Boost.asio and asynchronous chain, unique_ptr? - c++

I am not deeply familiar with async programming and I have a question.
My question is the following. Given the echo_server example here for C++11 in boost.asio: http://www.boost.org/doc/libs/1_60_0/doc/html/boost_asio/example/cpp11/spawn/echo_server.cpp
I would like to know if the std::make_shared<session> can be replaced in C++14 with a std::unique_ptr<session>in C++14, avoiding the overhead of reference count.
I am not sure since we have shared_from_this() but not something like unique_from_this(), so how can I access the unique_ptr<session> from inside this?.

No, the use of shared_ptr in asio programming is idiomatic.
The idea is that the number of outstanding handlers is matched by the shared-count of the object initiating the async operations. This is achieved by binding a copy of the shared_ptr managing the object into the handler function objects.
The c++11/14 way would be to replace the boost::shared_ptr with std::shared_ptr (std::bind, lambdas, etc also work perfectly well with asio).
Update, now that I fully understand the question:
In the example you linked, I take it that you're referring to the shared_ptr called self which is created in the method go() ? You could write it without the shared_ptr if you wanted. You'd have to put a delete this as the last line of go(). You'd also have to remember to catch any exceptions to ensure this code path was taken. A unique_ptr could be set up to do this of course, but then you've got a lifetime management issue between the construction of the session and the successful creation of the adopting unique_ptr. shared_ptr eases the management burden for the cost of one atomic inc...
In which case the answer is strictly "yes", but imho I'll-advised as it's more brittle.

As I understand it, your session object will go through a pipeline of handlers, one at a time. The state of your session is never shared. Why a unique_ptr would not make sense? The point is that when the latest handler is finished, the memory will be released. Does this hold true?
Yes, this is the trick. The library has been designed around copyable completion handlers.
If you worry about overhead, indeed avoid shared_ptr.
In that case, just carry a reference to some state with externally controlled lifetime. Just make sure it stays alive (just as you do with the io_service object itself).

Related

What are the advantages or disadvantages to using a stored boost::function vs boost::bind with boost::asio?

I have inherited some boost::asio code that takes advantage of the asynchronous methods to read/write data with some socket. Currently the code uses boost::bind for the Read/Write Handlers to class member functions like this:
boost::asio::async_read(socket_, boost::asio::buffer(&in_data.header.packet_size, 1), boost::bind(&SocketIO::handle_read, shared_from_this(), boost::asio::placeholders::error);
I would like to change the code to use a stored version of the bind using boost::function but I am unclear if there are any advantages or disadvantages to doing this. I would think that not recreating the bind continuously would reduce object allocations. However the boost documentation for async_receive (Listed Here) states "Copies will be made of the handler as required". I am unsure of what conditions would require a copy to be made or not.
Any insight on this would be appreciated.
Bind can actually be fairly efficient, as it can operate without ever going to the heap. It simply copies your variables and placeholders to an internal structure on the stack, and returns that. The resulting type is quite complicated, but you don't usually need to see any of that.
If you were to store this in a boost::function, this would require some sort of heap allocation. This, in theory would only happen once, but in this case, it's not practical.
The second argument to your bind call is shared_from_this(). This is a great way to make sure that your object isn't destroyed before all of its handlers are invoked, since ASIO will retain a shared_ptr to your object. The issue is that if you were to store the result of bind in a boost::function, you would also store the shared pointer. This would result in there always being a shared_ptr to your object, preventing proper destruction of your object.

