converting vector iterator to pointer - c++

I have a vector std::vector. I would like to iterate the vector for finding a match, if found would like to return the pointer to the element as below:
const int * findint(std::vector <int> &v, int a)
{
std::vector<int>::const_iterator i1,i2;
i1 = v.begin();
i2 = v.end();
for(;i1 != i2;++i1) {
if(a== *i1) {
return(i1);
}
}
return(0);
}
This was compiling and working ok with GNU g++2.95.3 compiler but not compiling with GNU g++ 4.9.2 and giving the following error:
error: cannot convert 'std::vector<GenFld>::const_iterator {aka __gnu_cxx::__normal_iterator<const int*, std::vector<int> >}' to 'const int*' in return
[exec] return(i1);
Need help.

This will solve your problem:
const int * findint(const std::vector <int> &v, int a){
auto i1 = v.cbegin();
auto i2 = v.cend();
for(;i1 != i2;++i1){
if(a == *i1){
return &*i1;
}
}
return nullptr;
}
Edit: Note that I changed iterators to cbegin and cend also the vector is now passed as const.
However, the right way to do it IMO (with respect to nathanoliver note):
auto it = std::find(v.cbegin(),v.cend(),value);
decltype(&*it) ptr;
if(it==v.cend()){
ptr = nullptr;
}
else{
ptr = &*it;
}
You have to be careful when using this. Pointers and Iterators may be invalid after any push_back or insert or erase on the vector, for a comprehensive list see Iterator invalidation rules. If you want to keep a clue to reach some item later. and if you can guarantee that only adding to the back of the vector will happen, you may keep the index of the item using:
auto it = std::find(v.cbegin(),v.cend(),value);
size_t index;;
if(it==v.cend()){
//do something
}
else{
index = std::distance(v.cbegin(),it)
}

Use v.data():
const int * findint(const std::vector <int> &v, int a)
{
const int * const b = v.data();
const int * const e = b + v.size();
const int * const r = std::find(b, e, a);
return (r == e) ? nullptr : r;
}

You could do something like this
auto i1 = std::find(v.begin(), v.end(), a);
if(i1 != v.end())
{
index = std::distance(v.begin(), i1);
return(&v[index])
}
else
{
return NULL;
}

