I'm using spherically billboarded sprites along with 3D objects. Because the quad leans backwards to match the camera angle, it intersects with 3D objects immediately behind it. It is more noticeable when the camera angle is very large.The following link provides a very clear visual.
http://answers.unity3d.com/questions/582680/billboard-issue-in-front-of-3d-object.html
Is there an efficient way to resolve this?
The best solution I could come up with was to use cylindrical billboarding for depth calculations and spherical for the quad's actual position. This allows you to use spherical billboarding while ensuring the quad's depth remains constant.
For reference here are the billboarding ModelView Matrixes. [x]: implies the value is left as is.
Cylindrical mvMatrix Spherical mvMatrix
[1][x][0][x] [1][0][0][x]
[0][x][0][x] [0][1][0][x]
[0][x][1][x] [0][0][1][x]
[x][x][x][x] [x][x][x][x]
First modify the ModelViewMatrix for cylindrical billboarding and generate a depth vertex as such:
depthV = projectionMatrix * (mvm * vertex);
Next set the second column values for spherical billboarding and create the quad as usual:
mvm[1][0] = 0; mvm[1][2] = 0; mvm[1][1] = 1;
gl_Position = projectionMatrix * (mvm * vertex);
Finally send depthV to the fragment shader and use it for the depth calculation.
float ndcDepth = depthV.z / depthV.w;
gl_FragDepth = ((gl_DepthRange.diff * ndcDepth ) + gl_DepthRange.near + gl_DepthRange.far) / 2.0;
Scaling should be done before applying the ModelView Matrixes.
Related
I have implemented shadow maps in GLSL by rendering the view from a light into a depth texture, and then in a second pass compare these values when rendering my geometry from camera view.
In abbreviated code, the vertex shader of the second (main) render pass is:
...
gl_Position = camviewprojmat * position;
shadowcoord = lightviewprojmat * postion;
...
and fragment shader I lookup this shadowcoord texel in the shadow texture to see if the light sees the same thing (lit), or something closer (shadowed.) This is done by setting GL_TEXTURE_COMPARE_MODE to GL_COMPARE_REF_TO_TEXTURE for the depth texture.
This works great for lights that have an orthogonal projection. But once I use a perspective projection to create wide-angle spot lights, I encounter errors in the image.
I have determined the cause of my issues to be the incorrectly interpolated depth values shadowcoord.z / shadowcoord.w which, due to the perspective projection, are not linear. Yet, the interpolation over the triangle is linear.
At the vertex locations, the depth values are determined exactly, but the fragments between vertex locations get incorrectly interpolated values for depth.
This is demonstrated by the image below. The yellow crosshairs are the light position, which is a spot-light looking straight down. The colour-coding is the light-depth from -1 (red) to +1 (blue.)
The pillar in the middle has long tall triangles from top to bottom, and all the interpolated light-depth values are off by a lot.
The stairs on the left have much more vertex locations, so it samples the non-linear depths more accurately.
The project matrix I use for the spot light is created like this (I use a very wide angle of 170 deg):
// create a perspective projection matrix
const float f = 1.0f / tanf(fov/2.0f);
const float aspect = 1.0f;
float* mout = sl_proj.data;
mout[0] = f / aspect;
mout[1] = 0.0f;
mout[2] = 0.0f;
mout[3] = 0.0f;
mout[4] = 0.0f;
mout[5] = f;
mout[6] = 0.0f;
mout[7] = 0.0f;
mout[8] = 0.0f;
mout[9] = 0.0f;
mout[10] = (zFar+zNear) / (zNear-zFar);
mout[11] = -1.0f;
mout[12] = 0.0f;
mout[13] = 0.0f;
mout[14] = 2 * zFar * zNear / (zNear-zFar);
mout[15] = 0.0f;
How can I deal with this non-linearity in the light depth buffer? Is it possible to have perspective projection that has linear depth values? Should I compute my shadow coordinates differently? Can they be corrected after the fact?
Note: I did consider doing the projection in the fragment shader instead, but as I have many lights in the scene, doing all those matrix multiplications in the fragment shader would be too costly in computation.
This stackoverflow answer describes how to do a linear depth buffer.
It entails writing out the depth (modelviewprojmat * position).z in the vertex shader, and then in the fragment shader compute the linear depth as:
gl_FragDepth = ( depth - zNear ) / ( zFar - zNear );
And with a linear depth buffer, the fragment interpolators can do their job properly.
I'm attempting to implement shadow mapping into my deferred rendering pipeline, but I'm running into a few issues actually generating the shadow map, then shadowing the pixels – pixels that I believe should be shadowed simply aren't.
