Tracking of multiple objects in openCV using C++ - c++

I am doing a project in OpenCV on estimating the speed of moving vehicle using the video captured. Here the camera is stationary. I have estimated the speed of single object using centroid and Euclidean distance. Now the problem is, I am not getting how to do the same for multiple objects.
Here, I need to calculate the Euclidean distance of objects between 2 subsequent frames.
I am grateful if anyone would help.
I have created the class-
class centroids
{
public:
vector<Point2f> ce;
vector<float> area;
};
centroids c[100];
And this is the code I've written. I would be grateful if anyone helped me with the code:
findContours( fgMaskMOG2,
contours,
hierarchy,
CV_RETR_CCOMP,
CV_CHAIN_APPROX_SIMPLE );
int morph_size = 6;
Mat element = getStructuringElement( MORPH_RECT,
Size( 2*morph_size+1, 2*morph_size+1 ),
Point( morph_size, morph_size ) );
Scalar color( 255, 255, 255 ); // color of the contour in the
//Draw the contour and rectangle
for( int i = 0; i < contours.size(); i++ )
{
drawContours( fgMaskMOG2,
contours,
i,
color,
CV_FILLED,
8,
hierarchy );
}
//imshow("morpho window",dst);
vector<Moments> mu( contours.size() );
vector<Point2f> mc( contours.size() );
vector<Point2f> m ;
vector<double> time;
vector<Point2f> centroid( mc.size() );
//vector< vector<Point> >::iterator itc = contours.begin();
// iterate through each contour.
double time1[1000];
for( int i = 0; i < contours.size(); i++ )
{
// Find the area of contour
double a = contourArea( contours[i], false );
if( a > 500 )
{
mu[i] = moments( contours[i], false );
mc[i] = Point2f( (mu[i].m10 / mu[i].m00), (mu[i].m01 / mu[i].m00) );
m.push_back( mc[i] );
Point2f diff;
double euclidian = 0;
for( int f = 0; f < m.size(); f++ )
{
if( k == 1 )
{
c[f].ce.push_back( m[f] );
cout << "cen" << c[f].ce << endl;
euclidian = 0;
}
else
{
c[f+1].ce.push_back( m[f] );
cout << "cent" << c[f+1].ce << endl;
diff = c[f].ce[f] - c[f-1].ce[f-1];
euclidian = abs( sqrt( (diff.x*diff.x) + (diff.y*diff.y) ) );
cout << "euclidian" << euclidian << endl;
}
}
cout << "\n centroid" << m << endl;
circle( fgMaskMOG2,
mc[i],
5,
Scalar( 0, 0, 255 ),
1,
8,
0 );
}
}
Thanks in advance :)

You can estimate speed of a moving vehicle based on the video frames only if approximate distance between vehicle and camera is constant throughout the calculation i.e. vehicle is moving in a straight line perpendicular to the camera's vision. So, if camera is looking from side, all the vehicles will be at different distance and calculation will become highly inaccurate for multiple vehicles. Even the vehicles will overlap and their segmentation will be difficult.
There are two scenarios in which your calculation may work -
First, when the camera is capturing from top looking vertically down on vehicles. In this case, there will be a stark difference between the vehicle color and road color. You can use several ways to segment out those individual vehicles, tag them based on their features and identify those vehicles in next frame using the features. This way you'll get position of individual vehicles and then you can predict the speed based on your algorithm. These are following links which will be helpful for segmenting the vechicles -
How to define the markers for Watershed in OpenCV?
http://www.codeproject.com/Articles/751744/Image-Segmentation-using-Unsupervised-Watershed-Al
http://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Image_Watershed_Algorithm_Marker_Based_Segmentation.php
Second, when vehicles are moving in a single line behind one another. In this case, you can use a combination of color and contour based segmentation depending on the background of your vehicles. After segmentation you can again use object features to identify the position of objects in the next frame. Then run your algorithm for both cases.
If you have complete video sequence of the vehicles, you can segment out different vehicles in the first frame automatically or identify them manually, and then apply motion tracking on those identified objects. You can use Opencv's motion analysis functions and object tracking functions to do so. Thus you'll get position of all tracked vehicles in each frame. So you can easily run and test your speed calculating algorithms.

Related

Pass by reference - object detection opencv

Good Afternoon,
I need to proceed a piece of code two times at least and I was wondering if I can build a local function to be called outer the main environment. Of course it's possible, but I'm struggling with basic programming knowledge.
