Given a string, find two identical subsequences with consecutive indexes C++ - c++

I need to construct an algorithm (not necessarily effective) that given a string finds and prints two identical subsequences (by print I mean color for example). What more, the union of the sets of indexes of these two subsequences has to be a set of consecutive natural numbers (a full segment of integers).
In mathematics, the thing what I am looking for is called "tight twins", if it helps anything. (E.g., see the paper (PDF) here.)
Let me give a few examples:
1) consider string 231213231
It has two subsequences I am looking for in the form of "123". To see it better look at this image:
The first subsequence is marked with underlines and the second with overlines. As you can see they have all the properties I need.
2) consider string 12341234
3) consider string 12132344.
Now it gets more complicated:
4) consider string: 13412342
It is also not that easy:
I think that these examples explain well enough what I meant.
I've been thinking a long time about an algorithm that could do that but without success.
For coloring, I wanted to use this piece of code:
using namespace std;
HANDLE hConsole;
hConsole = GetStdHandle(STD_OUTPUT_HANDLE);
SetConsoleTextAttribute(hConsole, k);
where k is color.
Any help, even hints, would be highly appreciated.

Here's a simple recursion that tests for tight twins. When there's a duplicate, it splits the decision tree in case the duplicate is still part of the first twin. You'd have to run it on each substring of even length. Other optimizations for longer substrings could include hashing tests for char counts, as well as matching the non-duplicate portions of the candidate twins (characters that only appear twice in the whole substring).
Explanation of the function:
First, a hash is created with each character as key and the indexes it appears in as values. Then we traverse the hash: if a character count is odd, the function returns false; and indexes of characters with a count greater than 2 are added to a list of duplicates - characters half of which belong in one twin but we don't know which.
The basic rule of the recursion is to only increase i when a match for it is found later in the string, while maintaining a record of chosen matches (js) that i must skip without looking for a match. It works because if we find n/2 matches, in order, by the time j reaches the end, that's basically just another way of saying the string is composed of tight twins.
JavaScript code:
function isTightTwins(s){
var n = s.length,
char_idxs = {};
for (var i=0; i<n; i++){
if (char_idxs[s[i]] == undefined){
char_idxs[s[i]] = [i];
} else {
char_idxs[s[i]].push(i);
}
}
var duplicates = new Set();
for (var i in char_idxs){
// character with odd count
if (char_idxs[i].length & 1){
return false;
}
if (char_idxs[i].length > 2){
for (let j of char_idxs[i]){
duplicates.add(j);
}
}
}
function f(i,j,js){
// base case positive
if (js.size == n/2 && j == n){
return true;
}
// base case negative
if (j > n || (n - j < n/2 - js.size)){
return false;
}
// i is not less than j
if (i >= j) {
return f(i,j + 1,js);
}
// this i is in the list of js
if (js.has(i)){
return f(i + 1,j,js);
// yet to find twin, no match
} else if (s[i] != s[j]){
return f(i,j + 1,js);
} else {
// maybe it's a twin and maybe it's a duplicate
if (duplicates.has(j)) {
var _js = new Set(js);
_js.add(j);
return f(i,j + 1,js) | f(i + 1,j + 1,_js);
// it's a twin
} else {
js.add(j);
return f(i + 1,j + 1,js);
}
}
}
return f(0,1,new Set());
}
console.log(isTightTwins("1213213515")); // true
console.log(isTightTwins("11222332")); // false