I have a single directional light, which is the 'sun' in my engine. I have deferred rendering set up for lighting, which works properly thus far. I render the scene again into a depth-only FBO for the shadow map, using the following code to generate the view matrix:
glm::vec3 position = r->getCamera()->getCameraPosition(); // position of level camera
glm::vec3 lightDir = this->sun->getDirection(); // sun direction vector
glm::mat4 depthProjectionMatrix = glm::ortho<float>(-10,10,-10,10,-10,20); // ortho projection
glm::mat4 depthViewMatrix = glm::lookAt(position + (lightDir * 20.f / 2.f), -lightDir, glm::vec3(0,1,0));
glm::mat4 lightSpaceMatrix = depthProjectionMatrix * depthViewMatrix;
Then, in my lighting shader, I use the following code to determine whether a pixel is in shadow or not:
// lightSpaceMatrix is the same as above, FragWorldPos is world position of the texekl
vec4 FragPosLightSpace = lightSpaceMatrix * vec4(FragWorldPos, 1.0f);
// multiply non-ambient light values by ShadowCalculation(FragPosLightSpace)
// ... do more stuff ...
float ShadowCalculation(vec4 fragPosLightSpace) {
// perform perspective divide
vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
// vec3 projCoords = fragPosLightSpace.xyz;
// Transform to [0,1] range
projCoords = projCoords * 0.5 + 0.5;
// Get closest depth value from light's perspective (using [0,1] range fragPosLight as coords)
float closestDepth = texture(gSunShadowMap, projCoords.xy).r;
// Get depth of current fragment from light's perspective
float currentDepth = projCoords.z;
// Check whether current frag pos is in shadow
float bias = 0.005;
float shadow = (currentDepth - bias) > closestDepth ? 1.0 : 0.0;
// Ensure that Z value is no larger than 1
if(projCoords.z > 1.0) {
shadow = 0.0;
}
return shadow;
}
However, that doesn't really get me what I'm after. Here's a screenshot of the output after shadowing, as well as the shadow map half-assedly converted to an image in Photoshop:
Render output
Shadow Map
Since the directional light is the only light in my shader, it seems that the shadow map is being rendered pretty close to correctly, since the perspective/direction roughly match. However, what I don't understand is why none of the teapots actually end up casting a shadow on the others.
I'd appreciate any pointers on what I might be doing wrong. I think that my issue lies either in the calculation of that light space matrix (I'm not sure how to properly calculate that, given a moving camera, such that the stuff that's in view will be updated,) or in the way I determine whether the texel the deferred renderer is shading is in shadow or not. (FWIW, I determine the world position from the depth buffer, but I've proven that this calculation is working correctly.)
Thanks for any help.
Debugging shadow problems can be tricky. Lets start with a few points:
If you look at your render closely, you will actually see a shadow on one of the pots in the top left corner.
Try rotating your sun, this usually helps to see if there are any problems with the light transform matrix. From your output, it seems the sun is very horizontal and might not cast shadows on this setup. (another angle might show more shadows)
It appears as though you are calculating the matrix correctly, but try shrinking your maximum depth in glm::ortho(-10,10,-10,10,-10,20) to tightly fit your scene. If the depth is too large, you will lose precision and shadow will have artifacts.
To visualize where the problem is coming from further, try outputing the result from your shadow map lookup from here:
closestDepth = texture(gSunShadowMap, projCoords.xy).r
If the shadow map is being projected correctly, then you know you have a problem in your depth comparisons. Hope this helps!
I use deferred rendering and I store a fragment position in the camera view space. When I perform a shadow calculation I need to transform a camera view space to the shadow map space. I build a shadow matrix this way:
shadowMatrix = shadowBiasMatrix * lightProjectionMatrix * lightViewMatrix * inverseCameraViewMatrix;
shadowBiasMatrix shifts values from [-1,1] to [0,1] range.
lightProjectionMatrix that's orthographic projection matrix for a directional light. lightViewMatrix looks at the frustum center and contains a light direction.
inverseCameraViewMatrix transforms a fragment position from a camera view space to the world space.
I wonder if it is correct to multiply the inverse camera view matrix with the other matrices ? Maybe I should use the inverse camera view matrix separately ?
First scenario:
vec4 shadowCoord = shadowMatrix * vec4(cameraViewSpacePosition, 1.0);
Second scenario, a inverse camera view matrix is use separately:
vec4 worldSpacePosition = inverseCameraViewSpaceMatrix * vec4(cameraViewSpacePosition, 1.0);
vec4 shadowCoord = shadowMatrix * worldSpacePosition;
Precomputing the shadow matrix in the described way is the correct approach and should work as expected.
Because of the associativity of matrix multiplication the results of the three scenarios should be identical (ignoring floating point precision) and are thus interchangeable.
But because these calculations are done in the fragment shader, it is best to premultiply the matrixes in the main program to do as few operations as possible per fragment.
I'm also writing a deferred renderer currently and calculate my matrices in the same way without any problems.