The code below is used to object recognition and I need to extract information about its center (at least two times) and radius (at least one time). The variables can be replaced without concern, that's the goal. The piece is written this way inside main:
//Detect edges using canny
int thresh = 100;
vector<vector<Point>> contours;
Canny(difframe, canny_output, thresh, thresh*2, 3 );
//Find contours
findContours(canny_output, contours, RETR_TREE, CHAIN_APPROX_SIMPLE,Point(0,0));
if (contours.size()==0)//check for recognition
{
cout <<"Didn't find any contour"<< endl;
return -1;
}
vector<vector<Point>> contours_poly(contours.size());
vector<Point2f> centers (contours.size());
vector<float> radiuss(contours.size());
//Erase noise by choosing the greatest object and draw a circle to identify the moving body
int id = 0;
double area = 0.0, max_area = 0.0;
for(size_t i = 0; i < contours.size(); i++ )
{
approxPolyDP( contours[i], contours_poly[i], 3, true );
minEnclosingCircle( contours_poly[i], centers[i], radiuss[i]);
area = contourArea(contours[i], false);
id = area > max_area ? i : id;
max_area = max(max_area, area );
}
It could come before the main passing by value:
int object_recognition(Mat image){
\\code here
return id;
}
void main (){
object_recognition(frame);
Point center = center[id];
float radius = radiuss[id];
}
Or it could be passed by reference:
void object_recognition(Mat image, Point &center, float &radius){
\\code here
}
void main (){
Point center = (0,0); //declare variable
float radius = 0.0;
object_recognition(frame, center, radius);
}
What you adviced me? Thank you in advance!

OpenCV and C++ - Shape and road signs detection

I have to write a program that detect 3 types of road signs (speed limit, no parking and warnings). I know how to detect a circle using HoughCircles but I have several images and the parameters for HoughCircles are different for each image. There's a general way to detect circles without changing parameters for each image?
Moreover I need to detect triangle (warning signs) so I'm searching for a general shape detector. Have you any suggestions/code that can help me in this task?
Finally for detect the number on speed limit signs I thought to use SIFT and compare the image with some templates in order to identify the number on the sign. Could it be a good approach?
Thank you for the answer!
I know this is a pretty old question but I had been through the same problem and now I show you how I solved it.
The following images show some of the most accurate results that are displayed by the opencv program.
In the following images the street signs detected are circled with three different colors that distinguish the three kinds of street signs (warning, no parking, speed limit).
Red for warning signs
Blue for no parking signs
Fuchsia for speed limit signs
The speed limit value is written in green above the speed limit signs
[![example][1]][1]
[![example][2]][2]
[![example][3]][3]
[![example][4]][4]
As you can see the program performs quite well, it is able to detect and distinguish the three kinds of sign and to recognize the speed limit value in case of speed limit signs. Everything is done without computing too many false positives when, for instance, in the image there are some signs that do not belong to one of the three categories.
In order to achieve this result the software computes the detection in three main steps.
The first step involves a color based approach where the red objects in the image are detected and their region are extract to be analyzed. This step is particularly useful in order to prevent the detection of false positives, because only a small part of the image is processed.
The second step works with a machine learning algorithm: in particular we use a Cascade Classifier to compute the detection. This operation firstly requires to train the classifiers and on a later stage to use them to detect the signs.
In the last step the speed limit values inside the speed limit signs are read, also in this case through a machine learning algorithm but using the k-nearest neighbor algorithm.
Now we are going to see in detail each step.
COLOR BASED STEP
Since the street signs are always circled by a red frame, we can afford to take out and analyze only the regions where the red objects are detected.
In order to select the red objects, we consider all the ranges of the red color: even if this may produce some false positives, they will be easily discarded in the next steps.
inRange(image, Scalar(0, 70, 50), Scalar(10, 255, 255), mask1);
inRange(image, Scalar(170, 70, 50), Scalar(180, 255, 255), mask2);
In the image below we can see an example of the red objects detected with this method.
After having found the red pixels we can gather them to find the regions using a clustering algorithm, I use the method
partition(<#_ForwardIterator __first#>, _ForwardIterator __last, <#_Predicate __pred#>)
After the execution of this method we can save all the points in the same cluster in a vector (one for each cluster) and extract the bounding boxes which represent the
regions to be analyzed in the next step.