WARNING: Commenter גלעד ברקן points out that this algorithm gives the wrong answer of 6 (higher than should be possible!) for the string 1213213515. My implementation gets the same wrong answer, so there seems to be a serious problem with this algorithm. I'll try to figure out what the problem is, but in the meantime DO NOT TRUST THIS ALGORITHM!
I've thought of a solution that will take O(n^3) time and O(n^2) space, which should be usable on strings of up to length 1000 or so. It's based on a tweak to the usual notion of longest common subsequences (LCS). For simplicity I'll describe how to find a minimal-length substring with the "tight twin" property that starts at position 1 in the input string, which I assume has length 2n; just run this algorithm 2n times, each time starting at the next position in the input string.
"Self-avoiding" common subsequences
If the length-2n input string S has the "tight twin" (TT) property, then it has a common subsequence with itself (or equivalently, two copies of S have a common subsequence) that:
is of length n, and
obeys the additional constraint that no character position in the first copy of S is ever matched with the same character position in the second copy.
In fact we can safely tighten the latter constraint to no character position in the first copy of S is ever matched to an equal or lower character position in the second copy, due to the fact that we will be looking for TT substrings in increasing order of length, and (as the bottom section shows) in any minimal-length TT substring, it's always possible to assign characters to the two subsequences A and B so that for any matched pair (i, j) of positions in the substring with i < j, the character at position i is assigned to A. Let's call such a common subsequence a self-avoiding common subsequence (SACS).
The key thing that makes efficient computation possible is that no SACS of a length-2n string can have more than n characters (since clearly you can't cram more than 2 sets of n characters into a length-2n string), so if such a length-n SACS exists then it must be of maximum possible length. So to determine whether S is TT or not, it suffices to look for a maximum-length SACS between S and itself, and check whether this in fact has length n.
Computation by dynamic programming
Let's define f(i, j) to be the length of the longest self-avoiding common subsequence of the length-i prefix of S with the length-j prefix of S. To actually compute f(i, j), we can use a small modification of the usual LCS dynamic programming formula:
f(0, _) = 0
f(_, 0) = 0
f(i>0, j>0) = max(f(i-1, j), f(i, j-1), m(i, j))
m(i, j) = (if S[i] == S[j] && i < j then 1 else 0) + f(i-1, j-1)
As you can see, the only difference is the additional condition && i < j. As with the usual LCS DP, computing it takes O(n^2) time, since the 2 arguments each range between 0 and n, and the computation required outside of recursive steps is O(1). (Actually we need only compute the "upper triangle" of this DP matrix, since every cell (i, j) below the diagonal will be dominated by the corresponding cell (j, i) above it -- though that doesn't alter the asymptotic complexity.)
To determine whether the length-2j prefix of the string is TT, we need the maximum value of f(i, 2j) over all 0 <= i <= 2n -- that is, the largest value in column 2j of the DP matrix. This maximum can be computed in O(1) time per DP cell by recording the maximum value seen so far and updating as necessary as each DP cell in the column is calculated. Proceeding in increasing order of j from j=1 to j=2n lets us fill out the DP matrix one column at a time, always treating shorter prefixes of S before longer ones, so that when processing column 2j we can safely assume that no shorter prefix is TT (since if there had been, we would have found it earlier and already terminated).

Let the string length be N.
There are two approaches.
Approach 1. This approach is always exponential-time.
For each possible subsequence of length 1..N/2, list all occurences of this subsequence. For each occurence, list positions of all characters.
For example, for 123123 it should be:
(1, ((1), (4)))
(2, ((2), (5)))
(3, ((3), (6)))
(12, ((1,2), (4,5)))
(13, ((1,3), (4,6)))
(23, ((2,3), (5,6)))
(123, ((1,2,3),(4,5,6)))
(231, ((2,3,4)))
(312, ((3,4,5)))
The latter two are not necessary, as their appear only once.
One way to do it is to start with subsequences of length 1 (i.e. characters), then proceed to subsequences of length 2, etc. At each step, drop all subsequences which appear only once, as you don't need them.
Another way to do it is to check all 2**N binary strings of length N. Whenever a binary string has not more than N/2 "1" digits, add it to the table. At the end drop all subsequences which appear only once.
Now you have a list of subsequences which appear more than 1 time. For each subsequence, check all the pairs, and check whether such a pair forms a tight twin.
Approach 2. Seek for tight twins more directly. For each N*(N-1)/2 substrings, check whether the substring is even length, and each character appears in it even number of times, and then, being its length L, check whether it contains two tight twins of the length L/2. There are 2**L ways to divide it, the simplest you can do is to check all of them. There are more interesting ways to seek for t.t., though.

