How can I write a Go test that writes to stdin? - unit-testing

Say that I have a simple application that reads lines from stdin and simply echoes it back to stdout. For example:
package main
import (
"bufio"
"fmt"
"io"
"os"
)
func main() {
reader := bufio.NewReader(os.Stdin)
for {
fmt.Print("> ")
bytes, _, err := reader.ReadLine()
if err == io.EOF {
os.Exit(0)
}
fmt.Println(string(bytes))
}
}
I would like to write a test case that writes to stdin and then compares the output to the input. For example:
package main
import (
"bufio"
"io"
"os"
"os/exec"
"testing"
)
func TestInput(t *testing.T) {
subproc := exec.Command(os.Args[0])
stdin, _ := subproc.StdinPipe()
stdout, _ := subproc.StdoutPipe()
defer stdin.Close()
input := "abc\n"
subproc.Start()
io.WriteString(stdin, input)
reader := bufio.NewReader(stdout)
bytes, _, _ := reader.ReadLine()
output := string(bytes)
if input != output {
t.Errorf("Wanted: %v, Got: %v", input, output)
}
subproc.Wait()
}
Running go test -v gives me the following:
=== RUN TestInput
--- FAIL: TestInput (3.32s)
echo_test.go:25: Wanted: abc
, Got: --- FAIL: TestInput (3.32s)
FAIL
exit status 1
I'm obviously doing something incorrect here. How should I go about testing this type of code?

Instead of doing everything in main with stdin and stdout, you can define a function that takes an io.Reader and an io.Writer as parameters and does whatever you want it to do. main could then call that function and your test function could test that function directly.

Here is an example that writes to stdin and reads from stdout. Note that it does not work because the output contains "> " at first. Still, you can modify it to suit your needs.
func TestInput(t *testing.T) {
subproc := exec.Command("yourCmd")
input := "abc\n"
subproc.Stdin = strings.NewReader(input)
output, _ := subproc.Output()
if input != string(output) {
t.Errorf("Wanted: %v, Got: %v", input, string(output))
}
subproc.Wait()
}

Related

mock Stdin and Stdout in Golang [duplicate]