Ownership and how to avoid shared_ptr

I'm trying to write a simple event manager class and listeners for a game engine. In the usual implementation (i.e. McShaffry) the event manager registers listeners which in principle saves a shared_ptr to the listener as a private member.
I have seen in many instances people saying that shared_ptr and the likes should be avoided (eg here). Thus, I'm trying to find ways to implement the event manager without sharing ownership of the listeners.
One method I've thought of, is assigning unique ids to the listeners and register their ids with the event manager. Then the listeners are responsible of 'asking' the event manager after it has updated, if any events are available under their id.
I would like to ask if there are cleaner and/or standard methods to avoid shared ownership in this case, but also generally. For example, I have the same problem with the listeners. The listeners need to store a pointer to their parent (or the object for which they are listening) so that they can call its methods when handling an event.
As Mat’s comment says, there’s no reason not to use smart pointers in general. That said, the cautionary warning does seem to apply in your situation: as far as I understand you don’t have shared ownership; the event manager has sole ownership of the listeners. A shared_ptr would thus be inappropriate here.
An alternative would be to use a unique_ptr which is in many ways the other side of the shared_ptr coin. But depending on how you model listeners even that can be avoided by simply saving concrete instances to the event manager. Without a more detailed description it’s impossible to say whether you need pointers at all but if you don’t need them then, yes, the advice applies: don’t use (smart) pointers when concrete objects would do.
Finally, if your listeners are objects whose ownership is managed elsewhere consider simply using raw pointers to those objects: in that case, the event manager isn’t at all owner of the object – neither the sole nor a shared owner. While this would be the preferred way for me, it requires careful analysis about the listeners’ life-time to ensure that the event manager doesn’t point to listeners which don’t exist any more.
shared_ptr tends to be overused; it is often recommended, for example, on SO as a solution to vaguely stated pointer problems. It is not a substitute for good design, and should not be used unless there is a design in place that is based on understanding object lifetime issues in the code being written.
From personal experience, shared_ptrs a great, but sometimes may not be the correct tool for the job. If the code is entirely under your control, 99.9% of the time, shared_ptr will likely make your life easier. You do need to make sure you don't do thinks like:
Foo *f = new Foo();
shared_ptr<Foo> fptr(f);
shared_ptr<Foo> fptr2(f);
This will cause the memory for f to be deallocated with either fptr1 or fptr2. Instead you want to do something like:
Foo *f = new Foo();
shared_ptr<Foo> fptr(f);
shared_ptr<Foo> fptr2 = fptr;
In the second case, the assignment of one shared pointer to another will increment the reference count.
Another place where you can get in trouble with shared_ptr is if you need to pass a naked pointer to a function (this might occur if you need to pass this as the first parameter to a method, or you are relying on a 3rd party library). You can get the naked pointer from the shared_ptr, but you aren't guaranteed the memory address it's pointing to will still be around, as the reference counter won't be incremented.
You can around this by keeping an additional shared_ptr, though this can be a hassle.
There are other forms of smart pointers. For example, OpenSceneGraph has a ref_ptr which is easier to work with than shared_ptr. The one caveat, is that all objects it points to must descend from Referenced. However, if you're okay with that, I think it's a lot more difficult to have really bad things happen.
In some cases shared_ptr is overkill or doesn't properly exibhit the desired semantics (for example passing ownership).
What you need to do is look at your design and see what ownership model you need. If you need/want shared ownership then just use shared_ptr to model that. If a shared/ref counted ownership is not appropriate use another smart pointer.
Wouldn't your case be a good fit for a nice use of auto_ptr described here : http://www.gotw.ca/publications/using_auto_ptr_effectively.htm (guru of the week «using auto_ptr effectively)
For what I understand, you build a listener, then give it to an event manager. So the event manager can be seen as a "sink".
With the auto_ptr technique, your event manager can cleanly and safely take full ownership of the listener you give him.

Weak reference to a scoped_ptr?

