I've been using the C++ detection idiom create a metafunction for determining the number of arguments to an arbitrary callable. So far, I have this (full, compilable code at http://ideone.com/BcgDhv):
static constexpr auto max_num_args = 127;
struct any { template <typename T> operator T() { } };
template <typename F, typename... Args>
using callable_archetype = decltype( declval<F>()(declval<Args>()...) );
template <typename F, typename... Args>
using is_callable_with_args = is_detected<callable_archetype, F, Args...>;
template <typename F, size_t I = 0, typename... Args>
struct count_args
: conditional<is_callable_with_args<F, Args...>::value,
integral_constant<size_t, I>,
count_args<F, I+1, Args..., any>
>::type::type
{ };
template <typename F, typename... Args>
struct count_args<F, max_num_args, Args...> : integral_constant<size_t, max_num_args> { };
This works great when none of the callable arguments are lvalue references:
void foo(int i, int j) { }
static_assert(count_args<decltype(foo)>::value == 2, "");
But when any of the arguments are lvalue references, this fails (for obvious reasons, since the callable archetype has a substitution failure):
void bar(char i, bool j, double& k);
static_assert(count_args<decltype(bar)>::value == 3, "doesn't work");
Does anyone know how to generalize this idea to make it work with lvalue references as well?
The following works (for small max_num_args):
struct any { template <typename T> operator T(); };
struct anyref { template <typename T> operator T&(); };
template <typename F, typename... Args>
using callable_archetype = decltype(std::declval<F>()(std::declval<Args>()...) );
template <typename F, typename... Args>
using is_callable_with_args = std::is_detected<callable_archetype, F, Args...>;
template <typename F, size_t I = 0, typename... Args>
struct count_args
: std::conditional<is_callable_with_args<F, Args...>::value,
std::integral_constant<std::size_t, I>,
std::integral_constant<std::size_t,
std::min(count_args<F, I+1, Args..., any>::value,
count_args<F, I+1, Args..., anyref>::value)>
>::type::type
{};
template <typename F, typename... Args>
struct count_args<F, max_num_args, Args...> :
std::integral_constant<std::size_t, max_num_args> {};
Demo
But code has to be optimized, as the complexity is 2**max_num_args :/
Change this line:
struct any { template <typename T> operator T() { } };
to:
struct any {
template <typename T> operator T&&() { }
template <typename T> operator T&() { }
};
live example
We have both an lvalue and rvalue implicit casting operator. So, we ... good?
Building off of the answer from #Jarod42, a slightly better definition of any seems to do the trick in the vast majority of cases (excluding cases that cause callable_archetype to be a substitution error for other reasons; for instance, classes with deleted copy constructors, the invocation of which wouldn't be valid anyway):
struct any {
template <typename T,
typename = enable_if_t<
not is_same<T, remove_reference_t<T>>::value
>
>
operator T();
template <typename T,
typename = enable_if_t<
is_same<T, remove_reference_t<T>>::value
>
>
operator T&();
template <typename T,
typename = enable_if_t<
is_same<T, remove_reference_t<T>>::value
>
>
operator T&&();
};
This seems to work in all of the same cases as the previous answer without the exponential scaling.
Demo
Related
Suppose we have a variadic templated class like
template<class...Ts>
class X{
template<size_t I>
constexpr bool shouldSelect();
std::tuple<TransformedTs...> mResults; // this is want I want eventually
};
where the implementation of shouldSelect is not provided, but what it does is that, given an index i referring to the ith element of the variadic Ts, tells you whether we should select it to the subset.
I want to do a transformation on Ts such that only classes Ts at indexes that results in shouldSelect returning true should be selected. Is there an easy way to do this?
For example, if shouldSelect returns true for I = 1,2,4, and Ts... = short, int, double, T1, T2, then I want to get a TransformedTs... that is made up of int, double, T2. Then I can use this TransformedTs... in the same class.
If you're able to use C++17, this is pretty easy to implement using a combination of if constexpr and expression folding.