I would like to approach this as a dynamic programming/pattern matching problem. We deal with characters one at a time, left to right, and we maintain a herd of Non-Deterministic Finite Automata / NDFA, which correspond to partial matches. We start off with a single null match, and with each character we extend each NDFA in every possible way, with each NDFA possibly giving rise to many children, and then de-duplicate the result - so we need to minimise the state held in the NDFA to put a bound on the size of the herd.
I think a NDFA needs to remember the following:
1) That it skipped a stretch of k characters before the match region.
2) A suffix which is a p-character string, representing characters not yet matched which will need to be matched by overlines.
I think that you can always assume that the p-character string needs to be matched with overlines because you can always swap overlines and underlines in an answer if you swap throughout the answer.
When you see a new character you can extend NDFAs in the following ways:
a) An NDFA with nothing except skips can add a skip.
b) An NDFA can always add the new character to its suffix, which may be null
c) An NDFA with a p character string whose first character matches the new character can turn into an NDFA with a p-1 character string which consists of the last p-1 characters of the old suffix. If the string is now of zero length then you have found a match, and you can work out what it was if you keep links back from each NDFA to its parent.
I thought I could use a neater encoding which would guarantee only a polynomial herd size, but I couldn't make that work, and I can't prove polynomial behaviour here, but I notice that some cases of degenerate behaviour are handled reasonably, because they lead to multiple ways to get to the same suffix.

Related

Z-Function and unique substrings: broken algorithm parroted everywhere?

I am not a huge math nerd so I may easily be missing something, but let's take the algorithm from https://cp-algorithms.com/string/z-function.html and try to apply it to, say, string baz. This string definitely has a substring set of 'b','a','z', 'ba', 'az', 'baz'.
Let's see how z function works (at leas how I understand it):
we take an empty string and add 'b' to it. By definition of the algo z[0] = 0 since it's undefined for size 1;
we take 'b' and add 'a' to it, invert the string, we have 'ab'... now we calculate z-function... and it produces {0, 0}. First element is "undefined" as is supposed, second element should be defined as:
i-th element is equal to the greatest number of characters starting from the position i that coincide with the first characters of s.
so, at i = 1 we have 'b', our string starts with a, 'b' doesn't coincide with 'a' so of course z[i=1]=0. And this will be repeated for the whole word. In the end we are left with z-array of all zeroes that doesn't tell us anything despite the string having 6 substrings.
Am I missing something? There are tons of websites recommending z function for count of distinct substrings but it... doesn't work? Am I misunderstanding the meaning of distinct here?
See test case: https://pastebin.com/mFDrSvtm
When you add a character x to the beginning of a string S, all the substrings of S are still substrings of xS, but how many new substrings do you get?
The new substrings are all prefixes of xS. There are length(xS) of these, but
max(Z(xS)) of these are already substrings of S, so
You get length(xS) - max(Z(xS)) new ones
So, given a string S, just add up all the length(P) - max(Z(P)) for every suffix P of S.
Your test case baz has 3 suffixes: z, az, and baz. All the letters are distinct, so their Z functions are zero everywhere. The result is that the number of distinct substrings is just the sum of the suffix lengths: 3 + 2 + 1 = 6.
Try baa: The only non-zero in the Z functions is Z('aa')[1] = 1, so the number of unique substrings is 3 + 2 - 1 + 1 = 5.
Note that the article you linked to mentions that this is an O(n2) algorithm. That is correct, although its overhead is low. It's possible to do this in O(n) time by building a suffix tree, but that is quite complicated.