How do I fill os.Stdin in my test for a function that reads from it using a scanner?
I request a user command line input via a scanner using following function:
func userInput() error {
scanner := bufio.NewScanner(os.Stdin)
println("What is your name?")
scanner.Scan()
username = scanner.Text()
/* ... */
}
Now how do I test this case and simulate a user input?
Following example does not work. Stdin is still empty.
func TestUserInput(t *testing.T) {
var file *os.File
file.Write([]byte("Tom"))
os.Stdin = file
err := userInput()
/* ... */
}
Mocking os.Stdin
You're on the right track that os.Stdin is a variable (of type *os.File) which you can modify, you can assign a new value to it in tests.
Simplest is to create a temporary file with the content you want to simulate as the input on os.Stdin. To create a temp file, use ioutil.TempFile(). Then write the content into it, and seek back to the beginning of the file. Now you can set it as os.Stdin and perform your tests. Don't forget to cleanup the temp file.
I modified your userInput() to this:
func userInput() error {
scanner := bufio.NewScanner(os.Stdin)
fmt.Println("What is your name?")
var username string
if scanner.Scan() {
username = scanner.Text()
}
if err := scanner.Err(); err != nil {
return err
}
fmt.Println("Entered:", username)
return nil
}
And this is how you can test it:
func TestUserInput(t *testing.T) {
content := []byte("Tom")
tmpfile, err := ioutil.TempFile("", "example")
if err != nil {
log.Fatal(err)
}
defer os.Remove(tmpfile.Name()) // clean up
if _, err := tmpfile.Write(content); err != nil {
log.Fatal(err)
}
if _, err := tmpfile.Seek(0, 0); err != nil {
log.Fatal(err)
}
oldStdin := os.Stdin
defer func() { os.Stdin = oldStdin }() // Restore original Stdin
os.Stdin = tmpfile
if err := userInput(); err != nil {
t.Errorf("userInput failed: %v", err)
}
if err := tmpfile.Close(); err != nil {
log.Fatal(err)
}
}
Running the test, we see an output:
What is your name?
Entered: Tom
PASS
Also see related question about mocking the file system: Example code for testing the filesystem in Golang
The easy, preferred way
Also note that you can refactor userInput() to not read from os.Stdin, but instead it could receive an io.Reader to read from. This would make it more robust and a lot easier to test.
In your app you can simply pass os.Stdin to it, and in tests you can pass any io.Reader to it created / prepared in the tests, e.g. using strings.NewReader(), bytes.NewBuffer() or bytes.NewBufferString().
os.Pipe()
Instead of messing with the actual file system and doing writes and reads to and from real files on a storage device, the simplest solution is using os.Pipe().
Example
The code of your userInput() does have to be adjusted, and #icza's solution would indeed do for that purpose. But the test itself should be something more like this:
func Test_userInput(t *testing.T) {
input := []byte("Alice")
r, w, err := os.Pipe()
if err != nil {
t.Fatal(err)
}
_, err = w.Write(input)
if err != nil {
t.Error(err)
}
w.Close()
// Restore stdin right after the test.
defer func(v *os.File) { os.Stdin = v }(os.Stdin)
os.Stdin = r
if err = userInput(); err != nil {
t.Fatalf("userInput: %v", err)
}
}
Details
There are several important points about this code:
Always close your w stream when you're done writing. Many utilities rely on an io.EOF returned by a Read() call to know that no more data is coming, and the bufio.Scanner is no exception. If you don't close the stream, your scanner.Scan() call will never return, but keep looping internally and waiting for more input until the program is terminated forcefully (as when the test times out).
The pipe buffer capacity varies from system to system, as discussed at length in a post in the Unix & Linux Stack Exchange, so if the size of your simulated input could exceed that, you should wrap your write(s) in a goroutine like so:
//...
go func() {
_, err = w.Write(input)
if err != nil {
t.Error(err)
}
w.Close()
}()
//...
This prevents a deadlock when the pipe is full and writes have to wait for it to start emptying, but the code that's supposed to be reading from and emptying the pipe (userInput() in this case) is not starting, because of writing not being over yet.
A test should also verify that errors are handled properly, in this case, returned by userInput(). This means you'd have to figure out a way to make the scanner.Err() call return an error in a test. One approach could be closing the r stream it was supposed to be reading, before it has had the chance.
Such a test would look almost identical to the nominal case, only you don't write anything at the w end of the pipe, just close the r end, and you actually expect and want userInput() to return an error. And when you have two or more tests of the same function that are almost identical, it is often a good time to implement them as a single table driven test. See Go playground for an example.
io.Reader
The example of userInput() is trivial enough that you could (and should) refactor it and similar cases to read from an io.Reader, just like #icza suggests (see the playground).
You should always strive to rely on some form of dependency injection instead of global state (os.Stdin, in this case, is a global variable in the os package), as that gives more control to the calling code to determine how a called piece of code behaves, which is essential to unit testing, and facilitates better code reuse in general.
Return of os.Pipe()
There may also be cases when you can't really alter a function to take injected dependencies, as when you have to test the main() function of a Go executable. Altering the global state in the test (and hoping that you can properly restore it by the end not to affect subsequent tests) is your only option then. This is where we come back to os.Pipe()
When testing main(), do use os.Pipe() to simulate input to stdin (unless you already hava a file prepared for the purpose) and to capture the output of stdout and stderr (see the playground for an example of the latter).
Implementation of #icza's easy, preferred way:
Also note that you can refactor userInput() to not read from os.Stdin,
but instead it could receive an io.Reader to read from. This would
make it more robust and a lot easier to test.
In your app you can simply pass os.Stdin to it, and in tests you can
pass any io.Reader to it created / prepared in the tests, e.g. using
strings.NewReader(), bytes.NewBuffer() or bytes.NewBufferString().
hello.go
package main
import (
"bufio"
"fmt"
"os"
"io"
)
func userInput(reader io.Reader) error {
scanner := bufio.NewScanner(reader)
var username string
fmt.Println("What is your name?")
if scanner.Scan() {
username = scanner.Text()
}
if scanner.Err() != nil {
return scanner.Err()
}
fmt.Println("Hello", username)
return nil
}
func main() {
userInput(os.Stdin)
}
hello_test.go
package main
import (
"bytes"
"io"
"strings"
"testing"
)
func TestUserInputWithStringsNewReader(t *testing.T) {
input := "Tom"
var reader io.Reader = strings.NewReader(input)
err := userInput(reader)
if err != nil {
t.Errorf("Failed to read from strings.NewReader: %w", err)
}
}
func TestUserInputWithBytesNewBuffer(t *testing.T) {
input := "Tom"
var reader io.Reader = bytes.NewBuffer([]byte(input))
err := userInput(reader)
if err != nil {
t.Errorf("Failed to read from bytes.NewBuffer: %w", err)
}
}
func TestUserInputWithBytesNewBufferString(t *testing.T) {
input := "Tom"
var reader io.Reader = bytes.NewBufferString(input)
err := userInput(reader)
if err != nil {
t.Errorf("Failed to read from bytes.NewBufferString: %w", err)
}
}
Running the program:
go run hello.go
What is your name?
Tom
Hello Tom
Running the test:
go test hello_test.go hello.go -v
=== RUN TestUserInputWithStringsNewReader
What is your name?
Hello Tom
--- PASS: TestUserInputWithStringsNewReader (0.00s)
=== RUN TestUserInputWithBytesNewBuffer
What is your name?
Hello Tom
--- PASS: TestUserInputWithBytesNewBuffer (0.00s)
=== RUN TestUserInputWithBytesNewBufferString
What is your name?
Hello Tom
--- PASS: TestUserInputWithBytesNewBufferString (0.00s)
PASS
ok command-line-arguments 0.141s
You can use *bufio.Scanner to abstract io.Stdin and io.Writer to abstract io.Stdout while passing them as dependencies to your struct, see
Gist: https://gist.github.com/antonzhukov/2a6749f780b24f38b08c9916caa96663 and
Playground: https://play.golang.org/p/BZMqpACupSc