Generally I follow the Google style guide, which I feel aligns nicely with the way I see things. I also, almost exclusively, use boost::scoped_ptr so that only a single manager has ownership of a particular object. I then pass around naked pointers, the idea being that my projects are structured such that the managers of said objects are always destroyed after the objects that use them are destroyed.
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml#Smart_Pointers
This is all great, however I was just bitten by a nasty little memory stomp bug where the owner just so happened to be deleted before objects that were using it were deleted.
Now, before everyone jumps up and down that I'm a fool for this pattern, why don't I just use shared_ptr ? etc., consider the point that I don't want to have undefined owner semantics. Although shared_ptr would have caught this particular case, it sends the wrong message to users of the system. It says, "I don't know who owns this, it could be you!"
What would have helped me would have been a weak pointer to a scoped pointer. In effect, a scoped pointer that has a list of weak references, that are nulled out when the scoped pointer destructs. This would allow single ownership semantics, but give the using objects a chance to catch the issue I ran into.
So at the expense of an extra 'weak_refs' pointer for the scoped_ptr and an extra pointer for the 'next_weak_ptr' in the weak_ptr, it would make a neat little single owner, multiple user structure.
It could maybe even just be a debug feature, so in 'release' the whole system just turns back into a normally sized scoped_ptr and a standard single pointer for the weak reference.
So..... my QUESTIONS after all of this are:
Is there such a pointer/patten already in stl/boost that I'm
missing, or should I just roll my own?
Is there a better way, that
still meets my single ownership goal?
Cheers,
Shane
2. Is there a better way, that still meets my single ownership goal?
Do use a shared_ptr, but as a class member so that it's part of the invariant of that class and the public interface only exposes a way to obtain a weak_ptr.
Of course, pathological code can then retain their own shared_ptr from that weak_ptr for as long as they want. I don't recommend trying to protect against Machiavelli here, only against Murphy (using Sutter's words). On the other hand, if your use case is asynchronous, then the fact that locking a weak_ptr returns a shared_ptr may be a feature!
Although shared_ptr would have caught this particular case, it sends the wrong message to users of the system. It says, "I don't know who owns this, it could be you!"
A shared_ptr doesn't mean "I don't know who owns this". It means "We own this." Just because one entity does not have exclusive ownership does not mean that anyone can own it.
The purpose of a shared_ptr is to ensure that the pointer cannot be destroyed until everyone who shares it is in agreement that it ought to be destroyed.
Is there such a pointer/patten already in stl/boost that I'm missing, or should I just roll my own?
You could use a shared_ptr exactly the same way you use a scoped_ptr. Just because it can be shared doesn't mean you have to share it. That would be the easiest way to work; just make single-ownership a convention rather than an API-established rule.
However, if you need a pointer that is single-owner and yet has weak pointers, there isn't one in Boost.
I'm not sure that weak pointers would help that much. Typically, if a
component X uses another component Y, X must be informed of Y's demise,
not just to nullify the pointer, but perhaps to remove it from a list,
or to change its mode of operation so that it no longer needs the
object. Many years ago, when I first started C++, there was a flurry of
activity trying to find a good generic solution. (The problem was
called relationship management back then.) As far as I know, no good
generic solution was every found; at least, every project I've worked on
has used a hand built solution based on the Observer pattern.
I did have a ManagedPtr on my site, when it was still up, which behaved
about like what you describe. In practice, except for the particular
case which led to it, I never found a real use for it, because
notification was always needed. It's not hard to implement, however;
the managed object derives from a ManagedObject class, and gets all of
the pointers (ManagedPtr, and not raw pointers) it hands out from it.
The pointer itself is registered with the ManagedObject class, and the
destructor of the ManagedObject class visits them all, and "disconnects"
them by setting the actual pointer to null. And of course, ManagedPtr
has an isValid function so that the client code can test before
dereferencing. This works well (regardless of how the object is
managed—most of my entity objects "own" themselves, and do a
delete this is response to some specific input), except that you tend
to leak invalid ManagedPtr (e.g. whenever the client keeps the pointer
in a container of some sort, because it may have more than one), and
clients still aren't notified if they need to take some action when your
object dies.
If you happen to be using QT, QPointer is basically a weak pointer to a QObject. It connects itself to the "I just got destroyed" event in the pointed-to value, and invalidates itself automatically as needed. That's a seriously hefty library to pull in for what amounts to bug tracking, though, if you aren't already jumping through QT's hoops.

boost shared_from_this<>()

could someone summarize in a few succinct words how the boost shared_from_this<>() smart pointer should be used, particularly from the perspective of registering handlers in the io_service using the bind function.
EDIT: Some of the responses have asked for more context. Basically, I'm looking for "gotchas", counter-intuitive behaviour people have observed using this mechanism.
The biggest "gotcha" I've run into is that it's illegal to call shared_from_this from the constructor. This follows directly from the rule that a shared_ptr to the object must exist before you can call shared_from_this.
From my understanding, sometimes in your code you want a class to offer up shared_ptr's to itself so that other parts of your code can obtain shared_ptr's to an object of your class after it has been constructed.
The problem is that if your class just has a shared_ptr<> to itself as a member variable, it will never get automatically destructed, since there is always "one last reference" hanging around to itself. Inheriting from enable_shared_from_this gives your class an automatic method which not only returns a shared_ptr, but only holds a weak shared pointer as a member variable so as not to affect the reference count. This way, your class will be freed as usual when the last reference to it is gone.
I've never used it, but this is my understanding of how it works.
shared_from_this<> is used if an object wants to get access to a shared_ptr<> pointing to itself.
Usually an object only knows about the implicit this pointer, but not about any shared_ptr<> managing it. Also, this cannot easily be converted into a shared_ptr<> that shares ownership with other existing shared_ptr<> instances, so there is no easy way for an object to get a valid shared_ptr<> to itself.
shared_from_this<> can be used to solve this problem. For example:
struct A : boost::enable_shared_from_this<A> {
server *io;
// ...
void register_self() {
io->add_client(shared_from_this());
}
};
the boost::asio::io_service destructor documentation explains it fairly well
The destruction sequence described
above permits programs to simplify
their resource management by using
shared_ptr<>. Where an object's
lifetime is tied to the lifetime of a
connection (or some other sequence of
asynchronous operations), a shared_ptr
to the object would be bound into the
handlers for all asynchronous
operations associated with it. This
works as follows:
When a single connection ends, all associated asynchronous operations
complete. The corresponding handler
objects are destroyed, and all
shared_ptr references to the objects
are destroyed.
To shut down the whole program, the io_service function stop() is called
to terminate any run() calls as soon
as possible. The io_service destructor
defined above destroys all handlers,
causing all shared_ptr references to
all connection objects to be
destroyed.
Typically your objects will chain asynchronous operations where the handlers are bound to member functions using boost::bind and boost::shared_from_this(). There are some examples that use this concept.
Stuff is missing from some of the comments above. Here's an example that helped me:
Boost enable_shared_from_this example
For me, I was struggling with errors about bad weak pointers. You HAVE to allocate your object in a shared_ptr fashion:
class SyncSocket: public boost::enable_shared_from_this<SyncSocket>
And allocate one like this:
boost::shared_ptr<SyncSocket> socket(new SyncSocket);
Then you can do things like:
socket->connect(...);
Lots of examples show you how to use shared_from_this() something like this:
boost::asio::async_read_until(socket, receiveBuffer, haveData,
boost::bind(&SyncSocket::dataReceived, shared_from_this(), boost::asio::placeholders::error));
But was missing for me was using a shared_ptr to allocate the object to begin with.