Increase string overlap matrix building efficiency

I have a huge list (N = ~1million) of strings 100 characters long that I'm trying to find the overlaps between. For instance, one string might be
XXXXXXXXXXXXXXXXXXAACTGCXAACTGGAAXA (and so on)
I need to build an N by N matrix that contains the longest overlap value for every string with every other string. My current method is (pseudocode)
read in all strings to array
create empty NxN matrix
compare each string to every string with a higher array index (to avoid redoing comparisons)
Write longest overlap to matrix
There's a lot of other stuff going on, but I really need a much more efficient way to build the matrix. Even with the most powerful computing clusters I can get my hands on this method takes days.
In case you didn't guess, these are DNA fragments. X indicates "wild card" (probe gave below a threshold quality score) and all other options are a base (A, C, T, or G). I tried to write a quaternary tree algorithm, but this method was far too memory intensive.
I'd love any suggestions you can give for a more efficient method; I'm working in C++ but pseudocode/ideas or other language code would also be very helpful.
Edit: some code excerpts that illustrate my current method. Anything not particularly relevant to the concept has been removed
//part that compares them all to each other
for (int j=0; j<counter; j++) //counter holds # of DNA
for (int k=j+1; k<counter; k++)
int test = determineBestOverlap(DNArray[j],DNArray[k]);
//boring stuff
//part that compares strings. Definitely very inefficient,
//although I think the sheer number of comparisons is the main problem
int determineBestOverlap(string str1, string str2)
{
int maxCounter = 0, bestOffset = 0;
//basically just tries overlapping the strings every possible way
for (int j=0; j<str2.length(); j++)
{
int counter = 0, offset = 0;
while (str1[offset] == str2[j+offset] && str1[offset] != 'X')
{
counter++;
offset++;
}
if (counter > maxCounter)
{
maxCounter = counter;
bestOffset = j;
}
}
return maxCounter;
} //this simplified version doesn't account for flipped strings
Do you really need to know the match between ALL string pairs? If yes, then you will have to compare every string with every other string, which means you will need n^2/2 comparisons, and you will need one half terabyte of memory even if you just store one byte per string pair.
However, i assume what you really are interested in is long strings, those that have more than, say, 20 or 30 or even more than 80 characters in common, and you probably don't really want to know if two string pairs have 3 characters in common while 50 others are X and the remaining 47 don't match.
What i'd try if i were you - still without knowing if that fits your application - is:
1) From each string, extract the largest substring(s) that make(s) sense. I guess you want to ignore 'X'es at the start and end entirely, and if some "readable" parts are broken by a large number of 'X'es, it probably makes sense to treat the readable parts individually instead of using the longer string. A lot of this "which substrings are relevant?" depends on your data and application that i don't really know.
2) Make a list of these longest substrings, together with the number of occurences of each substring. Order this list by string length. You may, but don't really have to, store the indexes of every original string together with the substring. You'll get something like (example)
AGCGCTXATCG 1
GAGXTGACCTG 2
.....
CGCXTATC 1
......
3) Now, from the top to the bottom of the list:
a) Set the "current string" to the string topmost on the list.
b) If the occurence count next to the current string is > 1, you found a match. Search your original strings for the substring if you haven't remembered the indexes, and mark the match.
c) Compare the current string with all strings of the same length, to find matches where some characters are X.
d) Remove the 1st character from the current string. If the resulting string is already in your table, increase its occurence counter by one, else enter it into the table.
e) Repeat 3b with the last, instead of the first, character removed from the current string.
f) Remove the current string from the list.
g) Repeat from 3a) until you run out of computing time, or your remaining strings become too short to be interesting.
If this is a better algorithm depends very much on your data and which comparisons you're really interested in. If your data is very random/you have very few matches, it will probably take longer than your original idea. But it might allow you to find the interesting parts first and skip the less interesting parts.
I don't see many ways to improve the fact that you need to compare each string with each other including shifting them, and that is by itself super long, a computation cluster seems the best approach.
The only thing I see how to improve is the string comparison by itself: replace A,C,T,G and X by binary patterns:
A = 0x01
C = 0x02
T = 0x04
G = 0x08
X = 0x0F
This way you can store one item on 4 bits, i.e. two per byte (this might not be a good idea though, but still a possible option to investigate), and then compare them quickly with a AND operation, so that you 'just' have to count how many consecutive non zero values you have. That's just a way to process the wildcard, sorry I don't have a better idea to reduce the complexity of the overall comparison.