How to write unit tests for function that reads and writes to STDIO in GO? [duplicate]

How do I fill os.Stdin in my test for a function that reads from it using a scanner?
I request a user command line input via a scanner using following function:
func userInput() error {
scanner := bufio.NewScanner(os.Stdin)
println("What is your name?")
scanner.Scan()
username = scanner.Text()
/* ... */
}
Now how do I test this case and simulate a user input?
Following example does not work. Stdin is still empty.
func TestUserInput(t *testing.T) {
var file *os.File
file.Write([]byte("Tom"))
os.Stdin = file
err := userInput()
/* ... */
}
Mocking os.Stdin
You're on the right track that os.Stdin is a variable (of type *os.File) which you can modify, you can assign a new value to it in tests.
Simplest is to create a temporary file with the content you want to simulate as the input on os.Stdin. To create a temp file, use ioutil.TempFile(). Then write the content into it, and seek back to the beginning of the file. Now you can set it as os.Stdin and perform your tests. Don't forget to cleanup the temp file.
I modified your userInput() to this:
func userInput() error {
scanner := bufio.NewScanner(os.Stdin)
fmt.Println("What is your name?")
var username string
if scanner.Scan() {
username = scanner.Text()
}
if err := scanner.Err(); err != nil {
return err
}
fmt.Println("Entered:", username)
return nil
}
And this is how you can test it:
func TestUserInput(t *testing.T) {
content := []byte("Tom")
tmpfile, err := ioutil.TempFile("", "example")
if err != nil {
log.Fatal(err)
}
defer os.Remove(tmpfile.Name()) // clean up
if _, err := tmpfile.Write(content); err != nil {
log.Fatal(err)
}
if _, err := tmpfile.Seek(0, 0); err != nil {
log.Fatal(err)
}
oldStdin := os.Stdin
defer func() { os.Stdin = oldStdin }() // Restore original Stdin
os.Stdin = tmpfile
if err := userInput(); err != nil {
t.Errorf("userInput failed: %v", err)
}
if err := tmpfile.Close(); err != nil {
log.Fatal(err)
}
}
Running the test, we see an output:
What is your name?
Entered: Tom
PASS
Also see related question about mocking the file system: Example code for testing the filesystem in Golang
The easy, preferred way
Also note that you can refactor userInput() to not read from os.Stdin, but instead it could receive an io.Reader to read from. This would make it more robust and a lot easier to test.
In your app you can simply pass os.Stdin to it, and in tests you can pass any io.Reader to it created / prepared in the tests, e.g. using strings.NewReader(), bytes.NewBuffer() or bytes.NewBufferString().
os.Pipe()
Instead of messing with the actual file system and doing writes and reads to and from real files on a storage device, the simplest solution is using os.Pipe().
Example
The code of your userInput() does have to be adjusted, and #icza's solution would indeed do for that purpose. But the test itself should be something more like this:
func Test_userInput(t *testing.T) {
input := []byte("Alice")
r, w, err := os.Pipe()
if err != nil {
t.Fatal(err)
}
_, err = w.Write(input)
if err != nil {
t.Error(err)
}
w.Close()
// Restore stdin right after the test.
defer func(v *os.File) { os.Stdin = v }(os.Stdin)
os.Stdin = r
if err = userInput(); err != nil {
t.Fatalf("userInput: %v", err)
}
}
Details
There are several important points about this code:
Always close your w stream when you're done writing. Many utilities rely on an io.EOF returned by a Read() call to know that no more data is coming, and the bufio.Scanner is no exception. If you don't close the stream, your scanner.Scan() call will never return, but keep looping internally and waiting for more input until the program is terminated forcefully (as when the test times out).
The pipe buffer capacity varies from system to system, as discussed at length in a post in the Unix & Linux Stack Exchange, so if the size of your simulated input could exceed that, you should wrap your write(s) in a goroutine like so:
//...
go func() {
_, err = w.Write(input)
if err != nil {
t.Error(err)
}
w.Close()
}()
//...
This prevents a deadlock when the pipe is full and writes have to wait for it to start emptying, but the code that's supposed to be reading from and emptying the pipe (userInput() in this case) is not starting, because of writing not being over yet.