HAAR CASCADE CLASSIFIERS FOR SIGNS DETECTION
This is the real detection step where the street signs are detected. In order to perform a cascade classifier the first step consist in building a dataset of positives and negatives images. Now I explain how I have built my own datasets of images.
The first thing to note is that we need to train three different Haar cascades in order to distinguish between the three kind of signs that we have to detect, hence we must repeat the following steps for each of the three kinds of sign.
We need two datasets: one for the positive samples (which must be a set of images that contains the road signs that we are going to detect) and another one for the negative samples which can be any kind of image without street signs.
After collecting a set of 100 images for the positive samples and a set of 200 images for the negatives in two different folders, we need to write two text files:
Signs.info which contains a list of file names like the one below,
one for each positive sample in the positive folder.
pos/image_name.png 1 0 0 50 45
Here, the numbers after the name represent respectively the number
of street signs in the image, the coordinate of the upper left
corner of the street sign, his height and his width.
Bg.txt which contains a list of file names like the one below, one
for each sign in the negative folder.
neg/street15.png
With the command line below we generate the .vect file which contains all the information that the software retrieves from the positive samples.
opencv_createsamples -info sign.info -num 100 -w 50 -h 50 -vec signs.vec
Afterwards we train the cascade classifier with the following command:
opencv_traincascade -data data -vec signs.vec -bg bg.txt -numPos 60 -numNeg 200 -numStages 15 -w 50 -h 50 -featureType LBP
where the number of stages indicates the number of classifiers that will be generated in order to build the cascade.
At the end of this process we gain a file cascade.xml which will be used from the CascadeClassifier program in order to detect the objects in the image.
Now we have trained our algorithm and we can declare a CascadeClassifier for each kind of street sign, than we detect the signs in the image through
detectMultiScale(<#InputArray image#>, <#std::vector<Rect> &objects#>)
this method creates a Rect around each object that has been detected.
It is important to note that exactly as every machine learning algorithm, in order to perform well, we need a large number of samples in the dataset. The dataset that I have built, is not extremely large, thus in some situations it is not able to detect all the signs. This mostly happens when a small part of the street sign is not visible in the image like in the warning sign below:
I have expanded my dataset up to the point where I have obtained a fairly accurate result without
too many errors.
SPEED LIMIT VALUE DETECTION
Like for the street signs detection also here I used a machine learning algorithm but with a different approach. After some work, I realized that an OCR (tesseract) solution does not perform well, so I decided to build my own ocr software.
For the machine learning algorithm I took the image below as training data which contains some speed limit values:
The amount of training data is small. But, since in speed limit signs all letters have the same font, it is not a huge problem.
To prepare the data for training, I made a small code in OpenCV. It does the following things:
It loads the image on the left;
It selects the digits (obviously by contour finding and applying constraints on area and height of letters to avoid false detections).
It draws the bounding rectangle around one letter and it waits for the key to be manually pressed. This time the user presses the digit key corresponding to the letter in box by himself.
Once the corresponding digit key is pressed, it saves 100 pixel values in an array and the correspondent manually entered digit in another array.
Eventually it saves both the arrays in separate txt files.
Following the manual digit classification all the digits in the train data( train.png) are manually labeled, and the image will look like the one below.
Now we enter into training and testing part.
For training we do as follows:
Load the txt files we already saved earlier
Create an instance of classifier that we are going to use ( KNearest)
Then we use KNearest.train function to train the data
Now the detection:
We load the image with the speed limit sign detected
Process the image as before and extract each digit using contour methods
Draw bounding box for it, then resize to 10x10, and store its pixel values in an array as done earlier.
Then we use KNearest.find_nearest() function to find the nearest item to the one we gave.
And it recognizes the correct digit.
I tested this little OCR on many images, and just with this small dataset I have obtained an accuracy of about 90%.
CODE
Below I post all my openCv c++ code in a single class, following my instruction you should be able to achive my result.
