List - counting atoms related to their previous term - list

I want to count the number of elements in a list which have a relation with the element following.
The predicate I have works by using an accumulator variable which it increments if the predicate related returns true.
The following example code is to check the number of times an element is greater than it's previous element.
So for example
count_list([1,2,3,2,1,3,2],Count).
should return 3.
The code almost works. It increments the accumulator variable correctly. However, the function returns false, when it tries to compare the final 2 at the end with the non-existent next term.
listofitems([],N,N).
%count number of items which are related to the previous
listofitems([A,B|T],Acc,N) :-
write(A),write(' '), write(B),
( related(A,B) -> Acc1 is Acc+1 ; Acc1 = Acc ),
write(Acc1),write('\n'),
listofitems([B|T],Acc1,N).
count_list(L,N):-
listofitems(L,0,N).
%define the relationship to be counted
related(A,B):-
B>A.
Does anyone have any suggestions as to how to create an elegant terminating condition so I can return the accumulated value?

Does anyone have any suggestions as to how to create an elegant terminating condition so I can return the accumulated value?
The problem you have is that your query fails. Try first to minimize the query as much as possible. Certainly, you expect it to work for:
?- listofitems([], Count).
Count = 0.
Yet, it already fails for:
?- listofitems([1], Count).
false.
So let's try to dig into the reason for that.
And since your program is pure (apart from those writes), it is possible to diagnose this a little better by considering a generalization of your program. I prefer to look at such generalizations as I do not want to read too much (eye strain and such):
:- op(950, fy, *).
*_.
listofitems([], N,N).
listofitems([A,B|T], Acc,N) :-
* ( related(A,B) -> Acc1 is Acc+1 ; Acc1 = Acc ),
* listofitems([B|T], Acc1,N).
count_list(L,N):-
listofitems(L,0,N).
?- count_list([1], Count).
false.
Even this generalization fails! So now in desperation I try to ask the most general query. It's like when I ask one thing after the other and get a noe after a no. Good this is Prolog, for we can ask: "Say me just everything you know".
?- count_list(Es,Count).
Es = [], Count = 0
; Es = [_,_|_].
So it is only the case for the empty list and lists with at least two elements. But there is no answer for one-elemented lists! You will thus have to generalize the program somehow.
A natural way would be to add a fact
listofitems([_], N, N).
As a minor remark, this isn't called a "terminating condition" but rather a "base case".
And if you really want to trace your code, I recommend these techniques instead of adding manual writes. They are much too prone to error.

If the all list items are integers and your Prolog system supports clpfd, you can proceed like this:
:- use_module(library(clpfd)).
:- use_module(library(lists), [last/3]).
:- use_module(library(maplist), [maplist/4]).
To relate adjacent items, look at two sublists of [E|Es], Es and Fs. If, say,
[E|Es] = [1,2,3,2,1,3,2] holds ...
... then Fs lacks the last item (Fs = [1,2,3,2,1,3,2]) ...
... and Es lacks the first item (Es = [1,2,3,2,1,3,2]).
maplist/4 and i0_i1_gt01/3 map corresponding list items in Fs and Es to 0 / 1:
i_j_gt01(I, J, B) :- % if I #< J then B #= 1
I #< J #<=> B. % if I #>= J then B #= 0
?- maplist(i_j_gt01, [1,2,3,2,1,3], [2,3,2,1,3,2], Bs).
Bs = [1,1,0,0,1,0].
Last, sum up [1,1,0,0,1,0] using sum/3:
?- sum([1,1,0,0,1,0], #=, N).
N = 3.
Let's put it all together!
count_adj_gt([E|Es], N) :-
last(Fs, _, [E|Es]), % or: `append(Fs, [_], [E|Es])`
% or: `list_butlast([E|Es], Fs)`
maplist(i_j_gt01, Es, Fs, Bs),
sum(Bs, #=, N).
Sample query using SICStus Prolog 4.3.2:
?- count_adj_gt([1,2,3,2,1,3,2], N).
N = 3. % succeeds deterministically

not sure about
an elegant terminating condition
my whole code would be
?- Vs=[1,2,3,2,1,3,2], aggregate_all(count, (append(_,[X,Y|_], Vs), X<Y), Count).
That's all...
If you need something more complex, remember that library(clpfd) has more to offer.