A test should also verify that errors are handled properly, in this case, returned by userInput(). This means you'd have to figure out a way to make the scanner.Err() call return an error in a test. One approach could be closing the r stream it was supposed to be reading, before it has had the chance.
Such a test would look almost identical to the nominal case, only you don't write anything at the w end of the pipe, just close the r end, and you actually expect and want userInput() to return an error. And when you have two or more tests of the same function that are almost identical, it is often a good time to implement them as a single table driven test. See Go playground for an example.
io.Reader
The example of userInput() is trivial enough that you could (and should) refactor it and similar cases to read from an io.Reader, just like #icza suggests (see the playground).
You should always strive to rely on some form of dependency injection instead of global state (os.Stdin, in this case, is a global variable in the os package), as that gives more control to the calling code to determine how a called piece of code behaves, which is essential to unit testing, and facilitates better code reuse in general.
Return of os.Pipe()
There may also be cases when you can't really alter a function to take injected dependencies, as when you have to test the main() function of a Go executable. Altering the global state in the test (and hoping that you can properly restore it by the end not to affect subsequent tests) is your only option then. This is where we come back to os.Pipe()
When testing main(), do use os.Pipe() to simulate input to stdin (unless you already hava a file prepared for the purpose) and to capture the output of stdout and stderr (see the playground for an example of the latter).
Implementation of #icza's easy, preferred way:
Also note that you can refactor userInput() to not read from os.Stdin,
but instead it could receive an io.Reader to read from. This would
make it more robust and a lot easier to test.
In your app you can simply pass os.Stdin to it, and in tests you can
pass any io.Reader to it created / prepared in the tests, e.g. using
strings.NewReader(), bytes.NewBuffer() or bytes.NewBufferString().
hello.go
package main
import (
"bufio"
"fmt"
"os"
"io"
)
func userInput(reader io.Reader) error {
scanner := bufio.NewScanner(reader)
var username string
fmt.Println("What is your name?")
if scanner.Scan() {
username = scanner.Text()
}
if scanner.Err() != nil {
return scanner.Err()
}
fmt.Println("Hello", username)
return nil
}
func main() {
userInput(os.Stdin)
}
hello_test.go
package main
import (
"bytes"
"io"
"strings"
"testing"
)
func TestUserInputWithStringsNewReader(t *testing.T) {
input := "Tom"
var reader io.Reader = strings.NewReader(input)
err := userInput(reader)
if err != nil {
t.Errorf("Failed to read from strings.NewReader: %w", err)
}
}
func TestUserInputWithBytesNewBuffer(t *testing.T) {
input := "Tom"
var reader io.Reader = bytes.NewBuffer([]byte(input))
err := userInput(reader)
if err != nil {
t.Errorf("Failed to read from bytes.NewBuffer: %w", err)
}
}
func TestUserInputWithBytesNewBufferString(t *testing.T) {
input := "Tom"
var reader io.Reader = bytes.NewBufferString(input)
err := userInput(reader)
if err != nil {
t.Errorf("Failed to read from bytes.NewBufferString: %w", err)
}
}
Running the program:
go run hello.go
What is your name?
Tom
Hello Tom
Running the test:
go test hello_test.go hello.go -v
=== RUN TestUserInputWithStringsNewReader
What is your name?
Hello Tom
--- PASS: TestUserInputWithStringsNewReader (0.00s)
=== RUN TestUserInputWithBytesNewBuffer
What is your name?
Hello Tom
--- PASS: TestUserInputWithBytesNewBuffer (0.00s)
=== RUN TestUserInputWithBytesNewBufferString
What is your name?
Hello Tom
--- PASS: TestUserInputWithBytesNewBufferString (0.00s)
PASS
ok command-line-arguments 0.141s
You can use *bufio.Scanner to abstract io.Stdin and io.Writer to abstract io.Stdout while passing them as dependencies to your struct, see
Gist: https://gist.github.com/antonzhukov/2a6749f780b24f38b08c9916caa96663 and
Playground: https://play.golang.org/p/BZMqpACupSc