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <cmath>
#include <stdlib.h>
#include "opencv2/core/core.hpp"
#include "opencv2/highgui.hpp"
#include <string.h>
#include <opencv2/ml/ml.hpp>
using namespace std;
using namespace cv;
std::vector<cv::Rect> getRedObjects(cv::Mat image);
vector<Mat> detectAndDisplaySpeedLimit( Mat frame );
vector<Mat> detectAndDisplayNoParking( Mat frame );
vector<Mat> detectAndDisplayWarning( Mat frame );
void trainDigitClassifier();
string getDigits(Mat image);
vector<Mat> loadAllImage();
int getSpeedLimit(string speed);
//path of the haar cascade files
String no_parking_signs_cascade = "/Users/giuliopettenuzzo/Desktop/cascade_classifiers/no_parking_cascade.xml";
String speed_signs_cascade = "/Users/giuliopettenuzzo/Desktop/cascade_classifiers/speed_limit_cascade.xml";
String warning_signs_cascade = "/Users/giuliopettenuzzo/Desktop/cascade_classifiers/warning_cascade.xml";
CascadeClassifier speed_limit_cascade;
CascadeClassifier no_parking_cascade;
CascadeClassifier warning_cascade;
int main(int argc, char** argv)
{
//train the classifier for digit recognition, this require a manually train, read the report for more details
trainDigitClassifier();
cv::Mat sceneImage;
vector<Mat> allImages = loadAllImage();
for(int i = 0;i<=allImages.size();i++){
sceneImage = allImages[i];
//load the haar cascade files
if( !speed_limit_cascade.load( speed_signs_cascade ) ){ printf("--(!)Error loading\n"); return -1; };
if( !no_parking_cascade.load( no_parking_signs_cascade ) ){ printf("--(!)Error loading\n"); return -1; };
if( !warning_cascade.load( warning_signs_cascade ) ){ printf("--(!)Error loading\n"); return -1; };
Mat scene = sceneImage.clone();
//detect the red objects
std::vector<cv::Rect> allObj = getRedObjects(scene);
//use the three cascade classifier for each object detected by the getRedObjects() method
for(int j = 0;j<allObj.size();j++){
Mat img = sceneImage(Rect(allObj[j]));
vector<Mat> warningVec = detectAndDisplayWarning(img);
if(warningVec.size()>0){
Rect box = allObj[j];
}
vector<Mat> noParkVec = detectAndDisplayNoParking(img);
if(noParkVec.size()>0){
Rect box = allObj[j];
}
vector<Mat> speedLitmitVec = detectAndDisplaySpeedLimit(img);
if(speedLitmitVec.size()>0){
Rect box = allObj[j];
for(int i = 0; i<speedLitmitVec.size();i++){
//get speed limit and skatch it in the image
int digit = getSpeedLimit(getDigits(speedLitmitVec[i]));
if(digit > 0){
Point point = box.tl();
point.y = point.y + 30;
cv::putText(sceneImage,
"SPEED LIMIT " + to_string(digit),
point,
cv::FONT_HERSHEY_COMPLEX_SMALL,
0.7,
cv::Scalar(0,255,0),
1,
cv::CV__CAP_PROP_LATEST);
}
}
}
}
imshow("currentobj",sceneImage);
waitKey(0);
}
}
/*
* detect the red object in the image given in the param,
* return a vector containing all the Rect of the red objects
*/
std::vector<cv::Rect> getRedObjects(cv::Mat image)
{
Mat3b res = image.clone();
std::vector<cv::Rect> result;
cvtColor(image, image, COLOR_BGR2HSV);
Mat1b mask1, mask2;
//ranges of red color
inRange(image, Scalar(0, 70, 50), Scalar(10, 255, 255), mask1);
inRange(image, Scalar(170, 70, 50), Scalar(180, 255, 255), mask2);
Mat1b mask = mask1 | mask2;
Mat nonZeroCoordinates;
vector<Point> pts;
findNonZero(mask, pts);
for (int i = 0; i < nonZeroCoordinates.total(); i++ ) {
cout << "Zero#" << i << ": " << nonZeroCoordinates.at<Point>(i).x << ", " << nonZeroCoordinates.at<Point>(i).y << endl;
}
int th_distance = 2; // radius tolerance
// Apply partition
// All pixels within the radius tolerance distance will belong to the same class (same label)
vector<int> labels;
// With lambda function (require C++11)
int th2 = th_distance * th_distance;
int n_labels = partition(pts, labels, [th2](const Point& lhs, const Point& rhs) {
return ((lhs.x - rhs.x)*(lhs.x - rhs.x) + (lhs.y - rhs.y)*(lhs.y - rhs.y)) < th2;
});
// You can save all points in the same class in a vector (one for each class), just like findContours