Related

Prolog - Finding even elements in a list

I want to write a rule in Prolog that returns the even elements in a given list. For example:
even_elements([1,2,3,4], Result) would return Result: [2,4]
Here is what I have so far:
% This is my base case.
even_elements([H|T], Result) :- (0 is mod(H,2) -> Result = [H|T] ; Result = T).
% This is my recursion.
even_elements([H|T], [H|NT]) :- even_elements(T, NT).
The base case works properly and eliminates the first element if it is odd; but the recursion doesn't change anything. Any tips on how to complete the recursion is appreciated.
Often the base case in list processing deals with the empty list. Indeed, we can just write:
even_elements([], []).
For the recursive case, we can use quite a lot from your base case, the only thin that we still need to do is recurse on the tail of the list, so:
even_elements([H|T], Result) :-
( 0 is mod(H,2)
-> Result = [H|T2]
; Result = T2
),
even_elements(T, T2).
That being said, there is no need to implement the logic to filter a list. You can make use of the include/3 predicate [swi-doc], and thus define an even predicate:
even(N) :-
0 is N mod 2.
Then we can filter with:
even_elements(L, R) :-
include(even, L, R).
This then gives us:
?- even_elements([1,4,2,5], R).
R = [4, 2].
I also found this solution from this post although Willem's answer is way more readable:
even_elements(L1,L2):-findall(X,(member(X,L1), X mod 2=:=0),L2).

Change list of variables according to another list containing the index and atoms in prolog