C++ message passing doubts

I'm writing a piece of sotware that needs objects that exchange messages between each other.
The messages have to have the following contents:
Peer *srcPeer;
const char* msgText;
void* payload;
int payLoadLen;
now, Peer has to be a pointer as I have another class that manages Peers. For the rest I'm doubtful... for example I may copy the message text and payload (by allocating two new buffers) as the message is created, then putting the deletes in the destructor of the message. This has the great advantage of avoiding to forget the deletes in the consumer functions (not the mention to make those functions simpler) but it will result in many allocations & copies and can make everything slow. So I may just assing pointers and still have the destructor delete eveything... or ... well this is a common situation that in other programming languages is not even a dilemma as there is a GC. What are your suggestions and what are the most popular practices?
Edit:
I mean that I'd like to know what are the best practices to pass the contents... like having another object that keeps track of them, or maybe shared pointers... or what would you do...
You need clear ownership: when a message is passed between peers, is the ownership changed? If you switch ownership, just have the receiver do the clean-up.
If you just "lease" a message, make sure to have a "return to owner" procedure.
Is the message shared? Then you probably need some copying or have mutexes to protect access.
If all of the messages are similar, consider using a trash stack (http://library.gnome.org/devel/glib/stable/glib-Trash-Stacks.html) - this way, you can keep a stack of allocated-yet-uninitialized message structures that you can reuse without taking the constant malloc/free hit.
Consider using shared_ptr<>, available from Boost and also part of the std::tr1 library, rather than raw pointers. It's not the best thing to use in all cases, but it looks like you want to keep things simple and it's very good at that. It's local reference-count garbage collection.
There are no rules or even best practices for this in C++, except insofar as you make a design decision about pointer ownership and stick to it.
You can try to enforce a particular policy through use of smart pointers, or you can simply document the designed behavior and hope everyone reads the manual.
In C++, you can have reference counting too, like here:
http://library.gnome.org/devel/glibmm/stable/classGlib_1_1RefPtr.html
In this case, you can pass Glib::RefPtr objects. When the last of these RefPtr-s are destroyed associated to a pointer, the object is deleted itself.
If you do not want to use glibmm, you can implement it too, it's not too difficult. Also, probably STL and boost have something like these too.
Just watch out for circular references.
The simplest thing to do is to use objects to manage the buffers. For instance, you might use std::string for both the msgText and payload members and you could do away with the payLoadLen as it would be taken care of by the payload.size() method.
If and only if you measure the performance of this solution and the act of copying the msgText and payload were causing an unacceptable performance hit, you might choose to using a shared pointer to structure that was shared by copies of the message.
In (almost) no situation would I rely on remembering to call delete in a destructor or manually writing safe copy-assignment operator and copy constructor.
The simplest policy to deal with is copying the entire message (deep copy) and send that copy to the recipient. It will require more allocation, but it frees you from many problems related to concurrent access to data. If performance gets critical, there is still room for some optimizations (like avoiding copies if the object only has one owner who is willing to give up ownership of it when sending it, etc).
Each owner is then responsible for cleaning up the message object.