Start with some helper types, one with parameters to track the arguments to X::shouldSelect<I>(), and the other with a type to test.
template <typename T, size_t I, typename...Ts>
struct Accumulator {
using Type = std::tuple<Ts...>;
};
template <typename T>
struct Next { };
Then an operator overload either adds the type to the accumulator, or not with if constexpr:
template <typename TAcc, size_t I, typename... Ts, typename TArg>
decltype(auto) operator +(Accumulator<TAcc, I, Ts...>, Next<TArg>) {
if constexpr (TAcc::template shouldSelect<I>()) {
return Accumulator<TAcc, I + 1, Ts..., TArg>{};
} else {
return Accumulator<TAcc, I + 1, Ts...>{};
}
}
Finally, you can put it all together with a fold expression and extract the type with decltype:
template <template <typename... Ts> class T, typename... Ts>
constexpr decltype(auto) FilterImpl(const T<Ts...>&) {
return (Accumulator<T<Ts...>, 0>{} + ... + Next<Ts>{});
}
template<typename T>
using FilterT = typename decltype(FilterImpl(std::declval<T>()))::Type;
Usage:
using Result = FilterT<X<int, double, bool, etc>>;
Demo: https://godbolt.org/z/9h89zG
If you don't have C++17 available to you, it's still possible. You can do the same sort of conditional type transfer using a recursive inheritance chain to iterate though each type in the parameter pack, and std::enable_if to do the conditional copy. Below is the same code, but working in C++11:
// Dummy type for copying parameter packs
template <typename... Ts>
struct Mule {};
/* Filter implementation */
template <typename T, typename Input, typename Output, size_t I, typename = void>
struct FilterImpl;
template <typename T, typename THead, typename... TTail, typename... OutputTs, size_t I>
struct FilterImpl<T, Mule<THead, TTail...>, Mule<OutputTs...>, I, typename std::enable_if<( T::template shouldSelect<I>() )>::type >
: FilterImpl<T, Mule<TTail...>, Mule<OutputTs..., THead>, (I + 1)>
{ };
template <typename T, typename THead, typename... TTail, typename... OutputTs, size_t I>
struct FilterImpl<T, Mule<THead, TTail...>, Mule<OutputTs...>, I, typename std::enable_if<( !T::template shouldSelect<I>() )>::type >
: FilterImpl<T, Mule<TTail...>, Mule<OutputTs...>, (I + 1)>
{ };
template <typename T, typename... OutputTs, size_t I>
struct FilterImpl<T, Mule<>, Mule<OutputTs...>, I>
{
using Type = std::tuple<OutputTs...>;
};
/* Helper types */
template <typename T>
struct Filter;
template <template <typename... Ts> class T, typename... Ts>
struct Filter<T<Ts...>> : FilterImpl<T<Ts...>, Mule<Ts...>, Mule<>, 0>
{ };
template <typename T>
using FilterT = typename Filter<T>::Type;
Demo: https://godbolt.org/z/esso4M
Is there a utility in the standard library to get the index of a given type in std::variant? Or should I make one for myself? That is, I want to get the index of B in std::variant<A, B, C> and have that return 1.
There is std::variant_alternative for the opposite operation. Of course, there could be many same types on std::variant's list, so this operation is not a bijection, but it isn't a problem for me (I can have first occurrence of type on list, or unique types on std::variant list).
Update a few years later: My answer here may be a cool answer, but this is the correct one. That is how I would solve this problem today.
We could take advantage of the fact that index() almost already does the right thing.
We can't arbitrarily create instances of various types - we wouldn't know how to do it, and arbitrary types might not be literal types. But we can create instances of specific types that we know about:
template <typename> struct tag { }; // <== this one IS literal
template <typename T, typename V>
struct get_index;
template <typename T, typename... Ts>
struct get_index<T, std::variant<Ts...>>
: std::integral_constant<size_t, std::variant<tag<Ts>...>(tag<T>()).index()>
{ };
That is, to find the index of B in variant<A, B, C> we construct a variant<tag<A>, tag<B>, tag<C>> with a tag<B> and find its index.
This only works with distinct types.