Generating random integers with a difference constraint

I have the following problem:
Generate M uniformly random integers from the range 0-N, where N >> M, and where no pair has a difference less than K. where M >> K.
At the moment the best method I can think of is to maintain a sorted list, then determine the lower bound of the current generated integer and test it with the lower and upper elements, if it's ok to then insert the element in between. This is of complexity O(nlogn).
Would there happen to be a more efficient algorithm?
An example of the problem:
Generate 1000 uniformly random integers between zero and 100million where the difference between any two integers is no less than 1000
A comprehensive way to solve this would be to:
Determine all the combinations of n-choose-m that satisfy the constraint, lets called it set X
Select a uniformly random integer i in the range [0,|X|).
Select the i'th combination from X as the result.
This solution is problematic when the n-choose-m is large, as enumerating and storing all possible combinations will be extremely costly. Hence an efficient online generating solution is sought.
Note: The following is a C++ implementation of the solution provided by pentadecagon
std::vector<int> generate_random(const int n, const int m, const int k)
{
if ((n < m) || (m < k))
return std::vector<int>();
std::random_device source;
std::mt19937 generator(source());
std::uniform_int_distribution<> distribution(0, n - (m - 1) * k);
std::vector<int> result_list;
result_list.reserve(m);
for (int i = 0; i < m; ++i)
{
result_list.push_back(distribution(generator));
}
std::sort(std::begin(result_list),std::end(result_list));
for (int i = 0; i < m; ++i)
{
result_list[i] += (i * k);
}
return result_list;
}
http://ideone.com/KOeR4R
.
EDIT: I adapted the text for the requirement to create ordered sequences, each with the same probability.
Create random numbers a_i for i=0..M-1 without duplicates. Sort them. Then create numbers
b_i=a_i + i*(K-1)
Given the construction, those numbers b_i have the required gaps, because the a_i already have gaps of at least 1. In order to make sure those b values cover exactly the required range [1..N], you must ensure a_i are picked from a range [1..N-(M-1)*(K-1)]. This way you get truly independent numbers. Well, as independent as possible given the required gap. Because of the sorting you get O(M log M) performance again, but this shouldn't be too bad. Sorting is typically very fast. In Python it looks like this:
import random
def random_list( N, M, K ):
s = set()
while len(s) < M:
s.add( random.randint( 1, N-(M-1)*(K-1) ) )
res = sorted( s )
for i in range(M):
res[i] += i * (K-1)
return res
First off: this will be an attempt to show that there's a bijection between the (M+1)- compositions (with the slight modification that we will allow addends to be 0) of the value N - (M-1)*K and the valid solutions to your problem. After that, we only have to pick one of those compositions uniformly at random and apply the bijection.
Bijection:
Let
Then the xi form an M+1-composition (with 0 addends allowed) of the value on the left (notice that the xi do not have to be monotonically increasing!).
From this we get a valid solution
by setting the values mi as follows:
We see that the distance between mi and mi + 1 is at least K, and mM is at most N (compare the choice of the composition we started out with). This means that every (M+1)-composition that fulfills the conditions above defines exactly one valid solution to your problem. (You'll notice that we only use the xM as a way to make the sum turn out right, we don't use it for the construction of the mi.)
To see that this gives a bijection, we need to see that the construction can be reversed; for this purpose, let
be a given solution fulfilling your conditions. To get the composition this is constructed from, define the xi as follows:
Now first, all xi are at least 0, so that's alright. To see that they form a valid composition (again, every xi is allowed to be 0) of the value given above, consider:
The third equality follows since we have this telescoping sum that cancels out almost all mi.
So we've seen that the described construction gives a bijection between the described compositions of N - (M-1)*K and the valid solutions to your problem. All we have to do now is pick one of those compositions uniformly at random and apply the construction to get a solution.
Picking a composition uniformly at random
Each of the described compositions can be uniquely identified in the following way (compare this for illustration): reserve N - (M-1)*K spaces for the unary notation of that value, and another M spaces for M commas. We get an (M+1)- composition of N - (M-1)*K by choosing M of the N - (M-1)*K + M spaces, putting commas there, and filling the rest with |. Then let x0 be the number of | before the first comma, xM+1 the number of | after the last comma, and all other xi the number of | between commas i and i+1. So all we have to do is pick an M-element subset of the integer interval[1; N - (M-1)*K + M] uniformly at random, which we can do for example with the Fisher-Yates shuffle in O(N + M log M) (we need to sort the M delimiters to build the composition) since M*K needs to be in O(N) for any solutions to exist. So if N is bigger than M by at least a logarithmic factor, then this is linear in N.
