I've been having trouble understanding the delete and delete [] functions in C++. Here's what I know so far:
aClass *ptr = new aClass(); //Allocates memory on the heap for a aClass object
//Adds a pointer to that object
...
delete ptr; //ptr is still a pointer, but the object that it
//was pointing to is now destroyed. ptr is
//pointing to memory garbage at this point
ptr = anotehrOjbectPtr //ptr is now pointing to something else
In the case that this happens,
aClass *ptr new aClass();
...
ptr = anotherObjectPtr
the object that pointer was pointing to, is now lost in memory, adn this will cause a memory leak. The object should've been deleted first.
I hope the above is correct
But I wrote this small program, where I'm getting some unexpected behaviour
#include <iostream>
#include <string>
using namespace std;
class Database {
private:
Database() {
arrNames = NULL;
capacity = 1;
size = 0;
}
Database(const Database &db) {}
Database &operator=(const Database &db) {}
string *arrNames;
int capacity, size;
public:
static Database &getDB() {
static Database database;
return database;
}
void addName(string name) {
if (arrNames == NULL) {
arrNames = new string[capacity];
}
if (size == capacity - 1) {
capacity *= 2;
string *temp = new string[capacity];
int i = 0;
while (i <= size) {
temp[i] = arrNames[i];
i++;
}
delete [] arrNames;
arrNames = temp;
}
arrNames[size] = name;
size++;
}
void print() {
int i = 0;
while (i <= size) {
cout << arrNames[i] << endl;
i++;
}
}
};
int main() {
Database &database = Database::getDB();
Database &db = Database::getDB();
Database &info = Database::getDB();
database.addName("Neo");
db.addName("Morpheus");
info.addName("Agent Smith");
database.print();
db.print();
info.print();
}
In the addName function, when I call delete [] arrNames, what I think is happening is that the memory associated with the current array arrNames is destroyed, so arrNames is now pointing at garbage, Then arrNames is directed to point to another location in memory that is pointed to by temp. So if I hadn't called delete [] arrNames, then that location in memory would've been invalid, causing a memory leak. However, when I comment out that line, the code still works without problems. Am I not understanding something here?
Sorry that this si so long
Thanks for the halp
However, when I comment out that line, the code still works without problems. Am I not understanding something here?
An important thing to know about programming is that doing things correctly is not merely a matter of having things apparently work.
Often times you can try something out hand have things appear to work, but then some outside circumstances change, something you're not explicitly controlling or accounting for, and things stop working. For example you might write a program and it runs find on your computer, then you try to demo it to someone and happen to run it on their computer, and the program crashes. This idea is the basis of the running joke among programmers: "It works for me."
So things might appear to work, but in order to know that things will work even when conditions change you have to meet a higher standard.
You've been told how to do things correctly with delete, but that doesn't necessarily mean that things will break in an obvious way if you fail to do so. You need to abandon the idea that you can definitively determine whether something is correct or not by trying it out.
From what I think I see in your code, it looks like addName() is meant to append the new name onto the dynamic array. Doing this yourself can be headache inducing, and there is an existing convenient STL template for just this which I strongly recommend, called vector, from the <vector> header.
If you add #include <vector> and change string *arrNames to vector<string> arrNames, then your entire addName() function can be reduced to:
void addName(string name){
arrNames.push_back(name);
}
From the vector.size() method, you can determine the current length of the vector as well, and your members capacity and size are no longer needed.
A memory leak doesn't involve anything being made invalid. Quite the reverse, it's a failure to make a memory location invalid, causing it to remain in use even when it shouldn't be.
First of all, when you delete something, you are not destroying it in memory, just making it available for some further allocation. This is somewhat similar to filesystem - when you delete file, you just say space it occupied is now available for some new data. You could actually retrieve unmodified data after you called delete on them, but this is undefined behavior and will be compiler/OS specific.
If you don´t delete[] arrNames, you leave its data forgotten in your process´s memory, and creating memory leak. But beside this fatal flaw, there is no more magic happening.