I found this answer for tuple and slightly modificated it:
template<typename VariantType, typename T, std::size_t index = 0>
constexpr std::size_t variant_index() {
static_assert(std::variant_size_v<VariantType> > index, "Type not found in variant");
if constexpr (index == std::variant_size_v<VariantType>) {
return index;
} else if constexpr (std::is_same_v<std::variant_alternative_t<index, VariantType>, T>) {
return index;
} else {
return variant_index<VariantType, T, index + 1>();
}
}
It works for me, but now I'm curious how to do it in old way without constexpr if, as a structure.
You can also do this with a fold expression:
template <typename T, typename... Ts>
constexpr size_t get_index(std::variant<Ts...> const&) {
size_t r = 0;
auto test = [&](bool b){
if (!b) ++r;
return b;
};
(test(std::is_same_v<T,Ts>) || ...);
return r;
}
The fold expression stops the first time we match a type, at which point we stop incrementing r. This works even with duplicate types. If a type is not found, the size is returned. This could be easily changed to not return in this case if that's preferable, since missing return in a constexpr function is ill-formed.
If you dont want to take an instance of variant, the argument here could instead be a tag<variant<Ts...>>.
With Boost.Mp11 this is a short, one-liner:
template<typename Variant, typename T>
constexpr size_t IndexInVariant = mp_find<Variant, T>::value;
Full example:
#include <variant>
#include <boost/mp11/algorithm.hpp>
using namespace boost::mp11;
template<typename Variant, typename T>
constexpr size_t IndexInVariant = mp_find<Variant, T>::value;
int main()
{
using V = std::variant<int,double, char, double>;
static_assert(IndexInVariant<V, int> == 0);
// for duplicates first idx is returned
static_assert(IndexInVariant<V, double> == 1);
static_assert(IndexInVariant<V, char> == 2);
// not found returns ".end()"/ or size of variant
static_assert(IndexInVariant<V, float> == 4);
// beware that const and volatile and ref are not stripped
static_assert(IndexInVariant<V, int&> == 4);
static_assert(IndexInVariant<V, const int> == 4);
static_assert(IndexInVariant<V, volatile int> == 4);
}
One fun way to do this is to take your variant<Ts...> and turn it into a custom class hierarchy that all implement a particular static member function with a different result that you can query.
In other words, given variant<A, B, C>, create a hierarchy that looks like:
struct base_A {
static integral_constant<int, 0> get(tag<A>);
};
struct base_B {
static integral_constant<int, 1> get(tag<B>);
};
struct base_C {
static integral_constant<int, 2> get(tag<C>);
};
struct getter : base_A, base_B, base_C {
using base_A::get, base_B::get, base_C::get;
};
And then, decltype(getter::get(tag<T>())) is the index (or doesn't compile). Hopefully that makes sense.
In real code, the above becomes:
template <typename T> struct tag { };
template <std::size_t I, typename T>
struct base {
static std::integral_constant<size_t, I> get(tag<T>);
};
template <typename S, typename... Ts>
struct getter_impl;
template <std::size_t... Is, typename... Ts>
struct getter_impl<std::index_sequence<Is...>, Ts...>
: base<Is, Ts>...
{
using base<Is, Ts>::get...;
};
template <typename... Ts>
struct getter : getter_impl<std::index_sequence_for<Ts...>, Ts...>
{ };
And once you establish a getter, actually using it is much more straightforward:
template <typename T, typename V>
struct get_index;
template <typename T, typename... Ts>
struct get_index<T, std::variant<Ts...>>
: decltype(getter<Ts...>::get(tag<T>()))
{ };
That only works in the case where the types are distinct. If you need it to work with independent types, then the best you can do is probably a linear search?