Note: #DavidEisenstat suggested that there are more space efficient ways of picking the M-element subset of that interval; I'm not aware of any, I'm afraid.
You can get an error-proof algorithm out of this by doing the simple input validation we get from the construction above that N ≥ (M-1) * K and that all three values are at least 1 (or 0, if you define the empty set as a valid solution for that case).
Why not do this:
for (int i = 0; i < M; ++i) {
pick a random number between K and N/M
add this number to (N/M)* i;
Now you have M random numbers, distributed evenly along N, all of which have a difference of at least K. It's in O(n) time. As an added bonus, it's already sorted. :-)
EDIT:
Actually, the "pick a random number" part shouldn't be between K and N/M, but between min(K, [K - (N/M * i - previous value)]). That would ensure that the differences are still at least K, and not exclude values that should not be missed.
Second EDIT:
Well, the first case shouldn't be between K and N/M - it should be between 0 and N/M. Just like you need special casing for when you get close to the N/M*i border, we need special initial casing.
Aside from that, the issue you brought up in your comments was fair representation, and you're right. As my pseudocode is presented, it currently completely misses the excess between N/M*M and N. It's another edge case; simply change the random values of your last range.
Now, in this case, your distribution will be different for the last range. Since you have more numbers, you have slightly less chance for each number than you do for all the other ranges. My understanding is that because you're using ">>", this shouldn't really impact the distribution, i.e. the difference in size in the sample set should be nominal. But if you want to make it more fair, you divide the excess equally among each range. This makes your initial range calculation more complex - you'll have to augment each range based on how much remainder there is divided by M.
There are lots of special cases to look out for, but they're all able to be handled. I kept the pseudocode very basic just to make sure that the general concept came through clearly. If nothing else, it should be a good starting point.
Third and Final EDIT:
For those worried that the distribution has a forced evenness, I still claim that there's nothing saying it can't. The selection is uniformly distributed in each segment. There is a linear way to keep it uneven, but that also has a trade-off: if one value is selected extremely high (which should be unlikely given a very large N), then all the other values are constrained:
int prevValue = 0;
int maxRange;
for (int i = 0; i < M; ++i) {
maxRange = N - (((M - 1) - i) * K) - prevValue;
int nextValue = random(0, maxRange);
prevValue += nextValue;
store previous value;
prevValue += K;
}
This is still linear and random and allows unevenness, but the bigger prevValue gets, the more constrained the other numbers become. Personally, I prefer my second edit answer, but this is an available option that given a large enough N is likely to satisfy all the posted requirements.
Come to think of it, here's one other idea. It requires a lot more data maintenance, but is still O(M) and is probably the most fair distribution:
What you need to do is maintain a vector of your valid data ranges and a vector of probability scales. A valid data range is just the list of high-low values where K is still valid. The idea is you first use the scaled probability to pick a random data range, then you randomly pick a value within that range. You remove the old valid data range and replace it with 0, 1 or 2 new data ranges in the same position, depending on how many are still valid. All of these actions are constant time other than handling the weighted probability, which is O(M), done in a loop M times, so the total should be O(M^2), which should be much better than O(NlogN) because N >> M.
Rather than pseudocode, let me work an example using OP's original example:
0th iteration: valid data ranges are from [0...100Mill], and the weight for this range is 1.0.
1st iteration: Randomly pick one element in the one element vector, then randomly pick one element in that range.
If the element is, e.g. 12345678, then we remove the [0...100Mill] and replace it with [0...12344678] and [12346678...100Mill]
If the element is, e.g. 500, then we remove the [0...100Mill] and replace it with just [1500...100Mill], since [0...500] is no longer a valid range. The only time we will replace it with 0 ranges is in the unlikely event that you have a range with only one number in it and it gets picked. (In that case, you'll have 3 numbers in a row that are exactly K apart from each other.)
The weight for the ranges are their length over the total length, e.g. 12344678/(12344678 + (100Mill - 12346678)) and (100Mill - 12346678)/(12344678 + (100Mill - 12346678))
In the next iterations, you do the same thing: randomly pick a number between 0 and 1 and determine which of the ranges that scale falls into. Then randomly pick a number in that range, and replace your ranges and scales.
By the time it's done, we're no longer acting in O(M), but we're still only dependent on the time of M instead of N. And this actually is both uniform and fair distribution.
Hope one of these ideas works for you!