I have a list of variables E and a list L and I want a predicate that works like this:
E=[A,B,C,D]
L=[(1,b),(3,m)]
solve(E,L).
E=[b,B,m,D]
Basically solve() should run through the list L and change E by using (a,b) to unify the variable at index a with the atom B. Is there any way to do this?
The meaning of the (badly named) solve/2 predicate is something like "for every pair (Index, Element), the Index-th element of the input list is Element". You are likely using a Prolog implementation that already has a predicate called something like nth1/3 which expresses "the Index-th element of List is Element". For example, in SWI-Prolog:
?- List = [A, B, C, D], nth1(3, List, this_is_the_third_element).
List = [A, B, this_is_the_third_element, D],
C = this_is_the_third_element.
So an alternative implementation of your predicate simply calls nth1/3 for each of your (Index, Element) pairs:
solve(_List, []).
solve(List, [(Index, Elem) | Pairs]) :-
nth1(Index, List, Elem),
solve(List, Pairs).
And with this you're done:
?- E = [A, B, C, D], L = [(1, b), (3, m)], solve(E, L).
E = [b, B, m, D],
A = b,
C = m,
L = [(1, b), (3, m)] ;
false.
Note that this solution is simple, but it has quadratic complexity in the length of the input list: nth1/3 might have to visit the entire N-element list N times. In the unlikely case that you need this predicate for a performance-critical part of some larger program, consider the more optimized solution sketched in the other answer.
Is there any way to do this?
Certainly. And as they say in Perl: "There is more than one way to do it".
Couple of problems:
Do not use (1,b). Use the idiomatic -(1,b) instead, which is written as 1-b (the pair). This gives you a list of pairs: L=[1-b,3-m]. There is a library specifically dealing with such pairs: https://www.swi-prolog.org/pldoc/man?section=pairs - alternatively you can use real maps implemented with AVL trees: https://www.swi-prolog.org/pldoc/man?section=assoc
Now you just need to:
sort the list of pairs, probably using keysort: https://www.swi-prolog.org/pldoc/doc_for?object=sort/2 or https://www.swi-prolog.org/pldoc/doc_for?object=sort/4
Go through the list left to right, keeping the current index, and performing a replacement when the next key in your sorted list is hit, or just retaining the existing term from the list otherwise. The result goes into an accumulator variable as head of a list.
Done! Special handling of out-of-bounds indexes etc. to be suitably handled by throwing or failing.
How to go through the sorted list of pairs (I didn not test this!):
% case of Index hit:
go_through([Index-Value|Rest],Index,InList,OutList) :-
InList = [I|Rest],
OutList = [Value|More],
succ(Index,NextIndex),
go_through(Rest,NextIndex,Rest,More).
% case of Index miss:
go_through([NotYetIndex-Value|Rest],Index,InList,OutList) :-
NotYetIndex > Index, % that should be the case
InList = [I|Rest],
OutList = [I|More],
succ(Index,NextIndex),
go_through(Rest,NextIndex,Rest,More).
go_through([],_,L,L). % DONE
Alternatively, you can write a replace0 that replaces-by-index in a list, and go through the L list.
Addendum: Working code using go_through
Actually contains a few subtlties
another_vectorial_replace1(ListIn,ReplacePairs,ListOut) :-
maplist([_,_]>>true,ListIn,ListOut), % Bonus code: This "makes sure" (i.e. fails if not)
% that ListIn and ListOut are the same length
maplist([(A,B),A-B]>>true,ReplacePairs,RealPairs), % Transform all (1,b) into [1,b]
maplist([K-_]>>integer(K),RealPairs), % Make sure the RealPairs all have integers on first place