template <typename T, typename>
struct get_index;
template <size_t I, typename... Ts>
struct get_index_impl
{ };
template <size_t I, typename T, typename... Ts>
struct get_index_impl<I, T, T, Ts...>
: std::integral_constant<size_t, I>
{ };
template <size_t I, typename T, typename U, typename... Ts>
struct get_index_impl<I, T, U, Ts...>
: get_index_impl<I+1, T, Ts...>
{ };
template <typename T, typename... Ts>
struct get_index<T, std::variant<Ts...>>
: get_index_impl<0, T, Ts...>
{ };
My two cents solutions:
template <typename T, typename... Ts>
constexpr std::size_t variant_index_impl(std::variant<Ts...>**)
{
std::size_t i = 0; ((!std::is_same_v<T, Ts> && ++i) && ...); return i;
}
template <typename T, typename V>
constexpr std::size_t variant_index_v = variant_index_impl<T>(static_cast<V**>(nullptr));
template <typename T, typename V, std::size_t... Is>
constexpr std::size_t variant_index_impl(std::index_sequence<Is...>)
{
return ((std::is_same_v<T, std::variant_alternative_t<Is, V>> * Is) + ...);
}
template <typename T, typename V>
constexpr std::size_t variant_index_v = variant_index_impl<T, V>(std::make_index_sequence<std::variant_size_v<V>>{});
If you wish a hard error on lookups of not containing type or duplicate type - here are static asserts:
constexpr auto occurrences = (std::is_same_v<T, Ts> + ...);
static_assert(occurrences != 0, "The variant cannot have the type");
static_assert(occurrences <= 1, "The variant has duplicates of the type");
Another take on it:
#include <type_traits>
namespace detail {
struct count_index {
std::size_t value = 0;
bool found = false;
template <typename T, typename U>
constexpr count_index operator+(const std::is_same<T, U> &rhs)
{
if (found)
return *this;
return { value + !rhs, rhs};
}
};
}
template <typename Seq, typename T>
struct index_of;
template <template <typename...> typename Seq, typename... Ts, typename T>
struct index_of<Seq<Ts...>, T>: std::integral_constant<std::size_t, (detail::count_index{} + ... + std::is_same<T, Ts>{}).value> {
static_assert(index_of::value < sizeof...(Ts), "Sequence doesn't contain the type");
};
And then:
#include <variant>
struct A{};
struct B{};
struct C{};
using V = std::variant<A, B, C>;
static_assert(index_of<V, B>::value == 1);
Or:
static_assert(index_of<std::tuple<int, float, bool>, float>::value == 1);
See on godbolt: https://godbolt.org/z/7ob6veWGr
What is the simplest way to tell at compile time if a lambda (or a function object) has a default argument or not?
Example:
auto f = [](int i=0){};
auto g = [](int i){};
static_assert(has_default_arg<decltype(f)>::value==true);
static_assert(has_default_arg<decltype(g)>::value==false);
I do not believe it is possible to detect this without some sort of function static reflection. You could however check if the lambda is invocable with both zero and one arguments. Example using the detection idiom:
template <class T>
using invocable_zero = decltype(std::declval<T&>()());
template <class T, class X>
using invocable_one = decltype(std::declval<T&>()(std::declval<X>()));
template <class T, class X>
struct has_default_arg : std::conjunction<
std::experimental::is_detected<invocable_zero, T>,
std::experimental::is_detected<invocable_one, T, X>
> { };
live example on wandbox.org
As NathanOliver pointed out in the comment, you cannot do this for normal function object. So we only focus on lambda.
First, we can make a helper class that checks whether F can be invoked with the arguments chosen from Args... via an index sequence Index_sequence:
template <typename F, typename Index_sequence, typename... Args>
struct is_invocable_for_indices : std::false_type {};
template <typename F, size_t... Is, typename... Args>
struct is_invocable_for_indices<F, std::index_sequence<Is...>, Args...>
: std::is_invocable<F, std::tuple_element_t<Is, std::tuple<Args...>>...> {};
template <typename F, typename Index_sequence, typename... Args>
inline constexpr bool is_invocable_for_indices_v = is_invocable_for_indices<F, Index_sequence, Args...>::value;
// example use
auto f = [](int i = 0) {};
auto g = [](int i) {};
static_assert(is_invocable_for_indices_v<decltype(f), std::index_sequence<>, int>);
static_assert(!is_invocable_for_indices_v<decltype(g), std::index_sequence<>, int>);
static_assert(is_invocable_for_indices_v<decltype(g), std::index_sequence<0>, int>);
Let Args be the parameter types of F, which can be detected via decltype(&F::operator()) (the idea comes from this answer). Now you can check if F has default argument by checking if F can be invoked with the first sizeof...(Args) - 1 arguments of Args. So we can define has_defulat_arg as follows:
template <typename F, typename OperatorType>
struct has_defulat_arg_impl : std::false_type {};
template <typename F, typename R, typename... Args>
struct has_defulat_arg_impl<F, R(F::*)(Args...) const>
: is_invocable_for_indices<F, std::make_index_sequence<sizeof...(Args) - 1>, Args...> {};
// specialization for the case where sizeof...(Args) == 0
template <typename F, typename R>
struct has_defulat_arg_impl<F, R(F::*)() const> : std::false_type {};
template <typename F>
using has_defulat_arg = has_defulat_arg_impl<F, decltype(&F::operator())>;
template <typename F>
inline constexpr bool has_defulat_arg_v = has_defulat_arg<F>::value;
// example use
auto f = [](int i = 0) {};
auto g = [](int i) {};
static_assert(has_defulat_arg_v<decltype(f)>);
static_assert(!has_defulat_arg_v<decltype(g)>);
LIVE EXAMPLE
I try to learn a little bit about template metaprogramming and
currently i play around with variadic templates.