vector<vector<Point>> contours(n_labels);
for (int i = 0; i < pts.size(); ++i){
contours[labels[i]].push_back(pts[i]);
}
// Get bounding boxes
vector<Rect> boxes;
for (int i = 0; i < contours.size(); ++i)
{
Rect box = boundingRect(contours[i]);
if(contours[i].size()>500){//prima era 1000
boxes.push_back(box);
Rect enlarged_box = box + Size(100,100);
enlarged_box -= Point(30,30);
if(enlarged_box.x<0){
enlarged_box.x = 0;
}
if(enlarged_box.y<0){
enlarged_box.y = 0;
}
if(enlarged_box.height + enlarged_box.y > res.rows){
enlarged_box.height = res.rows - enlarged_box.y;
}
if(enlarged_box.width + enlarged_box.x > res.cols){
enlarged_box.width = res.cols - enlarged_box.x;
}
Mat img = res(Rect(enlarged_box));
result.push_back(enlarged_box);
}
}
Rect largest_box = *max_element(boxes.begin(), boxes.end(), [](const Rect& lhs, const Rect& rhs) {
return lhs.area() < rhs.area();
});
//draw the rects in case you want to see them
for(int j=0;j<=boxes.size();j++){
if(boxes[j].area() > largest_box.area()/3){
rectangle(res, boxes[j], Scalar(0, 0, 255));
Rect enlarged_box = boxes[j] + Size(20,20);
enlarged_box -= Point(10,10);
rectangle(res, enlarged_box, Scalar(0, 255, 0));
}
}
rectangle(res, largest_box, Scalar(0, 0, 255));
Rect enlarged_box = largest_box + Size(20,20);
enlarged_box -= Point(10,10);
rectangle(res, enlarged_box, Scalar(0, 255, 0));
return result;
}
/*
* code for detect the speed limit sign , it draws a circle around the speed limit signs
*/
vector<Mat> detectAndDisplaySpeedLimit( Mat frame )
{
std::vector<Rect> signs;
vector<Mat> result;
Mat frame_gray;
cvtColor( frame, frame_gray, CV_BGR2GRAY );
//normalizes the brightness and increases the contrast of the image
equalizeHist( frame_gray, frame_gray );
//-- Detect signs
speed_limit_cascade.detectMultiScale( frame_gray, signs, 1.1, 3, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );
cout << speed_limit_cascade.getFeatureType();
for( size_t i = 0; i < signs.size(); i++ )
{
Point center( signs[i].x + signs[i].width*0.5, signs[i].y + signs[i].height*0.5 );
ellipse( frame, center, Size( signs[i].width*0.5, signs[i].height*0.5), 0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 );
Mat resultImage = frame(Rect(center.x - signs[i].width*0.5,center.y - signs[i].height*0.5,signs[i].width,signs[i].height));
result.push_back(resultImage);
}
return result;
}
/*
* code for detect the warning sign , it draws a circle around the warning signs
*/
vector<Mat> detectAndDisplayWarning( Mat frame )
{
std::vector<Rect> signs;
vector<Mat> result;
Mat frame_gray;
cvtColor( frame, frame_gray, CV_BGR2GRAY );
equalizeHist( frame_gray, frame_gray );
//-- Detect signs
warning_cascade.detectMultiScale( frame_gray, signs, 1.1, 3, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );
cout << warning_cascade.getFeatureType();
Rect previus;
for( size_t i = 0; i < signs.size(); i++ )
{
Point center( signs[i].x + signs[i].width*0.5, signs[i].y + signs[i].height*0.5 );
Rect newRect = Rect(center.x - signs[i].width*0.5,center.y - signs[i].height*0.5,signs[i].width,signs[i].height);
if((previus & newRect).area()>0){
previus = newRect;
}else{
ellipse( frame, center, Size( signs[i].width*0.5, signs[i].height*0.5), 0, 0, 360, Scalar( 0, 0, 255 ), 4, 8, 0 );
Mat resultImage = frame(newRect);
result.push_back(resultImage);
previus = newRect;
}
}
return result;
}
/*
* code for detect the no parking sign , it draws a circle around the no parking signs
*/
vector<Mat> detectAndDisplayNoParking( Mat frame )
{
std::vector<Rect> signs;
vector<Mat> result;
Mat frame_gray;
cvtColor( frame, frame_gray, CV_BGR2GRAY );
equalizeHist( frame_gray, frame_gray );
//-- Detect signs
no_parking_cascade.detectMultiScale( frame_gray, signs, 1.1, 3, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );
cout << no_parking_cascade.getFeatureType();
Rect previus;
