y - 3]== 1 && x>=3 && y>=3 )
found = false;
if(Chess[x + 1][y - 1] == 1&& x<=2 && y>=1 )
found = false;
if(Chess[x + 2][y -2] == 1&& x<=1 && y>=2)
found = false;
if(Chess[x + 3][y - 3] == 1 && x<=0 && y>=3)
found = false;
if(Chess[x + 1][y + 1] == 1 && x<=2 && y<=2)
found = false;
if(Chess[x + 2][y + 2] == 1&& x<=1 && y<=1)
found = false;
if(Chess[x + 3][y + 3] == 1 && x<=0 && y<=0 )
found = false;
if(Chess[x -1 ][y + 1]== 1 && x>=1 && y<=2 )
found = false;
if(Chess[x - 2][y + 2] == 1&& x>=2 && y<=1 )
found = false;
if(Chess[x - 3][y + 3] == 1&& x>=3 && y<=0)
found = false;
//checks all the horizontal captures. We don't need to check for vertical captures
if(Chess[x + 1][y] == 1 && x<=2)
found = false;
if(Chess[x + 2][y] == 1&& x<=1 )
found = false;
if(Chess[x+3][y] == 1 && x<=0)
found = false;
if(Chess[x -1 ][y] == 1&& x>=1)
found = false;
if(Chess[x-2][y] == 1&& x>=2 )
found = false;
if(Chess[x-3][y] == 1 && x>=3)
found = false;
if(found == false)
return false;
if(found == true)
return true;
}
int findrow(int Chess[][4], int collumn)
{
for(int z = 0; z < 4; z++)
{
if(Chess[collumn][z] == 1)
{
Chess[collumn][z] = 0;
return z;
}
}
}
The first thing I see is a probable out-of-bounds access:
if(Chess[x -1 ][y -1]== 1&& x>=1 && y >=1 )
What if the value of x is 0? You are accessing Chess[-1][y], which is out of bounds. Your if statement does not stop this, even with the x>=1 condition.
The if will first test the Chess[x-1][y-1]==1 condition. If you want this to not happen, place the test for x>=1 before Chess[x-1][y-1]==1.
But even with this, that entire section of code looks suspicious. I wouldn't be surprised if there were more out-of-bounds accesses.