In his talk "Variadic Templates are Funadic" Alexandrescu introduces a
small tuple implementation, which i try to build and maybe extend a
little bit. (I know it is a toy example, i just try to learn a little
bit more about c++). However, i have a small problem with his code.
Here it is:
template <typename... Ts>
class tuple
{};
template<size_t, typename> struct tuple_element;
template<typename T, typename... Ts>
struct tuple_element<0, tuple<T, Ts...>>
{
typedef T type;
};
template <size_t k, typename T, typename... Ts>
struct tuple_element<k, tuple<T, Ts...>>
{
typedef
typename tuple_element<k-1,tuple<Ts...>>::type type;
};
template<size_t k, typename... Ts>
typename std::enable_if<k == 0,
typename tuple_element<0,tuple<Ts...>>::type&>::type
get(tuple<Ts...>& t)
{return t.head_;}
template<size_t k, typename T, typename... Ts>
typename std::enable_if<k != 0,
typename tuple_element<k,tuple<T,Ts...>>::type&>::type
get(tuple<T,Ts...>& t)
{
tuple<Ts...> & super = t;
return get<k-1>(super);
}
template <typename T, typename... Ts>
class tuple<T,Ts...> : private tuple<Ts...>
{
private:
T head_;
};
int main(int argc, char *argv[])
{
tuple<int,std::string> t;
get<0>(t) = 10;
get<1>(t) = std::string("test");
std::cout<<get<0>(t)<<std::endl;
}
In order to work correctly, the get function must be friend of the
tuple class (It is also mentioned on this slides, see 32). But how
does the friend declaration looks like? I tried different approaches
but could not get it to work. When i change the code from private to public inheritance
and change the access rules for head_ to public it works.
Thanks for your help
Kevin
This works for me:
template <typename T, typename... Ts>
class tuple<T,Ts...> : private tuple<Ts...>
{
private:
T head_;
template<size_t k, typename T1, typename... T1s>
friend typename std::enable_if<k != 0,
typename tuple_element<k,tuple<T1,T1s...>>::type&>::type
get(tuple<T1,T1s...>& t);
template<size_t k, typename... T1s>
friend typename std::enable_if<k == 0,
typename tuple_element<0,tuple<T1s...>>::type&>::type
get(tuple<T1s...>& t);
};
Demo.
Another implementation from the other point of view:
#include <iostream>
#include <type_traits>
template <class... Args>
class Tuple;
template <>
class Tuple<> {};
template <class T, class... Args>
class Tuple<T, Args...>: public Tuple<Args...> {
using Base = Tuple<Args...>;
T Value_;
public:
Tuple(T&& value, Args&&... args)
: Value_(std::forward<T>(value))
, Base(std::forward<Args>(args)...)