for( size_t i = 0; i < signs.size(); i++ )
{
Point center( signs[i].x + signs[i].width*0.5, signs[i].y + signs[i].height*0.5 );
Rect newRect = Rect(center.x - signs[i].width*0.5,center.y - signs[i].height*0.5,signs[i].width,signs[i].height);
if((previus & newRect).area()>0){
previus = newRect;
}else{
ellipse( frame, center, Size( signs[i].width*0.5, signs[i].height*0.5), 0, 0, 360, Scalar( 255, 0, 0 ), 4, 8, 0 );
Mat resultImage = frame(newRect);
result.push_back(resultImage);
previus = newRect;
}
}
return result;
}
/*
* train the classifier for digit recognition, this could be done only one time, this method save the result in a file and
* it can be used in the next executions
* in order to train user must enter manually the corrisponding digit that the program shows, press space if the red box is just a point (false positive)
*/
void trainDigitClassifier(){
Mat thr,gray,con;
Mat src=imread("/Users/giuliopettenuzzo/Desktop/all_numbers.png",1);
cvtColor(src,gray,CV_BGR2GRAY);
threshold(gray,thr,125,255,THRESH_BINARY_INV); //Threshold to find contour
imshow("ci",thr);
waitKey(0);
thr.copyTo(con);
// Create sample and label data
vector< vector <Point> > contours; // Vector for storing contour
vector< Vec4i > hierarchy;
Mat sample;
Mat response_array;
findContours( con, contours, hierarchy,CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE ); //Find contour
for( int i = 0; i< contours.size(); i=hierarchy[i][0] ) // iterate through first hierarchy level contours
{
Rect r= boundingRect(contours[i]); //Find bounding rect for each contour
rectangle(src,Point(r.x,r.y), Point(r.x+r.width,r.y+r.height), Scalar(0,0,255),2,8,0);
Mat ROI = thr(r); //Crop the image
Mat tmp1, tmp2;
resize(ROI,tmp1, Size(10,10), 0,0,INTER_LINEAR ); //resize to 10X10
tmp1.convertTo(tmp2,CV_32FC1); //convert to float
imshow("src",src);
int c=waitKey(0); // Read corresponding label for contour from keyoard
c-=0x30; // Convert ascii to intiger value
response_array.push_back(c); // Store label to a mat
rectangle(src,Point(r.x,r.y), Point(r.x+r.width,r.y+r.height), Scalar(0,255,0),2,8,0);
sample.push_back(tmp2.reshape(1,1)); // Store sample data
}
// Store the data to file
Mat response,tmp;
tmp=response_array.reshape(1,1); //make continuous
tmp.convertTo(response,CV_32FC1); // Convert to float
FileStorage Data("TrainingData.yml",FileStorage::WRITE); // Store the sample data in a file
Data << "data" << sample;
Data.release();
FileStorage Label("LabelData.yml",FileStorage::WRITE); // Store the label data in a file
Label << "label" << response;
Label.release();
cout<<"Training and Label data created successfully....!! "<<endl;
imshow("src",src);
waitKey(0);
}
/*
* get digit from the image given in param, using the classifier trained before
*/
string getDigits(Mat image)
{
Mat thr1,gray1,con1;
Mat src1 = image.clone();
cvtColor(src1,gray1,CV_BGR2GRAY);
threshold(gray1,thr1,125,255,THRESH_BINARY_INV); // Threshold to create input
thr1.copyTo(con1);
// Read stored sample and label for training
Mat sample1;
Mat response1,tmp1;
FileStorage Data1("TrainingData.yml",FileStorage::READ); // Read traing data to a Mat
Data1["data"] >> sample1;
Data1.release();
FileStorage Label1("LabelData.yml",FileStorage::READ); // Read label data to a Mat
Label1["label"] >> response1;
Label1.release();
Ptr<ml::KNearest> knn(ml::KNearest::create());
knn->train(sample1, ml::ROW_SAMPLE,response1); // Train with sample and responses
cout<<"Training compleated.....!!"<<endl;
vector< vector <Point> > contours1; // Vector for storing contour
vector< Vec4i > hierarchy1;
//Create input sample by contour finding and cropping
findContours( con1, contours1, hierarchy1,CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
Mat dst1(src1.rows,src1.cols,CV_8UC3,Scalar::all(0));
string result;
for( int i = 0; i< contours1.size(); i=hierarchy1[i][0] ) // iterate through each contour for first hierarchy level .