Related
I have a Trie program written in C++. There is an issue with deleting Trie. Even though the code is performing delete operation memory is not getting freed. Can someone point where I am doing wrong? Program doesn't deal with the individual string deletion from Trie. Below is the delete snippet of code.
void deleteTrie(trieNodeT **t) {
if(*t) {
trieNodeT *current = *t;
for(int i=0; i<26; i++) {
if(current->children[i]) {
deleteTrie(¤t->children[i]);
free (current->children[i]);
}
}
}
}
void deleteEntireTrie(trieCDT *t) {
if (t) {
deleteTrie(&t->root);
}
}
Below is the link of entire source code:
https://ideone.com/xL7bvu
Given that this is C++:
(trieNodeT *) malloc(sizeof(trieNodeT));
should be:
new trieNodeT;
You can't use delete and malloc together, it's undefined behavior.
Alternatively, you could replace:
delete current->children[i];
with
free(current->children[i]);
You also probably need to write out null into what you're deleting:
if(current->children[i]) {
deleteTrie(¤t->children[i]);
delete current->children[i];
current->children[i] = nullptr; // or 0
}
Where is the delete for the root node?
You do not need to null the pointer for deletion to take effect. The memory is 'marked' deleted with delete statement. If you do not null the pointer, then the pointer still points to the 'marked' deleted memory area. C++ purists would jump up and say that what I say following is wrong - immediately after a delete, if you access the memory through that old pointer, in many implementations, the data would still be there. Because the memory block was just marked as deleted; NOT physically overwritten. BUT you should never access that deleted memory. The program takes away that marked deleted memory and assigns it away when it next needs memory; and you do not have any control over it. And with multithreading, that memory might be gone even 'immediately'.
Tutorials, searches, and the dim memory of my C++ formal education have left me clueless as to where I should use delete when I'm using a dynamically allocated object pointer in a loop, such as:
// necessary files are included, this code is within main
T * t;
t = foo.getNewT();
while (!t->isFinalT()) {
// print t stuff
delete t; // is this where I should delete t?
t = foo.getNewT();
}
delete t;
This lack of knowledge has become particularly troublesome on a recent class project. On my laptop (Linux Mint, g++ Ubuntu/Linaro 4.7.3-1ubuntu1) the code ran fine without the delete statement and crashed when I added the delete statement. On the school server (Solaris, g++ (GCC) 3.4.5), the code segfaulted after a few iterations without the delete statement, and runs fine when I add the delete statement.
How do I handle this kind of loop properly so that it will run in most environments?
Additional Info:
The error on my laptop occurs when the program reaches the delete request:
*** Error in 'program': free(): invalid next size (fast):...
Some of the other code:
// T.h
class T {
int id;
int num;
int strVarPos;
char * strVar;
public:
T();
~T();
// + misc. methods
}
// T.cpp
T::T() {
id = 0;
num = -1;
strVarPos = 0;
char * strVar = new char[11];
strVar[0] = '\0'
}
T::~T() {
delete [] strVar;
}
// Foo.cpp
T * Foo::getNewT() {
T * t = new T;
// populate T's fields
return t;
}
Resolution:
Because a simple test with just T * t and the loop worked ok, I ended up reconstructing the project starting from blank and adding one class at a time, to see when the problem would appear. Turns out that I had added additional content into a dynamically allocated array elsewhere in the program without updating the size constant I was using to initialize the array.
Evidently the school server could only handle the resulting memory discrepancy without crashing if I was making sure to delete the pointers properly (the program didn't run long enough to cause a significant memory leak in my tests), while my laptop wouldn't notice the memory discrepancy until I attempted to call delete (and then would crash).