{
}
T& Value() {
return Value_;
}
};
template <size_t k, class T, class... Args>
struct Select {
using Type = typename Select<k - 1, Args...>::Type;
};
template <class T, class... Args>
struct Select<0, T, Args...> {
using Type = T;
};
template <size_t k, class... Args>
using TSelect = typename Select<k, Args...>::Type;
template <bool P, class T>
using TEnableIf = typename std::enable_if<P, T>::type;
template <size_t k, class T, class... Args>
TEnableIf<(k != 0), TSelect<k, T, Args...>&> get(Tuple<T, Args...>& t) {
return get<k - 1, Args...>(t);
}
template <size_t k, class T, class... Args>
TEnableIf<(k == 0), TSelect<k, T, Args...>&> get(Tuple<T, Args...>& t) {
return t.Value();
}
int main() {
Tuple<int, char> t(1, 'a');
std::cout << get<0>(t) << std::endl;
std::cout << get<1>(t) << std::endl;
get<1>(t) = 'b';
std::cout << get<1>(t) << std::endl;
}
Actually, we don't need a Tuple to get a type.
I would like to create a compile-type function that, given any callable object f (function, lambda expression, function object, ...) and a type T, evaluates to true, if f can be called with an argument of type T, and false if it cannot.
Example:
void f1(int) { ... }
void f2(const std::string&) { ... }
assert( is_callable_with<int>(f1));
assert(!is_callable_with<int>(f2));
I'm thinking that a clever use of the SFINAE rule could achieve this. Possibly somehow like this:
template<typename T, typename F>
constexpr bool is_callable_with(F&&, typename std::result_of<F(T)>::type* = nullptr) {
return true;
}
template<typename T, typename F>
constexpr bool is_callable_with(F&&) {
return false;
}
But this doesn't work, because if F is callable with T, both overloads participate in the overload resolution and there is an ambiguity. I'd like to rewrite it so in the positive case, the first overload would be picked by the overload resolution over the second one. Not sure if I'm even on the right track here though.
A variant of Paul's answer, but following the standard SFINAE test pattern. Again a generic trait with arbitrary parameter types A...:
struct can_call_test
{
template<typename F, typename... A>
static decltype(std::declval<F>()(std::declval<A>()...), std::true_type())
f(int);
template<typename F, typename... A>
static std::false_type
f(...);
};
template<typename F, typename... A>
using can_call = decltype(can_call_test::f<F, A...>(0));
Then a constexpr function as you requested:
template<typename T, typename F>
constexpr bool is_callable_with(F&&) { return can_call<F, T>{}; }
Check live example.
This will work with functions, lambda expressions, or function objects with arbitrary number of arguments, but for (pointers to) member functions you'll have to use std::result_of<F(A...)>.
UPDATE
Below, can_call has the nice "function signature" syntax of std::result_of:
template<typename F, typename... A>
struct can_call : decltype(can_call_test::f<F, A...>(0)) { };
template<typename F, typename... A>
struct can_call <F(A...)> : can_call <F, A...> { };
to be used like this
template<typename... A, typename F>
constexpr can_call<F, A...>
is_callable_with(F&&) { return can_call<F(A...)>{}; }
where I've also made is_callable_with variadic (I can't see why it should be limited to one argument) and returning the same type as can_call instead of bool (thanks Yakk).
Again, live example here.
I would make a type trait first:
template<class X = void>
struct holder
{
typedef void type;
};
template<class F, class T, class X = void>
struct is_callable_with_trait
: std::false_type
{};
template<class F, class T>
struct is_callable_with_trait<F, T, typename holder<
decltype(std::declval<F>()(std::declval<T>()))
>::type>
: std::true_type
{};
And then if you want, you can turn it into a function:
template<typename T, typename F>
constexpr bool is_callable_with(F&&)
{
return is_callable_with_trait<F&&, T>::value;
}
template<class F, class T, class = void>
struct is_callable_with_impl : std::false_type {};
template<class F, class T>
struct is_callable_with_impl<F,T,
typename std::conditional<
true,
void,
decltype( std::declval<F>() (std::declval<T>()) ) >::type
> : std::true_type {};
template<class T, class F>
constexpr bool is_callable_with(F &&)
{
return is_callable_with_impl< F, T >::value;
}
It is basically the same solution as the one posted by Paul, I just prefer to use conditional<true, void, decltype( ... ) > instead of an holder class to avoid namespace pollution.