Pointer to a different instance. - c++

How can such a code work correctly when the IWindow pointer clearly has an address to a ISheet class which has no method Say?
#include <iostream>
using namespace std;
class IWindow
{
private:
int p;
double f;
public:
void Say() { cout << "Say in IWindow"; }
};
class ISheet
{
public:
void foo() { cout << "ISheet::foo"; }
};
int main()
{
ISheet *sh = new ISheet();
int ptr = (int)sh;
IWindow *w = (IWindow*)ptr;
w->Say();
sh->foo();
return 0;
}
When compiled in Visual Studio 2015 it runs and executes with no problems, but I was expecting to get an error on line w->Say(). How is this possible?

It works by the grace of the almighty Undefined Behavior. Your functions don't try to access any data members of the containing class, they just write something to std::cout, which anyone can do.
What you've effectively done is
#include <iostream>
void IWindow_Say(void*)
{
std::cout << "Say in IWindow";
}
int main()
{
IWindow_Say(0xdeadbeef); // good luck with that pointer
}
You never used the pointer (which became this in your original example) so no side-effects were observed.

Related

constructor's problem to initialize pointer data member

I encountered a problem while initializing a pointer data member i.e int* apex; inside a constructor
having parameter as int i = 0; as *apex = i;
but unfortunately nothing is executed after compiler strikes this line.
#include <iostream>
using namespace std;
class base{
int *apex;
public:
explicit base(int i = 0){
cout << "this does executes" << endl;
*apex = i; // <<<<<--- problem???
cout << "this doesnt executes" << endl;
}
};
int main(void){
base test_object(7);
cout << "this also doesnt executes";
}
// I know how to avoid this but i want to know what
// exactly the problem is associated with *apex = i;
THANKS IN ADVANCE
note-no error is generated
What you wrote is equivalent to:
int *apex;
*apex = 42;
which is undefined behavior (UB), which includes that the compiler might just include code to stop execution or to start playing the song Never Gonna Give You Up by Rick Astley.
Even
int *apex = nullptr;
*apex = 42;
would be UB because the int* pointer has to point to a valid int when dereferencing via *
Just write
class base{
int apex{};
public:
explicit base(int i) : apex(i){}
};
And be done for
I got it. Trust me I am ashamed of myself after this silly doubt.
#include <iostream>
using namespace std;
class base{
int *apex;
public:
explicit base(int i = 0){
apex = new int;
// this is what i was supposed to do
*apex = i;
}
};
int main(void){
base test_object(7);
}
Your pointer points to invalid address you didn't initialize it
This will fix what you have asked to be done.
using namespace std;
class base{
int *apex{nullptr};
public:
explicit base(int& i ): apex{&i} {
cout << "this does executes" << endl;
cout << "this doesnt executes" << endl;
}
};
int main(void){
int a = 7
base test_object(a);
cout << "this also doesnt executes";
}
Make sure something (int) given to ctor has longer lifetime than an instance.