Assuming that foo.getNewT() is handing ownership of the memory over to the caller:
T * t;
t = foo.getNewT();
//while (!t->isFinalT()) // if foo.getNewT ever returns NULL, this will be UB!!!
while (t != nullptr && !t->isFinalT())
{
// ...
delete t; // if you now own it and are no longer going to use it, yes, delete it here
t = foo.getNewT();
}
delete t; // you also need this one to delete the "final" t
However, you can avoid having to do it yourself by using std::unique_ptr:
std::unique_ptr<T> t;
t.reset(foo.getNewT());
while (t && !t->isFinalT())
{
// ...
t.reset(foo.getNewT());
}
Alternatively, you could rewrite the loop to flow a bit better:
std::unique_ptr<T> t;
do
{
t.reset(foo.getNewT());
if (t)
{
// do stuff with t
}
} while (t && !t->isFinalT());
the code ran fine without the delete statement and crashed when I
added the delete statement.
Are you sure getNewT is handing ownership of the T* to you? If you delete it, and then it tries to delete it later, you will end up with a heap corruption. If it is handing ownership over to the caller, and you do not delete it, you get a memory leak.
With the additional information in your edit:
char * strVar = new char[11];
That line is unnecessary if you declare strVar as either a std::string or a char[11]. If you attempt to copy any of those T objects, you'll be using the default copy constructor (as you have not defined one), which will do a shallow copy (that is, copy the value of the pointer for strVar). When you delete 2 Ts that are both pointing to the same memory location, you get a heap corruption. The most robust solution would be to declare strVar as a std::string.
The problem is not the delete. You have put it in the right place. It's more likely something else you are doing that is causing undefined behaviour.
Note that you should have a delete t after the loop as well (to catch the last one). This is assuming that foo.getNewT() always returns a valid pointer (which it must, because you never check if it is NULL).
You should delete a dynamically allocated memory when you no longer need it. If you want t to hold its value inside the for loop, then delete it outside the loop otherwise delete it inside.
However, the best thing to do is to use std::unique_ptr when you really have to use pointers . It will take care of deallocating the memory itself when all references to the memory are destroyed. You should try to avoid allocating memory as much as you can. Use STL containers if they fit the job.
I think when you delete t you are deleting the real object inside your structure.
Maybe that what is causing the problem.
I heard a lot of memory leak vulnerability, but I could not find a real work example of memory leak, could you provide a real work example of memory leak, maybe of some big open source project and explain the solution to me
thx.
It's really simple actually. In your main put:
char* c = new char[4];
Then exit. That's a memory leak. Any new that doesn't get followed by delete is a leak.
This answer has some good examples, but like my comment has said, it will be fairly hard to find a released application with a leak that an outside observer can look at and easily identify.
I am screaming, cursing and yelling everyday about code like this in our (huge) legacy code base:
// returns raw pointer with changing conventions who's the owner...
HelpFoo* Foo::GetFoo(Bar* pBar, OtherFoo* pFoo)
{
// all 'local' variables even those allocated on freestore declared
// and initialized in a large block at the beginning of the function/method
HelpFoo *A = new HelpFoo;
OtherHelpFoo *B, *C;
EvenMore *D = new EvenMore;
// and so on, these blocks can be huge...
// a complicated spaghetti code in here, with dozens of nested 'ifs'
if (/* some expression */) {
} else if (/* some other expression */) {
// and so on... then suddenly:
if (/* some other nested expression */) {
// I forgot that I've allocated other memory at the beginning...
return A;
}
}
// some miserably written logic here and suddenly
if (D) delete D; return A;
// call to some other function with cryptical name without any
// kind of knowledge what happens with the resource:
FooTakesReferenceToPointer(&A);
// suddenly returning something completely different
// what should I free, A, D...?
return C;
}
I tried to write in comments what the problems are. Clearly, forget about exceptions. The spaghetti code is so bad that nobody can tell what the logic actually is. Therefore it is really, really easy to forget to free memory and that happens very, very frequently. Solution 1: Throw away and rewrite everything. Solution 2: Keep spaghetti as it is, replace all newed resources by smart pointers and make_shared or make_unique, let compiler yell. Of course, first write a test suite (which didn't exist before) to guarantee the same (often screwed) behaviour for all possible sets of inputs (which are not documented).