keysort(RealPairs,RealPairsSorted), % Sorting by key, which are integers; dups are not removed!
debug(topic,"ListIn: ~q",[ListIn]),
debug(topic,"RealPairsSorted: ~q",[RealPairsSorted]),
go_through(RealPairsSorted,1,ListIn,ListOut),
debug(topic,"ListOut: ~q",[ListOut]).
% Case of Index hit, CurIndex is found in the first "Replacement Pair"
go_through([CurIndex-Value|RestPairs],CurIndex,ListIn,ListOut) :-
!, % Commit to choice
ListIn = [_|Rest],
ListOut = [Value|More],
succ(CurIndex,NextIndex),
go_through(RestPairs,NextIndex,Rest,More).
% Case of Index miss:
go_through([NotYetIndex-V|RestPairs],CurIndex,ListIn,ListOut) :-
NotYetIndex > CurIndex, % that should be the case because of sorting; fail if not
!, % Commit to choice
ListIn = [X|Rest],
ListOut = [X|More],
succ(CurIndex,NextIndex),
go_through([NotYetIndex-V|RestPairs],NextIndex,Rest,More).
% Case of DONE with list traversal
% Only succeed if there are not more pairs left (i.e. no out-of-bound replacements)
go_through([],_CurIndex,L,L).
% ===
% Tests
% ===
:- begin_tests(another_vectorial_replace1).
test(empty) :- another_vectorial_replace1([],[],LO),
LO=[].
test(nop_op) :- another_vectorial_replace1([a,b,c,d],[],LO),
LO=[a,b,c,d].
test(one) :- another_vectorial_replace1([a],[(1,xxx)],LO),
LO=[xxx].
test(two) :- another_vectorial_replace1([a,b,c,d],[(4,y),(2,x)],LO),
LO=[a,x,c,y].
test(full) :- another_vectorial_replace1([a,b,c,d],[(1,e),(2,f),(3,g),(4,h)],LO),
LO=[e,f,g,h].
test(duplicate_replacement,[fail]) :- another_vectorial_replace1([a],[(1,x),(1,y)],_).
test(out_of_bounds_high,[fail]) :- another_vectorial_replace1([a],[(2,y)],_).
test(out_of_bounds_low,[fail]) :- another_vectorial_replace1([a],[(0,y)],_).
:- end_tests(another_vectorial_replace1).
rt :- debug(topic),run_tests(another_vectorial_replace1).
Addendum 2
Replacement using maplist/N, foldl/N and library(assoc)
Recursive calls disappear behind the curtain!
https://github.com/dtonhofer/prolog_notes/blob/master/code/vector_replace0.pl
(the following assumes that the indices in the pairs list will be sorted, in increasing order, as the example in the question indicates.)
What you said can be written as one conjunction
E=[A,B,C,D], L=[(1,a),(3,c)], solve(E,L), E=[a,B,c,D].
which you intend to be holding under the proper definition of solve/2 that you seek to find. But isn't it like saying
E=[A|E2], L=[(1,a)|L2],
E2=[B,C,D], L2=[(3,c)],
solve(E2,L2), E2=[B,c,D],
E=[a|E2].
? Although, something doesn't quite fit right, here. c in E2 appears in second position, not 3rd as indicated by its entry in L2.
But naturally, L2 must be indexed from 2, since it is a tail of L which is indexed from 1. So we must make this explicit:
E=[A,B,C,D], L=[(1,a),(3,c)], solve(E,L), E=[a,B,c,D]
==
E=[A,B,C,D], L=[(1,a),(3,c)], solve(E,1,L), E=[a,B,c,D] % starting index 1
==
E=[A|E2], L=[(1,a)|L2],
E2=[B,C,D], L2=[(3,c)],
solve(E2,2,L2), E2=[B,c,D], E=[a|E2]
must, and now can, hold. But where did a get from, in E? What we actually mean here is
E=[A|E2], L=[(1,a)|L2],
p( (1,a), 1, a), % index match
E2=[B,C,D], L2=[(3,c)],
solve(E2,2,L2), E2=[B,c,D], % starting index 2
E=[a|E2]
with p/3 defined as
p( (I,A), I, A).
And so it must also hold that
E2=[B|E3], L2=[(3,c)],
\+ p( (3,c), 2, c), % index mismatch
E3=[C,D], L3=L2,
solve(E3,3,L3), E3=[c,D], E2=[B|E3]
L2 is not traversed along at this step (L3=L2), since p( (3,c), 2, c) does not hold.
Do you see how the recursive definition of solve/3 reveals itself here? Could you finish it up?