Fill os.Stdin for function that reads from it

How do I fill os.Stdin in my test for a function that reads from it using a scanner?
I request a user command line input via a scanner using following function:
func userInput() error {
scanner := bufio.NewScanner(os.Stdin)
println("What is your name?")
scanner.Scan()
username = scanner.Text()
/* ... */
}
Now how do I test this case and simulate a user input?
Following example does not work. Stdin is still empty.
func TestUserInput(t *testing.T) {
var file *os.File
file.Write([]byte("Tom"))
os.Stdin = file
err := userInput()
/* ... */
}
Mocking os.Stdin
You're on the right track that os.Stdin is a variable (of type *os.File) which you can modify, you can assign a new value to it in tests.
Simplest is to create a temporary file with the content you want to simulate as the input on os.Stdin. To create a temp file, use ioutil.TempFile(). Then write the content into it, and seek back to the beginning of the file. Now you can set it as os.Stdin and perform your tests. Don't forget to cleanup the temp file.
I modified your userInput() to this:
func userInput() error {
scanner := bufio.NewScanner(os.Stdin)
fmt.Println("What is your name?")
var username string
if scanner.Scan() {
username = scanner.Text()
}
if err := scanner.Err(); err != nil {
return err
}
fmt.Println("Entered:", username)
return nil
}
And this is how you can test it:
func TestUserInput(t *testing.T) {
content := []byte("Tom")
tmpfile, err := ioutil.TempFile("", "example")
if err != nil {
log.Fatal(err)
}
defer os.Remove(tmpfile.Name()) // clean up
if _, err := tmpfile.Write(content); err != nil {
log.Fatal(err)
}
if _, err := tmpfile.Seek(0, 0); err != nil {
log.Fatal(err)
}
oldStdin := os.Stdin
defer func() { os.Stdin = oldStdin }() // Restore original Stdin
os.Stdin = tmpfile
if err := userInput(); err != nil {
t.Errorf("userInput failed: %v", err)
}
if err := tmpfile.Close(); err != nil {
log.Fatal(err)
}
}
Running the test, we see an output:
What is your name?
Entered: Tom
PASS
Also see related question about mocking the file system: Example code for testing the filesystem in Golang
The easy, preferred way
Also note that you can refactor userInput() to not read from os.Stdin, but instead it could receive an io.Reader to read from. This would make it more robust and a lot easier to test.
In your app you can simply pass os.Stdin to it, and in tests you can pass any io.Reader to it created / prepared in the tests, e.g. using strings.NewReader(), bytes.NewBuffer() or bytes.NewBufferString().
os.Pipe()
Instead of messing with the actual file system and doing writes and reads to and from real files on a storage device, the simplest solution is using os.Pipe().
Example
The code of your userInput() does have to be adjusted, and #icza's solution would indeed do for that purpose. But the test itself should be something more like this:
func Test_userInput(t *testing.T) {
input := []byte("Alice")
r, w, err := os.Pipe()
if err != nil {
t.Fatal(err)
}
_, err = w.Write(input)
if err != nil {
t.Error(err)
}
w.Close()
// Restore stdin right after the test.
defer func(v *os.File) { os.Stdin = v }(os.Stdin)
os.Stdin = r
if err = userInput(); err != nil {
t.Fatalf("userInput: %v", err)
}
}
Details
There are several important points about this code:
Always close your w stream when you're done writing. Many utilities rely on an io.EOF returned by a Read() call to know that no more data is coming, and the bufio.Scanner is no exception. If you don't close the stream, your scanner.Scan() call will never return, but keep looping internally and waiting for more input until the program is terminated forcefully (as when the test times out).
The pipe buffer capacity varies from system to system, as discussed at length in a post in the Unix & Linux Stack Exchange, so if the size of your simulated input could exceed that, you should wrap your write(s) in a goroutine like so:
//...
go func() {
_, err = w.Write(input)
if err != nil {
t.Error(err)
}
w.Close()
}()
//...
This prevents a deadlock when the pipe is full and writes have to wait for it to start emptying, but the code that's supposed to be reading from and emptying the pipe (userInput() in this case) is not starting, because of writing not being over yet.