Related

C++ - Iterate over vector of doubles as tuples

I have a C++ vector of doubles, which is guaranteed to have an even number of elements. This vector stores the coordinates of a set of points as x, y coordinates:
A[2 * i ] is the x coordinate of the i'th point.
A[2 * i + 1] is the y coordinate of the i'th point.
How to implement an iterator that allows me to use STL style algorithms (one that takes an iterator range, where dereferencing an iterator gives back the pair of doubles corresponding to the x, y coordinates of the corresponding point) ?
I'm using C++17 if that helps.
We can use range-v3, with two adapters:
chunk(n) takes a range and adapts it into a range of non-overlapping ranges of size n
transform(f) takes a range of x and adapts it into a range of f(x)
Putting those together we can create an adaptor which takes a range and yields a range of non-overlapping pairs:
auto into_pairs = rv::chunk(2)
| rv::transform([](auto&& r){ return std::pair(r[0], r[1]); });
Using the r[0] syntax assumes that the input range is random-access, which in this case is fine since we know we want to use it on a vector, but it can also be generalized to work for forward-only ranges at the cost of a bit more syntax:
| rv::transform([](auto&& r){
auto it = ranges::begin(r);
auto next = ranges::next(it);
return std::pair(*it, *next);
})
Demo, using fmt for convenient printing:
int main() {
std::vector<int> v = {1, 1, 2, 2, 3, 3, 4, 4, 5, 5};
auto into_pairs = rv::chunk(2)
| rv::transform([](auto&& r){ return std::pair(r[0], r[1]); });
// prints {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}
fmt::print("{}\n", v | into_pairs);
}
It's unclear from the question if you wanted pair<T, T>s or pair<T&, T&>s. The latter is doable by providing explicit types to std::pair rather than relying on class template argument deduction.
C++ is a bit of a moving target - also when it comes to iterators (c++20 has concepts for that...). But would it not be nice to have a lazy solution to the problem. I.e. The tuples get generated on the fly, without casting (see other answers) and without having to write a loop to transform a vector<double> to a vector<tuple<double,double>>?
Now I feel I need a disclaimer because I am not sure this is entirely correct (language lawyers will hopefully point out, if I missed something). But it compiles and produces the expected output. That is something, yes?! Yes.
The idea is to build a pseudo container (which actually is just a facade to an underlying container) with an iterator of its own, producing the desired output type on the fly.
#include <vector>
#include <tuple>
#include <iostream>
#include <iterator>
template <class SourceIter>
struct PairWise {
PairWise() = delete;
PairWise(SourceIter first, SourceIter last)
: first{first}
, last{last}
{
}
using value_type =
typename std::tuple<
typename SourceIter::value_type,
typename SourceIter::value_type
>;
using source_iter = SourceIter;
struct IterState {
PairWise::source_iter first;
PairWise::source_iter last;
PairWise::source_iter current;
IterState(PairWise::source_iter first, PairWise::source_iter last)
: first{first}
, last{last}
, current{first}
{
}
friend bool operator==(const IterState& a, const IterState& b) {
// std::cout << "operator==(a,b)" << std::endl;
return (a.first == b.first)
&& (a.last == b.last)
&& (a.current == b.current);
}
IterState& operator++() {
// std::cout << "operator++()" << std::endl;
if (std::distance(current,last) >= 2) {
current++;
current++;
}
return *this;
}
const PairWise::value_type operator*() const {
// std::cout << "operator*()" << std::endl;
return std::make_tuple(*current, *(current+1));
}
};
using iterator = IterState;
using const_iterator = const IterState;
const_iterator cbegin() const {
return IterState{first,last};
}
const_iterator cend() const {
auto i = IterState{first,last};
i.current = last;
return i;
}
const_iterator begin() const {
// std::cout << "begin()" << std::endl;
return IterState{first,last};