Given a 2D matrix of characters we have to check whether the given word exist in it or not

Given a 2D matrix of characters we have to check whether the given word exist in it or not.
eg
s f t
d a h
r y o
we can find "rat in it
(top down , straight ,diagonal or anypath).. even in reverse order. with least complexiety.
my approach is
While traversing the 2d matrix ( a[][] ) row wise.
If ( a[i][j] == first character of given word ) {
search for rest of the letters in 4 directions i.e. right, right diagonally down, down and left diagonally down.
} else if( a[i][j] == last character of the given word ) {
search for remaining characters in reverse order in 4 directions i.e. left, right diagonally up, up, left diagonally up.
}
is there any better approach?
Let me describe a very cool data structure for this problem.
Go ahead and look up Tries.
It takes O(k) time to insert a k-length word into the Trie, and O(k) to look-up the presence of a k-length word.
Video tutorial
If you have problems understanding the data structure, or implementing it, I'll be happy to help you there.
I think I would do this in two phases:
1) Iterate over the array, looking for instances of the first letter in the word.
2) Whenever you find an instance of the first letter, call a function that examines all adjacent cells (e.g. up to 9 of them) to see if any of them are the second letter of the word. For any second-letter-matches that are found, this function would call itself recursively and look for third-letter matches in cells adjacent to that (and so on). If the recursion ever gets all the way to the final letter of the word and finds a match for it, then the word exists in the array. (Note that if you're not allowed to use a letter twice you'll need to flag cells as 'already used' in order to prevent the algorithm from re-using them. Probably the easiest way to do that would be to pass-by-value a vector of already-used-cell-coordinates in to the recursive function, and have the recursive function ignore the contents of any cells that are in that list)
In fact you have 16 sequences here:
sft
dah
ryo
sdr
fay
tho
sao
rat
tfs
had
oyr
rds
yaf
oht
oas
tar
(3 horizontal + 3 vertical + 2 diagonals) * 2 (reversed) = 16. Let n be a size of a matrix. In your example n = 3. Number of sequences = (n + n + 2) * 2 = 4n + 4.
Now you need to determine whether a sequence is a word or not. Create a hash set (unordered_set in C++, HashSet in Java) with words from dictionary (found on the internet). You can check one sequence in O(1).
Look for the first letter or your word using a simple loop and when you find it use the following recursive function.
The function will get as input 5 parameters: the word you are looking for str, your current position of the letter in the word str you look for in your array k, i and j as the position in your array to search for the letter and direction d.
The stop conditions will be:
-if k > strlen(str); return 1;
-if arr[i][j] != str[k]; return 0;
If none of the upper statements are true you increment your letter counter k++; update your i and j acording to your value of d and call again your function via return func(str, k);

Finding the maximum weight subsequence of an array of positive integers?