EDIT
As james said this is undefined behaviourso no promises
You could do something like this:
#include <vector>
class Base
{
public:
Base()
{
baseData = new char [1024];
}
~Base()
{
delete [] baseData;
}
private:
char* baseData;
};
class Derived : public Base
{
public:
Derived()
{
derivedData = new char[1024];
}
~Derived()
{
delete [] derivedData;
}
private:
char* derivedData;
};
int main()
{
std::vector<Base*> datablocks;
datablocks.push_back(new Base());
datablocks.push_back(new Derived());
for(unsigned int i = 0; i < datablocks.size(); ++i)
{
delete datablocks[i];
}
datablocks.clear();
return 0;
}
The data in the Derived class wont be removed here since we are calling delete on a Base* and the Base class does not declare a virtual destructor.
A lot examples could be given here. Just allocate some memory and do not free it.
A good example for this would be the following:
char* pBuffer = new char[ 1024 ]; // or something else, dynamically allocated
// do something here
// now suppose, calling f() throws
f();
// do some other things
delete[] pBuffer;
When f() throws, if the exception is not caught, delete[] will never be executed. Thus, memory leak.
This is one of the best examples why smart pointers should be used.
Another example would be - a function, returning pointer to dynamically allocated memory. The user, often, may forget to free this memory. Something like:
char
char* f()
{
return new char[ 1024 ];
}
//...
// in some other function
char* pSomething = f();
// do some stuff here and return
Imagine you're processing network data and create polymorphic "message objects" based on the data:
while (true)
{
char buf[1024];
size_t len = read_from_network(buf, 1024); // fictitious, for demonstration only
Message * p = Message::Parse(buf, len); // allocates new, dynamic, concrete object
engine.process(p);
}
The engine object may chose to store the object somewhere and use it again later, and if nobody takes care of deleting it, you have a perfect leak.
While the other answers give enough hints, some 'real world' memory leaks which I have seen in our applications.
I don't remember if this was found before or after the release, but, I guess that doesn't matter.
void f()
{
BYTE* b = NULL;
f = open a file;
while (!f.end())
{
int size = getNextRecordSize(f);
b = new BYTE;
readNextRecord(f,b);
process record;
}
delete b;
}
Bit hard to detect this. The reviewers might take it for granted that the memory is deleted properly by seeing the delete call. However, it deletes only the memory allocated for the last record. Rest is leaked.
class A
{
public:
BYTE* get()
{
allocate a new buffer, copy the someData buffer and return that.
The client is expected to delete it
};
private:
BYTE* someData;
};
void f()
{
A a;
B.initialize(a.get()); // It is so convenient to use the pointer. It is not obvious from the function name
// that the result of get has to be deleted.
}
One example I often run across in our code is in image understanding functions, where a temporary 8bit memory is allocated, and never released (yeah, I know, when you do a new, do a delete right afterwards...)
unsigned char* dataToBeUsed = new unsigned char[imgsize];
memcpy(dataToBeUsed, original, imgsize);
// use and process the data here
return value;
The allocated memory is never released -> memory leak. Windows will kill the memory when the application is exited completely, but before that within the application that memory is just lost -> leaked.
A memory leak occurs when the programmer has the memory leak of forgetting to free allocated memory :-)
linebuffer = new char[4096];
/* do things */
/* forget to free memory */
Normally, if you cause a memory leak and then exit the program, it is not harmful, since the operating system normally frees the resources allocated by the program. The problem arises when your application runs for a long period of time (for example, a service). If your program causes memory leaks, then you will run out system's memory, unless the operating system has mechanisms to avoid that; in such case, it will terminate your program.
So, be careful and eat fish: it's very good for memory :-)
To give you a real-world example, a bit of googling turned up this memory leak in 389 Directory Server (a RedHat Open Source product).
