Currently looking at this guide to using OpenMP with C/C++ programs and wonder what they mean by creating a magic function in the quote below:
Internally, GCC implements this by creating a magic function and
moving the associated code into that function, so that all the
variables declared within that block become local variables of that
function (and thus, locals to each thread). ICC, on the other hand,
uses a mechanism resembling fork(), and does not create a magic
function. Both implementations are, of course, valid, and semantically
identical.
A "magic" function is a function created by the compiler - its magicness comes from the fact that you as a programmer don't need to do anything, it's "magically done for you".
Related
I'm currently learning about c++'s inline function by reading Bjarne Stroustrup Programming_ Principles and Practice Using C++.
The author mentioned
(for inline function) the compiler will try to generate code for the
function at each point of call rather than using function-call
instructions to use common code.
I'm not exactly sure what is the difference between "generate code for the function at each point of call" vs "using function-call instruction to use common code". What are the fundamental differences that distinguish the two concepts?
For a non-inlined function, a single copy of the function's code exists somewhere in memory, and the compiler generates a CALL instruction at each call site to jump to that memory location. When the function exits, execution flow will jump back to the call site.
For an inlined function, the compiler will merge a copy of the function's code directly into the code at each call site. The function will not exist on its own in memory, and there will be no CALL instructions generated to jump into the function and back.
I have limited knowledge in assembly, but I can at least read through it and match with the corresponding C or C++ code. I can see that the function arguments are passed either by pushing them to the stack or by registers, and the function body uses some registers to do its operations. But it also seems to use the same registers that were used in the caller. Does this mean that the caller has no guarantee that the state of the registers will be the same after a function call? What if the whole body of the function is unknown during compilation? How does the compiler deal with this?
The compiler-generated assembler code follows some calling convention. A calling convention typically specifies
how are arguments passed to the function
how return values are passed from the called function to the caller
which registers should be saved within a function call and which can be modified
If all functions being called follow the same calling convention, no problems with using the same registers should occur.
As the comments allude to, the fact is that there is no standard for this. It is left entirely to the implementors of the particular c++ compiler you are using.
A more explicit question, like this: "when compiling on version N of compiler A with compiler options B, calling a function signature of C, for target CPU D, using ABI E, what are the guarantees vis-a-vis register preservation?"
In which case an expert (or the manual) on that particular toolset can answer.
As you can probably infer, for any kind of industrial-strength project, it's the wrong question to ask, because as your compiler evolves the answer will change, and you don't want that fact to impact the reliability of your program.
It's a good question, because it's nice to know what the compiler is doing under the hood - it aids learning.
But on the whole, the golden rule is to express clear uncomplicated logic to the compiler in your program, and allow the compiler to handle the details of turning that logic into optimised machine code, at which modern compilers are excellent.
__declspec(naked) void printfive() {
int i = 5;
printf("%i\n", i);
}
for some reason this code works, but I do not understand where the i is stored? In the frame of the calling function? It becomes global variable? If it is stored in the caller's frame, then how compiler knows the displacement, because you can call printfive() from different functions with different frame size and local variables. If it is global, or something like static maybe, I have tried to go recursive and I can see that variable is not changed, it is not truly local indeed. But that's obvious, there is no entry code (prolog). Ok, I understand, no prolog, no frame, no register change, but this is values, but what happens to the scope? Is the behaviour of this specifier defined in any reference? Is this part of C++ standard anyway? This sort of functions are great if you mostly use asm {} inside them, (or use asm to call them and want to be sure the function is not over optimized), but you can mix with C++. But this is sort of brain twister.
I know this topic is more than several years old, Here are my own answers.
Since no references are made to Microsoft documentation regarding this topic, for those who care to learn more about what is needed or not as stated by Keltar, here is the Microsoft documentation that explains most of what Keltar didn't explain here.
According to Microsoft documentation, and should be avoided.
The following rules and limitations apply to naked functions:
The return statement is not permitted.
Structured Exception Handling and C++ Exception Handling constructs are not permitted because they must unwind across the stack frame.
For the same reason, any form of setjmp is prohibited
Use of the _alloca function is prohibited.
To ensure that no initialization code for local variables appears before the prolog sequence, initialized local variables are not
permitted at function scope. In particular, the declaration of C++
objects are not permitted at function scope. There may, however, be
initialized data in a nested scope.
Frame pointer optimization (the /Oy compiler option) is not recommended, but it is automatically suppressed for a naked function.
You cannot declare C++ class objects at the function lexical scope. You can, however, declare objects in a nested block.
From gcc manual:
Use this attribute ... to indicate that the specified function does
not need prologue/epilogue sequences generated by the compiler. It is
up to the programmer to provide these sequences. The only statements
that can be safely included in naked functions are asm statements that
do not have operands. All other statements, including declarations of
local variables, if statements, and so forth, should be avoided. Naked
functions should be used to implement the body of an assembly
function, while allowing the compiler to construct the requisite
function declaration for the assembler.