Prolog: compare list elements and sum

New to prolog and trying to implement the following function that takes 3 lists:
True if lists are the same length
True if elements of third list is sum of the two lists
Example: fn([1,2,3],[4,5,6],[5,7,9]) returns true. Note that the sum is element-wise addition.
This is what I have so far:
fn([],[],[]).
fn([_|T1], [_|T2], [_|T3]) :-
fn(T1,T2,T3), % check they are same length
fn(T1,T2,N1), % check that T3=T1+T2
N1 is T1+T2,
N1 = T3.
From what I understand, the error is due to the base case (it has empty lists which causes error with evaluation of addition?)
Thanks for any help and explanations!
In addition to #GuyCoder's answer, I would point out that it is worthwhile to consider using one of the maplist predicates from library(apply) when modifying all elements of lists. You can use a predicate to describe the relation between three numbers...
:- use_module(library(apply)). % for maplist/4
num_num_sum(X,Y,S) :-
S is X+Y.
... and subsequently use maplist/4 to apply it to entire lists:
fn(X,Y,Z) :-
maplist(num_num_sum,X,Y,Z).
This predicate yields the desired results if the first two lists are fully instantiated:
?- fn([1,2,3],[4,5,6],X).
X = [5,7,9]
However, due to the use of is/2 you get instantiation errors if the first two lists contain variables:
?- fn([1,A,3],[4,5,6],[5,7,9]).
ERROR at clause 1 of user:num_num_sum/3 !!
INSTANTIATION ERROR- X is _+B: expected bound value
?- fn([1,2,3],[4,5,A],[5,7,9]).
ERROR at clause 1 of user:num_num_sum/3 !!
INSTANTIATION ERROR- X is A+B: expected bound value
If you only want to use the predicate for lists of integers, you can use CLP(FD) to make it more versatile:
:- use_module(library(apply)).
:- use_module(library(clpfd)). % <- use CLP(FD)
int_int_sum(X,Y,S) :-
S #= X+Y. % use CLP(FD) constraint #=/2 instead of is/2
fnCLP(X,Y,Z) :-
maplist(int_int_sum,X,Y,Z).
With this definition the previously problematic queries work as well:
?- fnCLP([1,A,3],[4,5,6],[5,7,9]).
A = 2
?- fnCLP([1,2,3],[4,5,A],[5,7,9]).
A = 6
Even the most general query yields results with this version:
?- fnCLP(X,Y,Z).
X = Y = Z = [] ? ;
X = [_A],
Y = [_B],
Z = [_C],
_A+_B#=_C ? ;
X = [_A,_B],
Y = [_C,_D],
Z = [_E,_F],
_A+_C#=_E,
_B+_D#=_F ? ;
.
.
.
Since the numbers in the above answers are not uniquely determined, you get residual goals instead of actual numbers. In order to get actual numbers in the answers, you have to restrict the range of two of the lists and label them subsequently (see documentation for details), e.g. to generate lists containing the numbers 3,4,5 in the first list and 6,7,8 in the second list, you can query:
label the lists
restrict the domain | |
v v v v
?- fnCLP(X,Y,Z), X ins 3..5, Y ins 6..8, label(X), label(Y).
X = Y = Z = [] ? ;
X = [3],
Y = [6],
Z = [9] ? ;
X = [3],
Y = [7],
Z = [10] ? ;
.
.
.
X = [3,4],
Y = [6,7],
Z = [9,11] ? ;
X = [3,4],
Y = [6,8],
Z = [9,12] ? ;
.
.
.
On an additional note: there are also clp libraries for booleans (CLP(B)), rationals and reals (CLP(Q,R)) that you might find interesting.
From what I understand, the error is due to the base case.
I don't see it that way.
The first problem I see is that you are trying to process list which leads to thinking about using DCGs, but since you are new I will avoid that route.
When processing list you typically process the head of the list then pass the tail back to the predicate using recursion.
e.g. for length of list you would have
ln([],N,N).
ln([_|T],N0,N) :-
N1 is N0+1,
ln(T,N1,N).
ln(L,N) :-
ln(L,0,N).
The predicate ln/2 is used to set up the initial count of 0 and the predicate ln/3 does the work using recursion. Notice how the head of the list is taken off the front of the list and the tail of the list is passed recursively onto the predicate again. When the list is empty the predicate ln([],N,N). unifies, in this case think copies, the intermediate count from the second position into the third position, which it what is passed back with ln/2.
Now back to your problem.
The base case is fine
fn([],[],[]).
There are three list and for each one look at the list as [H|T]
fn([H1|T1],[H2|T2],[H3|T3])
and the call to do the recursion on the tail is
fn(T1,T2,T3)
all that is left is to process the heads which is
H3 is H1 + H2
putting it all together gives us
fn([],[],[]).
fn([H1|T1], [H2|T2], [H3|T3]) :-
H3 is H1 + H2,
fn(T1,T2,T3).
and a quick few checks.
?- fn([],[],[]).
true.
?- fn([1],[1],[2]).
true.
?- fn([1,2],[3,4],[4,6]).
true.
?- fn([1,2],[3,4,5],[4,6,5]).
false.
With regards to the two conditions. When I look at exercises problems for logic programming they sometimes give a condition like True if lists are the same length or some other condition that returns true. I tend to ignore those at first and concentrate on getting the other part done first, in this case elements of third list is sum of the two lists then I check to see if the other conditions are correct. For most simple classroom exercises they are. I sometimes think teacher try to give out these extra conditions to confuse the student, but in reality the are there just to clarify how the code should work.