Just lose the pointer to dynamically allocated memory:
void foo()
{
int *arr = new int[100];
}
This is regarding deletion of this pointer for an object allocated on heap.Program is as follows,
class Sample{
private:
int m_value1;
int m_value2;
public:
Sample();
void setValues(int m_value1, int m_value2);
void display();
};
Sample::Sample(){
this->m_value1 = 0;
this->m_value2 = 0;
}
void Sample::setValues(int m_value1, int m_value2){
this->m_value1= m_value1;
this->m_value2 = m_value2;
display();
if(this != NULL)
{
cout <<"Deleting this pointer!"<<endl;
delete this;
cout <<"this->m_value1 is "<<this->m_value1<<endl;
cout <<"this->m_value2 is "<<this->m_value2<<endl;
}
}
void Sample::display(){
cout <<"Values are "<<this->m_value1<<" and "<<this->m_value2<<endl;
}
int main(){
Sample *obj1 = new Sample();;
obj1->setValues(4,6);
obj1->display();
getch();
}
OUTPUT:
Values are 4 and 6
Deleting this pointer!
this->m_value1 is 65535
this->m_value2 is 6
Values are 65535 and 6
Why does the value for m_value1 disappear whereas it stays for the other variable m_value2?
Accessing member variables after delete this is undefined behavior - anything can happen, including unexpected data being read, program crashing or anything else. The object has been destroyed and deallocated and you try to dereference an invalid pointer. Once delete this has happened - don't try to access the member variables, don't try t call member functions and don't do anything else (including comparing or casting) to this pointer.
Why does the value for m_value1 disappear whereas it stays for the other variable m_value2?
You are accessing memory after you deleted it. That means you are invoking undefined behavior.
So anything might happen, and your observation is as right or wrong as anything else.
What's likely going on is that the part of memory where m_value1 was stored is reused for something else, whilst the storage for m_value2 has not been used for something else (yet).
It's a matter of chance, probably the operator<< or whatever your do after deleting this allocates enough memory to overwrite the one and not the other.
But when you do something that shouldn't be done you should not rely on any particular consequences.
Dangerous and unpredictable outputs expected including system crash!
Do not delete location pointed to by this directly. its not a good programming practice. and don't use memory after deleting. and even if u have to put it inside an assert()
this != NULL // this will never be NULL if used properly.
pointer segfault problems...
I've been doing c++ for some weeks meanwhile but i ran again into that issue.
basically i have these classes given. I cant change them. I start with an instance of _ns3__importAuftragResponse kout;
class SOAP_CMAC _ns3__importAuftragResponse
{
public:
ns2__SOAPImportResult *return_;
...
class SOAP_CMAC ns2__SOAPImportResult
{
public:
bool *error;
int *numberOfIgnoreds;
....
My code needs to check for the numberOfIgnoreds
first approach
ns2__SOAPImportResult* imp_result;
imp_result = kout.return_;
int num;
num = *imp_result->numberOfIgnoreds;
or i use
ns2__SOAPImportResult imp_result;
imp_result = *(kout.return_);
int* num;
*num = *imp_result.numberOfIgnoreds;
I mostly get segmentation fault
I know generally what happens at runtime but cant come up with the correct ode. PLease help.
EDIT
made progress thx to your answer, Nawaz , but still need some understanding
ns2__SOAPImportResult * imp_ptr = new ns2__SOAPImportResult;
imp_ptr = kout.return_;
int * num = new (int);
// next line segfaults
*num = *imp_ptr->numberOfIgnoreds;
what's hard for me to understand is, how or why allocate memory for something that is already "there" as there is the member return_ of the object kout
So is it correct to say I need to allocate memory for the variable I assign it to (which is of same type of course)?
Most likely you've not allocated memory for the following members which you're using in the code you've quoted.
ns2__SOAPImportResult *return_; //in the class _ns3__importAuftragResponse
int *numberOfIgnoreds; //in the class ns2__SOAPImportResult
Other than this I don't see anything where things might go wrong!
Make sure you allocate memory for these members (and all other pointers in your program) before using them. You can use new to allocate memory. Or alternatively, you can use malloc() as well. Whatever you use, use it consistently, and deallocate the memory once you done, using delete or free() respectively!
This looks like gsoap. In that case you must use soap_malloc to allocate memory which you return.
For example on the FAQ page, you will find this example:
int ns__itoa(struct soap *soap, int i, char **a)
{ *a = (char*)soap_malloc(soap, 11);
sprintf(*a, "%d", i);
return SOAP_OK;
}