C++ Pointer function to other class function

I need help with passing a function pointer on C++. I can't linkage one function for a class to other function. I will explain. Anyway I will put a code resume of my program, it is much larger than the code expose here but for more easier I put only the part I need to it works fine.
I have one class (MainSystem) and inside I have an object pointer to the other class (ComCamera). The last class is a SocketServer, and I want when the socket received any data, it sends to the linkage function to MainSystem.
ComCamera is a resource Shared with more class and I need to associate the functions ComCamera::vRecvData to a MainSystem::vRecvData or other function of other class for the call when receive data and send de data to the function class associate.
Can Anyone help to me?
EDDITED - SOLUTION BELOW
main.cpp
#include <iostream>
#include <thread>
#include <string>
#include <vector>
#include <cmath>
#include <string.h>
#include <stdio.h>
#include <exception>
#include <unistd.h>
using std::string;
class ComCamera {
public:
std::function<void(int, std::string)> vRecvData;
void vLinkRecvFunction(std::function<void(int, std::string)> vCallBack) {
this->vRecvData = vCallBack;
}
void vCallFromCamera() {
this->vRecvData(4, "Example");
};
};
class MainSystem {
private:
ComCamera *xComCamera;
public:
MainSystem(ComCamera *xComCamera) {
this->xComCamera = xComCamera;
this->xComCamera->vLinkRecvFunction([this](int iChannelNumber, std::string sData) {vRecvData(iChannelNumber, sData); });
}
void vRecvData(int iNumber, string sData) {
std::cout << "RECV Data From Camera(" + std::to_string(iNumber) + "): " << sData << std::endl;
};
};
int main(void) {
ComCamera xComCamera;
MainSystem xMainSystem(&xComCamera);
xComCamera.vCallFromCamera();
return 0;
}
Output will be:
MainSystem RECV Data From Camera(4): Example
You can have ComCamera::vRecvData be of type std::function<void(int, std::string)> and then have ComCamera::vLinkRecvFunction() be like this:
void ComCamera::vLinkRecvFunction(std::function<void(int, std::string)> callBack)
{
this->vRecvData = callBack;
}
and have MainSystem constructor be like this:
MainSystem::MainSystem(ComCamera *xComCamera)
{
using namespace std::placeholders;
this->xComCamera = xComCamera;
this->xComCamera->vLinkRecvFunction([this](int iNumber, std::string sData){vRecvData(number, sData);});
}
Still though the original question has way too much code to go through friend.
Here what you want :
#include<iostream>
using std::cout;
class A; //forward declare A
class B{
public:
void (A::*ptr)(int x); //Only declare the pointer because A is not yet defined.
};
class A{
public:
void increase_by(int x){
a+=x;
} // this function will be pointed by B's ptr
int a = 0; // assume some data in a;
B b; // creating B inside of A;
void analyze(int y){
(*this.*(b.ptr))(y);
} // Some function that analyzes the data of A or B; Here this just increments A::a through B's ptr
};
int main(){
A a; // creates A
cout<<a.a<<"\n"; // shows initial value of a
a.b.ptr = &A::increase_by; // defines the ptr that lies inside of b which inturns lies inside a
a.analyze(3); // calls the initialize method
(a.*(a.b.ptr))(3); // directly calls b.ptr to change a.a
cout<<a.a; // shows the value after analyzing
return 0;
}
Output will be :
0
6
I still don't get why would you do something like this. But maybe this is what you wanted as per your comments.
To know more read this wonderful PDF.

Instance of class only allows 1 method, or program crashes

I am learning classes and OOP, so I was doing some practice programs, when I came across the weirdest bug ever while programming.
So, I have the following files, beginning by my class "pessoa", located in pessoa.h:
#pragma once
#include <string>
#include <iostream>
using namespace std;
class pessoa {
public:
//constructor (nome do aluno, data de nascimento)
pessoa(string newname="asffaf", unsigned int newdate=1996): name(newname), DataN(newdate){};
void SetName(string a); //set name
void SetBornDate(unsigned int ); //nascimento
string GetName(); //get name
unsigned int GetBornDate();
virtual void Print(){}; // print
private:
string name; //nome
unsigned int DataN; //data de nascimento
};
Whose functions are defined in pessoa.cpp
#include "pessoa.h"
string pessoa::GetName ()
{
return name;
}
void pessoa::SetName(string a)
{
name = a;
}
unsigned int pessoa::GetBornDate()
{
return DataN;
}
void pessoa::SetBornDate(unsigned int n)
{
DataN=n;
}
A function, DoArray, declared in DoArray.h, and defined in the file DoArray.cpp:
pessoa** DoArray(int n)
{
pessoa* p= new pessoa[n];
pessoa** pointer= &p;
return pointer;
}
And the main file:
#include <string>
#include <iostream>
#include "pessoa.h"
#include "DoArray.h"
#include <cstdio>
using namespace std;
int main()
{
//pessoa P[10];
//cout << P[5].GetBornDate();
pessoa** a=DoArray(5);
cerr << endl << a[0][3].GetBornDate() << endl;
cerr << endl << a[0][3].GetName() << endl;
return 0;
}
The weird find is, if I comment one of the methods above, "GetBornDate" or GetName, and run, the non-commented method will run fine and as supposed. However, if both are not commented, then the first will run and the program will crash before the 2nd method.
Sorry for the long post.
Let's look into this function:
int *get()
{
int i = 0;
return &i;
}
what is the problem with it? It is returning pointer to a local variable, which does not exist anymore when function get() terminates ie it returns dangling pointer. Now your code:
pessoa** DoArray(int n)
{
pessoa* p= new pessoa[n];
return &p;
}
do you see the problem?
To clarify even more:
typedef pessoa * pessoa_ptr;
pessoa_ptr* DoArray(int n)
{
pessoa_ptr p= whatever;
return &p;
}
you need to understand that whatever you assign to p does not change lifetime of p itself. Pointer is the same variable as others.