A test should also verify that errors are handled properly, in this case, returned by userInput(). This means you'd have to figure out a way to make the scanner.Err() call return an error in a test. One approach could be closing the r stream it was supposed to be reading, before it has had the chance.
Such a test would look almost identical to the nominal case, only you don't write anything at the w end of the pipe, just close the r end, and you actually expect and want userInput() to return an error. And when you have two or more tests of the same function that are almost identical, it is often a good time to implement them as a single table driven test. See Go playground for an example.
io.Reader
The example of userInput() is trivial enough that you could (and should) refactor it and similar cases to read from an io.Reader, just like #icza suggests (see the playground).
You should always strive to rely on some form of dependency injection instead of global state (os.Stdin, in this case, is a global variable in the os package), as that gives more control to the calling code to determine how a called piece of code behaves, which is essential to unit testing, and facilitates better code reuse in general.
Return of os.Pipe()
There may also be cases when you can't really alter a function to take injected dependencies, as when you have to test the main() function of a Go executable. Altering the global state in the test (and hoping that you can properly restore it by the end not to affect subsequent tests) is your only option then. This is where we come back to os.Pipe()
When testing main(), do use os.Pipe() to simulate input to stdin (unless you already hava a file prepared for the purpose) and to capture the output of stdout and stderr (see the playground for an example of the latter).
Implementation of #icza's easy, preferred way:
Also note that you can refactor userInput() to not read from os.Stdin,
but instead it could receive an io.Reader to read from. This would
make it more robust and a lot easier to test.
In your app you can simply pass os.Stdin to it, and in tests you can
pass any io.Reader to it created / prepared in the tests, e.g. using
strings.NewReader(), bytes.NewBuffer() or bytes.NewBufferString().
hello.go
package main
import (
"bufio"
"fmt"
"os"
"io"
)
func userInput(reader io.Reader) error {
scanner := bufio.NewScanner(reader)
var username string
fmt.Println("What is your name?")
if scanner.Scan() {
username = scanner.Text()
}
if scanner.Err() != nil {
return scanner.Err()
}
fmt.Println("Hello", username)
return nil
}
func main() {
userInput(os.Stdin)
}
hello_test.go
package main
import (
"bytes"
"io"
"strings"
"testing"
)
func TestUserInputWithStringsNewReader(t *testing.T) {
input := "Tom"
var reader io.Reader = strings.NewReader(input)
err := userInput(reader)
if err != nil {
t.Errorf("Failed to read from strings.NewReader: %w", err)
}
}
func TestUserInputWithBytesNewBuffer(t *testing.T) {
input := "Tom"
var reader io.Reader = bytes.NewBuffer([]byte(input))
err := userInput(reader)
if err != nil {
t.Errorf("Failed to read from bytes.NewBuffer: %w", err)
}
}
func TestUserInputWithBytesNewBufferString(t *testing.T) {
input := "Tom"
var reader io.Reader = bytes.NewBufferString(input)
err := userInput(reader)
if err != nil {
t.Errorf("Failed to read from bytes.NewBufferString: %w", err)
}
}
Running the program:
go run hello.go
What is your name?
Tom
Hello Tom
Running the test:
go test hello_test.go hello.go -v
=== RUN TestUserInputWithStringsNewReader
What is your name?
Hello Tom
--- PASS: TestUserInputWithStringsNewReader (0.00s)
=== RUN TestUserInputWithBytesNewBuffer
What is your name?
Hello Tom
--- PASS: TestUserInputWithBytesNewBuffer (0.00s)
=== RUN TestUserInputWithBytesNewBufferString
What is your name?
Hello Tom
--- PASS: TestUserInputWithBytesNewBufferString (0.00s)
PASS
ok command-line-arguments 0.141s
You can use *bufio.Scanner to abstract io.Stdin and io.Writer to abstract io.Stdout while passing them as dependencies to your struct, see
Gist: https://gist.github.com/antonzhukov/2a6749f780b24f38b08c9916caa96663 and
Playground: https://play.golang.org/p/BZMqpACupSc