}
const_iterator end() const {
// std::cout << "end()" << std::endl;
auto i = IterState{first,last};
i.current = last;
return i;
}
source_iter first;
source_iter last;
};
std::ostream& operator<<(std::ostream& os, const std::tuple<double,double>& value) {
auto [a,b] = value;
os << "<" << a << "," << b << ">";
return os;
}
template <class Container>
auto pairwise( const Container& container)
-> PairWise<typename Container::const_iterator>
{
return PairWise(container.cbegin(), container.cend());
}
int main( int argc, const char* argv[]) {
using VecF64_t = std::vector<double>;
VecF64_t data{ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
for (const auto x : pairwise(data)) {
std::cout << x << std::endl;
}
return 0;
}
Elements in vector are stored in contiguous memory area, so you can use simple pointer arithmetics to access pair of doubles.
operator++ for iterator should skip 2 doubles at every use.
operator* can return tuple of references to double values, so you can read (pair = *it) or edit values (*it = pair).
struct Cont {
std::vector<double>& v;
Cont(std::vector<double>& v) : v(v) {}
struct Iterator : public std::iterator<std::input_iterator_tag , std::pair<double,double>> {
double* ptrData = nullptr;
Iterator(double* data) : ptrData(data) {}
Iterator& operator++() { ptrData += 2; return *this; }
Iterator operator++(int) { Iterator copy(*this); ptrData += 2; return copy; }
auto operator*() { return std::tie(*ptrData,*(ptrData+1)); }
bool operator!=(const Iterator& other) const { return ptrData != other.ptrData; }
};
auto begin() { return Iterator(v.data()); }
auto end() { return Iterator(v.data()+v.size());}
};
int main() {
std::vector<double> v;
v.resize(4);
Cont c(v);
for (auto it = c.begin(); it != c.end(); it++) {
*it = std::tuple<double,double>(20,30);
}
std::cout << v[0] << std::endl; // 20
std::cout << v[1] << std::endl; // 30
}
Demo
There's not an easy "C++" way to do this that's clean and avoids a copy of the original array. There's always this (make a copy):
vector<double> A; // your original list of points
vector<pair<double,double>> points;
for (size_t i = 0; i < A.size()/2; i+= 2)
{
points[i*2] = pair<double,double>(A[i], A[i+1]);
}
The following would likely work, violates a few standards, and the language lawyers will sue me in court for suggesting it. But if we can assume that the sizeof(XY) is the size of two doubles, has no padding, and expected alignment then cheating with a cast will likely work. This assumes you don't need a std::pair
Non standard stuff ahead
vector<double> A; // your original list of points
struct XY {
double x;
double y;
};
static_assert(sizeof(double)*2 == sizeof(XY));
static_assert(alignof(double) == alignof(XY));
XY* points = reinterpret_cast<XY*>(A.data());
size_t numPoints = A.size()/2;
// iterate
for (size_t i = 0; i < numPoints; i++) {
XY& point = points[i];
cout << point.x << "," << point.y << endl;
}
If you can guarantee that std::vector will always have an even number of entries, you could exploit the fact that an vector of doubles will have the same memory layout as a vector of pairs of doubles. This is kind of a dirty trick though so I wouldn't recommend it if you can avoid it. The good news is that the standard guarantees that vector elements will be contiguous.
inline const std::vector<std::pair<double, double>>& make_dbl_pair(std::vector<double>& v)
{
return reinterpret_cast<std::vector<std::pair<double, double>>&>(v);
}
This will only work for iteration with iterators. The size is likely to be double the number of pairs in the vector because it is still a vector of doubles underneath.
Example:
int main(int argc, char* argv[])
{
std::vector<double> dbl_vec = { 0.0, 1.1, 2.2, 3.3, 4.4, 5.5 };
const std::vector<std::pair<double, double>>& pair_vec = make_dbl_pair(dbl_vec);
for (auto it = pair_vec.begin(); it != pair_vec.end(); ++it) {
std::cout << it->first << ", " << it->second << "\n";
}
std::cout << "Size: " << dbl_vec.size() << "\n";
return 0;
}