Function calls with class members?

Before I present the code which is found at the bottom of this post I would like to talk about the issue and the fix's that I do not desire. Okay basically I've created a GUI from scratch sort of and one requirement I wanted for this was allow components to have their own click executions so if i click a button or tab etc.. It would call Component->Execute(); Well normally you would do something like a switch statement of ids and if that components ID equaled n number then it would perform this action. Well that seemed kinda dumb to me and I thought there has to be a better way. I eventually tried to incorporate a feature in JAVA where you would do like Component.AddActionListener(new ActionListener( public void execute(ActionEvent ae) { })); or something like that and I thought that this feature has to be possible in C++. I eventually came across storing void functions into a variable in which could be executed at any time and modified at any time. However I hadn't noticed an issue and that was this only worked with static functions. So below you'll see my problem. I've patched the problem by using a pointer to SomeClass however this would mean having an individual function call for every class type is there no way to store a function callback to a non-static class member without doing the below strategy? and instead doing a strategy like the commented out code?
//Main.cpp
#include <iostream> //system requires this.
#include "SomeClass.h"
void DoSomething1(void)
{
std::cout << "We Called Static DoSomething1\n";
}
void DoSomething2(void)
{
std::cout << "We Called Static DoSomething2\n";
}
int main()
{
void (*function_call2)(SomeClass*);
void (*function_call)() = DoSomething1; //This works No Problems!
function_call(); //Will Call the DoSomething1(void);
function_call = DoSomething2; //This works No Problems!
function_call(); //Will Call the DoSomething2(void);
SomeClass *some = new SomeClass(); //Create a SomeClass pointer;
function_call = SomeClass::DoSomething3; //Static SomeClass::DoSomething3();
function_call(); //Will Call the SomeClass::DoSomething3(void);
//function_call = some->DoSomething4; //Non-Static SomeClass::DoSomething4 gives an error.
//function_call(); //Not used because of error above.
function_call2 = SomeClass::DoSomething5; //Store the SomeClass::DoSomething(SomeClass* some);
function_call2(some); //Call out SomeClass::DoSomething5 which calls on SomeClass::DoSomething4's non static member.
system("pause");
return 0;
}
//SomeClass.hpp
#pragma once
#include <iostream>
class SomeClass
{
public:
SomeClass();
~SomeClass();
public:
static void DoSomething3(void);
void DoSomething4(void);
static void DoSomething5(SomeClass* some);
};
//SomeClass.cpp
#include "SomeClass.h"
SomeClass::SomeClass(void)
{
}
SomeClass::~SomeClass(void)
{
}
void SomeClass::DoSomething3(void)
{
std::cout << "We Called Static DoSomething3\n";
}
void SomeClass::DoSomething4(void)
{
std::cout << "We Called Non-Static DoSomething4\n";
}
void SomeClass::DoSomething5(SomeClass *some)
{
some->DoSomething4();
}
Secondary Fix for what I'll do not an exact answer I wanted but it meets my needs for now along with allowing additional features which would have become overly complicate had this not existed.
//Component.hpp
#pragma once
#include <iostream>
#include <windows.h>
#include <d3dx9.h>
#include <d3d9.h>
#include "Constants.hpp"
#include "ScreenState.hpp"
#include "ComponentType.hpp"
using namespace std;
class Component
{
static void EMPTY(void) { }
static void EMPTY(int i) { }
public:
Component(void)
{
callback = EMPTY;
callback2 = EMPTY;
callback_id = -1;
}
Component* SetFunction(void (*callback)())
{
this->callback = callback;
return this;
}
Component* SetFunction(void (*callback2)(int), int id)
{
this->callback_id = id;
this->callback2 = callback2;
return this;
}
void execute(void)
{
callback();
callback2(callback_id);
}
}
The syntax for pointers-to-member-functions is as follows:
struct Foo
{
void bar(int, int);
void zip(int, int);
};
Foo x;
void (Foo::*p)(int, int) = &Foo::bar; // pointer
(x.*p)(1, 2); // invocation
p = &Foo::zip;
(x.*p)(3, 4); // invocation
Mind the additional parentheses in the function invocation, which is needed to get the correct operator precedence. The member-dereference operator is .* (and there's also ->* from an instance pointer).