And it isn't standard (as well as any __declspec or __attribute__)
When entering or exiting a function, the compiler adds code to help with the passing or parameters. When a function is declared naked, non of the parameter variables assignment code is generated, if you want to get at any of the parameters, you will need to directly access the relevant registers or stack (depending on the ABI defined calling convention).
In your case, you are not passing parameters to the function, therefore your code works even though the function is declared naked. Take a look at the dis-assembler if you want to see the difference.
Just came across the register keyword in C++ and I wondered as this seems a good idea (keeping certain variables in a register) surely the compiler does this by default?
So I wondered is this keyword still used?
Most implementations just ignore the register keyword (unless it imposes a syntactical or semantical error).
The standard also doesn't say that anything must be kept in a register; merely that it's a hint to the implementation that the variable is going to be used very often. Its use is even deprecated.
7.1.1 Storage class specifiers [dcl.stc]
3) A register specifier is a hint to the implementation that the variable so declared will be heavily used. [ Note: The hint can be ignored and in most implementations it will be ignored if the address of the variable is taken. This use is deprecated (see D.2). — end note ]
The standard says this (7.1.1(2-3)):
The register specifier shall be applied only to names of variables declared in a block (6.3) or to function parameters (8.4). It specifies that the named variable has automatic storage duration (3.7.3). A variable declared without a storage-class-specifier at block scope or declared as a function parameter has automatic storage duration by default.
A register specifier is a hint to the implementation that the variable so declared will be heavily used. [ Note: The hint can be ignored and in most implementations it will be ignored if the address of the variable is taken. This use is deprecated (see D.2). — end note ]
In summary: register is useless, vestigial, atavistic and deprecated. Its main purpose is to make the life of people harder who are trying to implement self-registering classes and want to name the main function register(T *).
Probably the only remotely serious use for the register keyword left is a GCC extension that allows you to use a hard-coded hardware register without inline assembly:
register int* foo asm("a5");
This will mean that any access to foo will affect the CPU register a5.
This extension of course has little use outside of very low-level code.
Only specific number of registers are available for any C++ program.
Also, it is just a suggestion for the compiler mostly compilers can do this optimization themselves so there is not really much use of using register keyword and so more because compilers may or may not follow the suggestion.
So the only thing register keyword does with modern compilers is prevent you from using & to take the address of the variable.
Using the register keyword just prevents you from taking the address of the variable in C, while in C++ taking the address of the variable just makes the compiler ignore the register keyword.
Bottomline is, Just don't use it!
Nicely explained by Herb:
Keywords That Aren't (or, Comments by Another Name)
No, it's not used. It's only a hint, and a very weak one at that. Compilers have register allocators, they can figure out which variables should be kept in registers (and account for things you probably never thought about).
The keyword "register" has been deprecated since the 2011 C++ standard; see "Remove Deprecated Use of the register Keyword". It should therefore not be used.
In my own experiments I found that debug code generated by gcc (v8.1.1) does differ if the "register" keyword is used; the generated assembly code allocates designated variables to registers. Benchmarks even showed that this code ran faster (than code without "register"). This is irrelevant, however, as release (optimised) code showed no differences (ie, using "register" had no effect). Vacbob states here that if any optimization is enabled, then gcc ignores "register". My own tests confirm this.
So, in summary, don't use "register" and if debug code appears to run faster when "register" is used, bear in mind that the optimized release code will not.
C++03 3.6.1.3: The function main shall not be used (3.2) within a program. ...
I wonder why this rule exists... Is anyone aware of any system/implementation where it would be a problem if main were used?
P.S. 1. I know the definition of the term used. 2. I know there are simple workarounds like calling a single MyMain() from main() and using MyMain() instead. 3. The question is about real-world implementations which would have a problem if the restriction weren't there. Thanks!
In addition to the other answers: The c++ spec guarantees that all static initialization has happened before main is called.
If code could call main then some static scoped object could call main, in which case a fundamental guarantee is violated.
The spec can't say "static scoped objects should not call main()" because many objects are not written specifically to be instantiated at static scope always. It also can't say that constructors should not call main() - because its very difficult to audit and prove that a constructor isn't calling a method, calling a method, that might sometimes, call main().
I'd imagine this preserves an implementation's freedom to prefix main with code to construct globals and statics, accept any parameters identifying the environment and command line arguments and map them to the argc/argv/env conventions of C++, construct an appropriate stack and exception framework for the application to execute etc. Consider that not all environments may allow an executable image to have any other symbol designated as initialisation code to be run before main().
Similarly, cleanup code may be appended to main(), along with a call to the OS with some mapping from the 0/non-zero convention of C and C++ to the actual success/failure values used by that specific OS.
Consequently, calling main from elsewhere could attempt a second reinitialisation of the application framework or force an unintended exit to the OS - sounds catastrophic to me.
C++'s main() is a strange little function that has different syntax for exception-handling, doesn't have to return a value, even though it has to be defined as returning int, etc. I don't know whether this affects any real implementations, but I would guess that the restriction exists to give compiler writers some latitude in how they implement main().