How to compose generators with STL algorithms

I have an algorithm which generates combinations from entries of a container and I want to find the combination which minimizes a cost function:
struct Vec { double x; double y; };
double cost( Vec a, Vec b ) {
double dx = a.x - b.x;
double dy = a.y - b.y;
return dx*dx + dy*dy;
}
pair<Vec,Vec> get_pair_with_minimum_cost ( vector<Vec> inp, double (*cost_fun)(Vec,Vec) )
{
pair<Vec,Vec> result;
double min_cost = FLT_MAX;
size_t sz = inp.size();
for(size_t i=0; i<sz; i++) {
for (size_t j=i; j<sz; j++) {
double cost = cost_fun(inp[i], inp[j]);
if (cost < min_cost) {
min_cost = cost;
result = make_pair(inp[i], inp[j]);
}
}
}
return result;
}
vector <Vec> inp = {....};
auto best_pair = get_pair_with_minimum_cost ( inp, cost );
Unfortunately, get_pair_with_minimum_cost() does 2 jobs:
generates the combinations
gets the minimum element
I could break them in two functions, like:
the generator:
template <class Func>
void generate_all_combinations_of( vector<Vec> inp, Func fun )
{
size_t sz = inp.size();
for(size_t i=0; i<sz; i++) {
for (size_t j=i; j<sz; j++) {
fun(make_pair(inp[i], inp[j]));
}
}
}
and then use std::min_element on the output of the generator, i.e.
vector<Vec> inp = {....};
vector<pair<Vec,Vec>> all_combinations;
generate_all_combinations_of(inp, [&](vector<pair<Vec,Vec>> o){all_combinations.push_back(o); } );
auto best_pair = *min_element(all_combinations.begin(), all_combinations.end(), cost);
but I do not want the pay the cost of creating and extra container with temporary data (all_combinations).
Questions:
Can I rewrite the generate_all_combinations_of() such that it uses yield or the new std::ranges in such a way that I can combine it with STL algorithms such as find_if, any_of, min_element or even adjacent_pair ?
The great thing about this 'generator' function is that it is easy to read, so I would like to keep it as readable as possible.
NB: some of these algorithms need to break the loop.
What is the official name of combining entries this way?
It this the combinations used in 'bubble-sort'.
Here's how I would write the function in c++20, using range views and algorithms so that there isn't a separate container that stores the intermediate results:
double get_minimum_cost(auto const & inp)
{
namespace rs = std::ranges;
namespace rv = std::ranges::views;
// for each i compute the minimum cost for all j's
auto min_cost_from_i = [&](auto i)
{
auto costs_from_i = rv::iota(i + 1, inp.size())
| rv::transform([&](auto j)
{
return cost(inp[i], inp[j]);
});
return *rs::min_element(costs_from_i);
};
// compute min costs for all i's
auto all_costs = rv::iota(0u, inp.size())
| rv::transform(min_cost_from_i);
return *rs::min_element(all_costs);
}
Here's a demo.
Note that the solution doesn't compare the cost between same elements, since the cost function example you showed would have a trivial result of 0. For a cost function that doesn't return 0, you can adapt the solution to generate a range from i instead of i + 1. Also, if the cost function is not symmetric, make that range start from 0 instead of i.
Also, this function has UB if you call it with an empty range, so you should check for that as well.
There is http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2168r0.pdf who's development I would follow
If you are using MSVC, and can use their experimental/generator (not sure if others support it yet), you can use
std::experimental::generator<std::size_t> Generate(std::size_t const end){
for(std::size_t i = 0; i < end; ++i)
co_yield i;
}
int main(){
auto vals = Generate(22);
auto const result = *std::min_element(std::begin(vals),std::end(vals));
std::cout <<'\n' << " " << result;
}
Here you would need to modify the Generate function to Yield a pair/or to yield cost
(My recommendation would be to Keep things simple and yield the cost)
Then use vals to find min_cost
Ranges
Based on what I can find about the Ranges Proposal, it works on the basis of std::begin and std::end both of which experimental::generator provides
So it should probably work
Here's how I would write the function in c++17, using algorithms' min_element function, with no need for a separate container that stores the intermediate results. I know you were looking for a c++20 solution, but this code does work fine under c++20, and perhaps it gives you some ideas about adapting functions to ranges when the range isn't just one of the ranges supplied by c++20's ranges library.
// TwoContainerRanger is an iterable container where the iterator consists
// of two indices that match the given filter, and whose iterators, when
// dereferenced, return the result of calling func with the
// elements of the two containers, at those two indices.
// filter can be nullptr.
template <typename Container1, typename Container2, typename Func>
struct TwoContainerRanger {
Container1 &c1;
Container2 &c2;
const Func &fun;
bool (*restriction)(size_t i1, size_t i2);
TwoContainerRanger(Container1 &container1, Container2 &container2,
bool (*filter)(size_t i1, size_t i2), const Func &func)
: c1(container1), c2(container2), fun(func), restriction(filter) {}
struct Iterator {
const TwoContainerRanger *gen;
size_t index1, index2;
auto &operator++() {
do {
if (++index1 == gen->c1.size()) {
if (++index2 == gen->c2.size()) {
// we leave both indices pointing to the end
// to indicate that we have reached the end.
return *this;
} else {
index1 = 0u;
}
}
} while (gen->restriction && gen->restriction(index1, index2) == false);
return *this;
}
bool operator==(const Iterator &other) const = default;
bool operator!=(const Iterator &other) const = default;
auto operator*() const {
return gen->fun(gen->c1[index1], gen->c2[index2]);
}
};
Iterator begin() {
Iterator b{this, size_t(0) - 1, 0u};
return ++b; // automatically applies the restriction
}
Iterator end() { return Iterator{this, c1.size(), c2.size()}; }
};
Calling it looks like this:
int main() {
std::array<Vec, 5> ar = {Vec{0, 0}, Vec{1, 1}, Vec{3, 3}, Vec{7, 7},
Vec{3.1, 3.1}};
TwoContainerRanger tcr{ar, ar, Triangle, cost};
auto result = std::min_element(tcr.begin(), tcr.end());
std::cout << "Min was at (" << result.index1 << "," << result.index2
<< "); cost was " << *result << '\n';
}
Here's a demo.