How can I unit test that a text will appear in the center of the screen?

This is a little script in go.
package bashutil
import (
"fmt"
"github.com/nsf/termbox-go"
)
func Center(s string) {
if err := termbox.Init(); err != nil {
panic(err)
}
w, _ := termbox.Size()
termbox.Close()
fmt.Printf(
fmt.Sprintf("%%-%ds", w/2),
fmt.Sprintf(fmt.Sprintf("%%%ds", w/2+len(s)/2), s),
)
}
Can I unit test it? How can I test it? I think is a nonsense test a snippet so little. But, ... What if I would test this code? How can I test that an output is equals as I expect?
Can I test that fmt prints something like I expect?
What means "test" ?
I think "test" need have effect on output of a function.
Your function's output is Stdout, so we need get the output first.
We can do this simply:
func TestCenter(*testing.T) {
stdoutBak := os.Stdout
r, w, _ := os.Pipe()
os.Stdout = w
Center("hello")
w.Close()
os.Stdout = stdoutBak
// Check output as a byte array
outstr, _ := ioutil.ReadAll(r)
fmt.Printf("%s", outstr)
}
Thus, you can check output format, spelling, etc.

How to test code using the Go logging package glog ?

I have implemented a type wrapping glog so that I can add a prefix to log message identifying the emitter of the log in my program and I can change the log level per emitter.
How could I implement the unit tests ? The problem is that glog outputs text to stdErr.
The code is trivial but I would like the have the unit test and 100% coverage like the rest of the code. This programming effort already payed.
Test which captures stderr:
package main
import (
"bytes"
"io"
"os"
"testing"
"github.com/golang/glog"
"strings"
)
func captureStderr(f func()) (string, error) {
old := os.Stderr // keep backup of the real stderr
r, w, err := os.Pipe()
if err != nil {
return "", err
}
os.Stderr = w
outC := make(chan string)
// copy the output in a separate goroutine so printing can't block indefinitely
go func() {
var buf bytes.Buffer
io.Copy(&buf, r)
outC <- buf.String()
}()
// calling function which stderr we are going to capture:
f()
// back to normal state
w.Close()
os.Stderr = old // restoring the real stderr
return <-outC, nil
}
func TestGlogError(t *testing.T) {
stdErr, err := captureStderr(func() {
glog.Error("Test error")
})
if err != nil {
t.Errorf("should not be error, instead: %+v", err)
}
if !strings.HasSuffix(strings.TrimSpace(stdErr), "Test error") {
t.Errorf("stderr should end by 'Test error' but it doesn't: %s", stdErr)
}
}
running test:
go test -v
=== RUN TestGlogError
--- PASS: TestGlogError (0.00s)
PASS
ok command-line-arguments 0.007s
Write an interface that describes your usage. This won't be very pretty if you use the V method, but you have a wrapper so you've already done the hard work that fixing that would entail.
For each package you need to test, define
type Logger interface {
Infoln(...interface{}) // the methods you actually use in this package
}
And then you can easily swap it out by not referring to glog types directly in your code.