C++ : unresolved overloaded function when using function pointers

#include <iostream>
using namespace std;
class B
{
public:
int getMsg(int i)
{
return i + 1;
}
};
class A
{
B b;
public:
void run()
{
taunt(b.getMsg);
}
void taunt(int (*msg)(int))
{
cout << (*msg)(1) << endl;
}
};
int main()
{
A a;
a.run();
}
The above code has a class B inside a class A, and class A has a method taunt that takes a function as an argument. class B's getMsg is passed into taunt...The above code generated the following error message: "error: no matching function for call to 'A::taunt()'"
What's causing the error message in the above code? Am I missing something?
Update:
#include <iostream>
using namespace std;
class B
{
public:
int getMsg(int i)
{
return i + 1;
}
};
class A
{
B b;
public:
void run()
{
taunt(b.getMsg);
}
void taunt(int (B::*msg)(int))
{
cout << (*msg)(1) << endl;
}
};
int main()
{
A a;
a.run();
}
t.cpp: In member function 'void A::run()':
Line 19: error: no matching function for call to 'A::taunt()'
compilation terminated due to -Wfatal-errors.
I'm still getting the same error after changing (*msg)(int) to (B::*msg)(int)
b.getMsg is not the correct way to form a pointer to member, you need &B::getMsg.
(*msg)(1) is not the correct way to call a function through a pointer to member you need to specify an object to call the function on, e.g. (using a temporary) (B().*msg)(1).
The right way to do such things in OOP is to use interfaces so all you need to do is to define an interface and implement it in B class after that pass the pointer of instance which implements this interface to your method in class A.
class IB{
public:
virtual void doSomething()=0;
};
class B: public IB{
public:
virtual void doSomething(){...}
};
class A{
public:
void doSomethingWithB(IB* b){b->doSomething();}
};
This works in VS 2010. The output is the same on all lines:
#include <iostream>
#include <memory>
#include <functional>
using namespace std;
using namespace std::placeholders;
class A
{
public:
int foo(int a, float b)
{
return int(a*b);
}
};
int main(int argc, char* argv[])
{
A temp;
int x = 5;
float y = 3.5;
auto a = std::mem_fn(&A::foo);
cout << a(&temp, x, y) << endl;
auto b = std::bind(a, &temp, x, y);
cout << b() << endl;
auto c = std::bind(std::mem_fn(&A::foo), &temp, _1, y);
cout << c(5) << endl;
}
Basically, you use std::mem_fn to get your callable object for the member function, and then std::bind if you want to bind additional parameters, including the object pointer itself. I'm pretty sure there's a way to use std::ref to encapsulate a reference to the object too if you'd prefer that. I also included the _1 forwarding marker just for another way to specify some parameters in the bind, but not others. You could even specify everything BUT the class instance if you wanted the same parameters to everything but have it work on different objects. Up to you.
If you'd rather use boost::bind it recognizes member functions and you can just put it all on one line a bit to be a bit shorter: auto e = boost::bind(&A::foo, &temp, x, y) but obviously it's not much more to use completely std C++11 calls either.