Problems with constant iterators

I'm trying write a tempate function which takes a sequence (by 2 iterators) and calculates the number of permutations of this sequence, in which there are no consecutive identical elements.
Thats what i did
template<class Iterator>
size_t count_perm(Iterator p, Iterator q)
{
if (p == q)
return 1;
size_t count = 0;
while(std::next_permutation(p, q)){
if(std::adjacent_find(p,q) != q)
++count;
}
}
/*Example
std::array<int, 3> a1 = {1,2,3};
size_t c1 = count_perm(a1.begin(), a1.end()); // 6
std::array<int, 5> a2 = {1,2,3,4,4};
size_t c2 = count_perm(a2.begin(), a2.end()); // 36*/
This code not working if i pass const iterators. What should I change to make it work with const iterators?
This code not working if i pass const iterators. What should I change to make it work with const iterators?
You can't: std::next_permutation() modify the values so is incompatible with const iterators.
-- EDIT --
The OP ask
How can i implement this function in right way?
I suggest you to follows the suggestion from Jarod42: works over a copy.
I propose something as follows
template <class Container>
size_t count_perm (Container c) // note: c is a copy
{
if ( c.cbegin() == c.cend() )
return 1;
size_t count = 0U;
std::sort(c.begin(), c.end());
if (std::adjacent_find(c.cbegin(), c.cend()) != c.cend()))
{
std::size_t ui = c.size();
for ( count = ui ; --ui > 1 ; count *= ui )
;
// count now is c.size() ! (factorial of)
}
else
{
while (std::next_permutation(c.begin(), c.end()))
if (std::adjacent_find(c.cbegin(), c.cend()) != c.cend())
++count;
}
return count; // remember this return!
}
Fixed your templated function for you (still requires non-const iterators):
template<class Iterator> size_t count_perm(Iterator p, Iterator q)
{
if (p == q || std::all_of(p, q, [&](auto &el) {return el == *p; })))
return 0;
size_t count = 1;
std::sort(p, q);
while (std::next_permutation(p, q))
if (std::adjacent_find(p, q) == q)
++count;
return count;
}
you should return count
when no adjacent elements are found, std::adjacent_find returns end, so you should == q not != q
Your example produces 6 and 37. Should it be 36 instead of 37?
Solved this exercise as follows, it works with const iterators:
template<class Iterator>
size_t count_permutations(Iterator p, Iterator q)
{
using T = typename std::iterator_traits<Iterator>::value_type;
if (p == q)
return 1;
std::vector<T> v(p,q);
std::sort(v.begin(), v.end());
size_t count = 0;
do{
if(std::adjacent_find(v.begin(),v.end()) == v.end()) {
++count;
}
} while(std::next_permutation(v.begin(), v.end()));
return count;
}
Problem was to use std::type_traits<Iterator>::value_type instead Iterator::value_type (that not working with const iters and simple pointers (like int*))

c++11: Why a const reference vector cannot be traversed? [duplicate]

I'm writing program for graphs. In this program I have a method which has to return vertices inside the weak component originating at vertex. I am getting: Error "vector iterators incompatible"
struct graph {
std::vector <std::vector<int>> gr;
};
std::vector<int> weak_component(const graph& g, int vertex) {
std::vector<int> ret;
stack<int> s;
s.push(vertex);
vector<int>::iterator j;
bool* used = new bool[g.gr.size()];
while (!s.empty()) {
int hodn=s.top();
s.pop();
used[hodn] = true;
for (j == g.gr[hodn].begin(); j != g.gr[hodn].end(); j++) {
if (!used[*j]) {
s.push(*j);
ret.push_back(*j);
}
}
}
return ret;
}
What's wrong with it?
Since you are taking g as a const graph&, this means g.gr is treated as const inside your function. begin on a const vector<T> returns a const_iterator. (also you used == instead of = for assignment)
for (std::vector<int>::const_iterator j = g.gr[hodn].begin(); ...)
But with C++11 or newer you may as well use auto to avoid this
for (auto j = g.gr[hodn].begin(); ...)
or a range-based for:
for (auto&& e : g.gr) {
if (!used[e]) {
s.push(e);
ret.push_back(e);
}
}

vector iterators incompatible with const vector&

I'm writing program for graphs. In this program I have a method which has to return vertices inside the weak component originating at vertex. I am getting: Error "vector iterators incompatible"
struct graph {
std::vector <std::vector<int>> gr;
};
std::vector<int> weak_component(const graph& g, int vertex) {
std::vector<int> ret;
stack<int> s;
s.push(vertex);
vector<int>::iterator j;
bool* used = new bool[g.gr.size()];
while (!s.empty()) {
int hodn=s.top();
s.pop();
used[hodn] = true;
for (j == g.gr[hodn].begin(); j != g.gr[hodn].end(); j++) {
if (!used[*j]) {
s.push(*j);
ret.push_back(*j);
}
}
}
return ret;
}
What's wrong with it?
Since you are taking g as a const graph&, this means g.gr is treated as const inside your function. begin on a const vector<T> returns a const_iterator. (also you used == instead of = for assignment)
for (std::vector<int>::const_iterator j = g.gr[hodn].begin(); ...)
But with C++11 or newer you may as well use auto to avoid this
for (auto j = g.gr[hodn].begin(); ...)
or a range-based for:
for (auto&& e : g.gr) {
if (!used[e]) {
s.push(e);
ret.push_back(e);
}
}