// precomputed: lightspace_mat = light_projection * light_view * inverse_cam_view
// calculate position in clip-space of the lightsource
vec4 lightspace_pos = lightspace_mat * vec4(viewspace_pos, 1.0);
// perspective divide
lightspace_pos/=lightspace_pos.w;
// move range from [-1.0, 1.0] to [0.0, 1.0]
lightspace_pos = lightspace_pos * vec4(0.5) + vec4(0.5);
// sample shadowmap
float shadowmap_depth = texture(shadowmap, lightspace_pos.xy).r;
float fragment_depth = lightspace_pos.z;
I also found this tutorial using a simillar approach, that could be helpfull: http://www.codinglabs.net/tutorial_opengl_deferred_rendering_shadow_mapping.aspx
float readShadowMap(vec3 eyeDir)
{
mat4 cameraViewToWorldMatrix = inverse(worldToCameraViewMatrix);
mat4 cameraViewToProjectedLightSpace = lightViewToProjectionMatrix * worldToLightViewMatrix * cameraViewToWorldMatrix;
vec4 projectedEyeDir = cameraViewToProjectedLightSpace * vec4(eyeDir,1);
projectedEyeDir = projectedEyeDir/projectedEyeDir.w;
vec2 textureCoordinates = projectedEyeDir.xy * vec2(0.5,0.5) + vec2(0.5,0.5);
const float bias = 0.0001;
float depthValue = texture2D( tShadowMap, textureCoordinates ) - bias;
return projectedEyeDir.z * 0.5 + 0.5 < depthValue;
}
The eyeDir that comes in input is in View Space. To find the pixel in
the shadow map we need to take that point and covert it into the
light's clip space, which means going from Camera View Space into
World Space, then into Light View Space, than into Light Projection
Space/Clip space. All these transformations are done using matrices;
if you are not familiar with space changes you may want to read my
article about spaces and transformations.
Once we are in the right space we calculate the texture coordinates
and we are finally ready to read from the shadow map. Bias is a small
offset that we apply to the values in the map to avoid that because of
rounding errors a point ends up shading itself! So we shift all the
map back a bit so that all the values in the map are slightly smaller
than they should.
I am using deferred rendering where i store the eye space position in a texture accordingly:
vertex:
gl_Position = vec4(vertex_position, 1.0);
geometry:
vertexOut.position = vec3(viewMatrix * modelMatrix * gl_in[i].gl_Position);
fragment:
positionOut = vec3(vertexIn.position);
Now, in the second pass (lighting pass) I am trying to sample my shadow map, using UV coordinates calculated from this vec4
vec4 lightSpacePos = lightProjectionMatrix * lightViewMatrix * lightModelMatrix * vec4(position, 1.0);
The position used is the same position stored and sampled from the position texture.
Do I need to transfrom the position with the inverse camera view matrix before doing this calculation? To bring it back to world space or how should I proceed?
Typically shadow mapping is done by comparing the window-space Z coordinate (this is what a depth texture stores) of your current fragment vs. your light. This must be done using a common reference orientation, so that involves re-projecting your current fragment's position from the perspective of your light.
You have the view-space position right now, which is relative to your current camera and not particularly useful. To do this effectively you want world-space position. You can get that if you transform the view-space position by the inverse view matrix.
Given world-space position, transform into clip-space from light's perspective:
// This will be in clip-space
vec4 lightSpacePos = lightProjectionMatrix * lightViewMatrix * vec4 (worldPos);
// Transform it into NDC-space by dividing by w
lightSpacePos /= lightSpacePos.w;
// Range is now [-1.0, 1.0], but you need [0.0, 1.0]
lightSpacePos = lightSpacePos * vec4 (0.5) + vec4 (0.5);
Assuming default depth range, lightSpacePos is now ready for use. xy contains the texture coordinates to sample from your shadow map and z contains the depth to use for comparison.
For a more thorough explanation, see the following answer.
Incidentally, you will want to eliminate your position texture from your G-Buffer to achieve reasonable performance. It is very easy to reconstruct world- or view-space position given only the depth and the projection and view matrices and the arithmetic involved is much quicker than an extra texture fetch. Storing an additional texture with adequate precision to represent position in 3D space will burn through tons of memory bandwidth each frame and is completely unnecessary.
This article from the OpenGL Wiki explains how to do this. You can take it one step farther and work back to world-space, which is more desirable than view-space. You may need to tweak your depth buffer a little bit to get adequate precision, but it will still be quicker than storing position separately.
I want to view a flat fullscreen texture as it is spherical, by transforming it in a postprocess shader.
I figure I have to apply a projectionmatrix to the texture coordinate in the shader.
I found this website: http://www.songho.ca/opengl/gl_projectionmatrix.html which learns me a lot about the inners of the projectionmatrix.
But how do I apply it? I thought I would have to multiply the third row of the projection matrix to the texture coordinate with a calculated z value added to make it spherical. My efforts don't show any result though.
EDIT: I see the same issue here: http://lists.openscenegraph.org/pipermail/osg-users-openscenegraph.org/2008-April/009765.html
I think after you multiply text coords by projection matrix you have to make a perspective division and move from 3D to 2D (since the texture is 2D). This is the same as with shadow mapping.
// in fragment shader:
vec4 proj = uniformModelViewProjMatrix * tex_coords;
proj.xyz /= proj.w;
proj.xyz += vec3(1.0);
proj.xyz *= 0.5;
vec4 col = texture2D(sampler, proj.xy);
or look at http://www.ozone3d.net/tutorials/glsl_texturing_p08.php (for texture2DProj)