I'm tring to find the maximum weight subsequence of an array of positive integers - the catch is that no adjacent members are allowed in the final subsequence.
The exact same question was asked here, and a recursive solution was given by MarkusQ thus:
function Max_route(A)
if A's length = 1
A[0]
else
maximum of
A[0]+Max_route(A[2...])
Max_route[1...]
He provides an explanation, but can anyone help me understand how he has expanded the function? Specifically what does he mean by
f[] :- [],0
f [x] :- [x],x
f [a,b] :- if a > b then [a],a else [b],b
f [a,b,t] :-
ft = f t
fbt = f [b|t]
if a + ft.sum > fbt.sum
[a|ft.path],a+ft.sum
else
fbt
Why does he expand f[] to [],0? Also how does his solution take into consideration non-adjacent members?
I have some C++ code that is based on this algorithm, which I can post if anyone wants to see it, but I just can't for the life of me fathom why it works.
==========For anyone who's interested - the C++ code ==============
I should add, that the array of integers is to be treated as a circular list, so any sequence containing the first element cannot contain the last.
int memo[55][55];
int solve(int s, int e)
{
if( s>e ) return 0;
int &ret=memo[s][e];
if(ret!=-1)
{
return ret;
}
ret=max(solve(s+1,e), solve(s+2,e)+a[s]);
return ret;
}
class Sequence
{
public:
int maxSequence(vector <int> s)
{
memset(memo,-1);
int n = s.size();
for(int i=0; i<n; i++)
a[i]=s[i];
return max(solve(0,n-2),solve(1,n-1));
}
};
I don't really understand that pseudocode, so post the C++ code if this isn't helpful and I'll try to improve it.
I'm tring to find the maximum weight subsequence of an array of positive integers - the catch is that no adjacent members are allowed in the final subsequence.
Let a be your array of positive ints. Let f[i] = value of the maximum weight subsequence of the sequence a[0..i].
We have:
f[0] = a[0] because if there's only one element, we have to take it.
f[1] = max(a[0], a[1]) because you have the no adjacent elements restriction, so if you have two elements, you can only take one of them. It makes sense to take the largest one.
Now, generally you have:
f[i > 1] = max(
f[i - 2] + a[i] <= add a[i] to the largest subsequence of the sequence a[0..i - 2]. We cannot take a[0..i - 1] because otherwise we risk adding an adjacent element.
f[i - 1] <= don't add the current element to the maximum of a[0..i - 2], instead take the maximum of a[0..i - 1], to which we cannot add a[i].
)
I think this way is easier to understand than what you have there. The approaches are equivalent, I just find this clearer for this particular problem, since recursion makes things harder in this case and the pseudocode could be clearer either way.
But what do you NOT understand? It seems quite clear for me:
we will build the maximal subsequence for every prefix of our given sequence
to calculate the maximal subsequence for prefix of length i, we consider two possibilities: Either the last element is, or isn't in the maximal subsequence (clearly there are no other possibilities).
if it is there, we consider the value of the last element, plus the value of maximal subsequence of the prefix two elements shorter (because in this case, we know the last element cannot be present in the maximal subsequence because of the adjacent elements rule)
if it isn't we take the value of maximal sum of prefix one element shorter (if the last element of the prefix is not in the maximal subsequence, the maximal subsequence has to be equal for this and the previous prefix)
we compare and take the maximum of the two
Plus: you need to remember actual subsequences; you need to avoid superfluous function invocations, hence the memoization.
Why does he expand f[] to [],0?
Because the first from the pair in return value means current maximal subsequence, and the second is its value. Maximal subsequence of an empty sequence is empty and has value zero.