Find powers of 2 in a list Prolog

I'm trying to create a list in Prolog (SWI Prolog) and check which numbers are powers of 2 and second find how many times a specific number is in the list (in this example I'm trying to find how many times the number 3 is in the list).
For a example, if you ask
?- check([0,2,3,-5,-2,1,8,7,4], MULT2, THREE).
you should see
MULT2=[2,8,4]
THREE=1
My first try to find a solution is to search the list with head and doing head mod 2 = 0 to find all numbers which are powers of 2, but something went wrong and I only get "false" as an answer.
Here's how you can find the "powers of two" in logically-pure way!
Using sicstus-prolog 4.3.5, library(reif) and library(clpz):
:- use_module([library(reif), library(clpz)]).
power_of_two_t(I, T) :-
L #= min(I,1),
M #= I /\ (I-1),
call((L = 1, M = 0), T). % using (=)/3 and (',')/3 of library(reif)
Sample query1 using meta-predicate tfilter/3 in combination with power_of_two_t/2:
?- tfilter(power_of_two_t, [0,2,3,-5,-2,1,8,7,4], Ps).
Ps = [2,1,8,4]. % succeeds deterministically
Here's a more general query suggested by a comment:
?- tfilter(power_of_two_t, [X], Ps).
Ps = [X], 0#=X/\_A, _A+1#=X, X in 1..sup, _A in 0..sup
; Ps = [], dif(_A,0), _A#=X/\_B, _B+1#=X, X in 1..sup, _B in 0..sup
; Ps = [], dif(_A,1), _A#=min(X,1), _B#=X/\_C, _C+1#=X, X#>=_A, _A in inf..1.
Footnote 1: The answer sequences shown above were brushed up to indicate the determinism of calls.
Footnote 2: To reproduce the results use call_det/2 which is defined like this:
call_det(G_0, Det) :-
call_cleanup(G_0, Flag = set),
( nonvar(Flag)
-> Det = true
; Det = false
).
It's a strange thing to have two such a different tasks to do in one predicate. You should probably have two separate predicates, one for counting number of powers of 2 and one to count 3s. Then you can combine them in one predicate like:
check(Nums, MULT2, THREE) :-
count2powers(Nums, MULT2),
count3s(Nums, THREE).
After that you can decompose further and have a separate predicate to check if a number is a power of 2:
is2power(1).
is2power(N) :-
N > 0,
N2 is N // 2,
N2 * 2 =:= N,
is2power(N2).
This is basic software engineering and this way you can build your program step by step and you will be able to ask more concrete and meaningful questions than just "The whole program returns false."

Prolog List Predicates

I need some help with three prolog predicates for checking and manipulating lists. I'm new to prolog and any help would be much appreciated.
The three predicates are:
double_up(+List1, -List2) is true when List2 has each element of List1 twice. The query double_up([a,b,c],X) should give X=[a,a,b,b,c,c]. The order of the elements in the output list does not matter.
pivot(+List1, +Pivot, -Smaller, -GreaterEq) is true when Smaller is the list of numbers in List1 smaller than Pivot, and GreaterEq is the list of numbers in List1 bigger than or equal to Pivot.
fancy_replace(+List, +Takeout,+Putin, -NewList, -Count) is true when NewList is the same list as the input List, but where each Takeout element in the list is replaced with the Putin element. Count should be the number of Takeouts that got replaced. For example, the query fancy_replace([9,10,1,9,2],9,0, X, C) should give X = [0,10,1,0,2] and C = 2. The order of the elements in the output list does not matter.
The simpler pattern to process lists in Prolog imposes a recursive predicate with 2 arguments, matching - conventionally - input and output data, and a base case, stopping the recursion, matching the empty list. Then
double_up([X|Xs], [X,X|Ys]) :- double_up(Xs, Ys).
double_up([], []).
This predicate it's a bit more general than what's required, because it works also in mode double_up(-List1, +List2). For instance
?- double_up(L,[1,1,2,2]).
L = [1, 2].
To restrict its mode as required, I think it's necessary to uselessly complicate the code, moving that clean loop in a service predicate, and leaving double_up just to test the arguments:
double_up(I, O) :- is_list(I), var(O), double_up_(I, O).
double_up_([X|Xs], [X,X|Ys]) :- double_up_(Xs, Ys).
double_up_([], []).
pivot/4 could be 'one-liner' in SWI-Prolog:
pivot(List1, Pivot, Smaller, GreaterEq) :-
partition(>(Pivot), List1, Smaller, GreaterEq).
like partition, foldl from library(apply) it's an easy inplementation of the last required predicate:
fancy_replace(List, Takeout, Putin, NewList, Count) :-
foldl(swap_n_count(Takeout, Putin), List, NewList, 0, Count).
swap_n_count(Takeout, Putin, L, N, C0, C) :-
( L == Takeout
-> N = Putin, C is C0 + 1
; N = L, C = C0
).
to be honest, i hate prolog... even though it is fun and easy after you learn it
i think this is a good reference as I was having trouble understanding how prolog works couple weeks ago.
what does the follow prolog codes do?
anyway.. this is the answer for your first problem; Hopefully you could solve the rest yourself :D
double([]).
double([H|[]], [H,H|[]]).
double([H|T],[H,H|T1]):- double(T, T1).
btw, this might not the only solution...but it works