{
Rect r= boundingRect(contours1[i]);
Mat ROI = thr1(r);
Mat tmp1, tmp2;
resize(ROI,tmp1, Size(10,10), 0,0,INTER_LINEAR );
tmp1.convertTo(tmp2,CV_32FC1);
Mat bestLabels;
float p=knn -> findNearest(tmp2.reshape(1,1),4, bestLabels);
char name[4];
sprintf(name,"%d",(int)p);
cout << "num = " << (int)p;
result = result + to_string((int)p);
putText( dst1,name,Point(r.x,r.y+r.height) ,0,1, Scalar(0, 255, 0), 2, 8 );
}
imwrite("dest.jpg",dst1);
return result ;
}
/*
* from the digits detected, it returns a speed limit if it is detected correctly, -1 otherwise
*/
int getSpeedLimit(string numbers){
if ((numbers.find("30") != std::string::npos) || (numbers.find("03") != std::string::npos)) {
return 30;
}
if ((numbers.find("50") != std::string::npos) || (numbers.find("05") != std::string::npos)) {
return 50;
}
if ((numbers.find("80") != std::string::npos) || (numbers.find("08") != std::string::npos)) {
return 80;
}
if ((numbers.find("70") != std::string::npos) || (numbers.find("07") != std::string::npos)) {
return 70;
}
if ((numbers.find("90") != std::string::npos) || (numbers.find("09") != std::string::npos)) {
return 90;
}
if ((numbers.find("100") != std::string::npos) || (numbers.find("001") != std::string::npos)) {
return 100;
}
if ((numbers.find("130") != std::string::npos) || (numbers.find("031") != std::string::npos)) {
return 130;
}
return -1;
}
/*
* load all the image in the file with the path hard coded below
*/
vector<Mat> loadAllImage(){
vector<cv::String> fn;
glob("/Users/giuliopettenuzzo/Desktop/T1/dataset/*.jpg", fn, false);
vector<Mat> images;
size_t count = fn.size(); //number of png files in images folder
for (size_t i=0; i<count; i++)
images.push_back(imread(fn[i]));
return images;
}
maybe you should try implementing the ransac algorithm, if you are using color images, migt be a good idea (if you are in europe) to get the red channel only since the speed limits are surrounded by a red cricle (or a thin white i think also).
For that you need to filter the image to get the edges, (canny filter).
Here are some useful links:
OpenCV detect partial circle with noise
https://hal.archives-ouvertes.fr/hal-00982526/document
Finally for the numbers detection i think its ok. Other approach is to use something like Viola-Jones algorithm to detect the signals, with pretrained existing models... It's up to you!

How to find coordinates of largest rectangle in OpenCV?

I have the following code:
findContours( src, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE );
Mat drawing = Mat::zeros( src.size(), CV_8UC3 );
double largest_area = 0;
for( int i = 0; i < contours.size(); i++) { // get the largest contour
area = fabs( contourArea( contours[i] ) );
if( area >= largest_area ){
largest_area = area;
largest_contours.clear();
largest_contours.push_back( contours[i] );
}
}
if( largest_area >= 3000 ){ // draw the largest contour if exceeded minimum largest area
drawContours( drawing, largest_contours, -1, Scalar(0,0,255), 2 );
}
... which produces the following output image:
I want to get coordinates of four points (marked with green), is that possible?
Do you trying to find corners of rectangle in perspective?
You may want to try several solutions:
Use HoughLines for line detection and find their intersection.
Use Generalized Hough Transform
Use Harris corner detector. But you need to filter extra corners.
For similar task I used following procedure (it works fine in my case):
do cv::approxPolyDP for input contour with increasing epsilon parameter until it returns 4 or less polylines. If it returns 4 polylines you may get 4 corner points exact what you need. If it returns less than 4 polylines most probably something is wrong.

Robust card detection/persecutive correction OpenCV

I currently have a method for detecting a card in an image and for the most part it works when the lighting is fairly consistent and the background is very calm.
Here is the code I am using to preform this operation:
Mat img = inImg.clone();
outImg = Mat(inImg.size(), CV_8UC1);
inImg.copyTo(outImg);
Mat img_fullRes = img.clone();
pyrDown(img, img);
Mat imgGray;
cvtColor(img, imgGray, CV_RGB2GRAY);
outImg_gray = imgGray.clone();
// Find Edges //
Mat detectedEdges = imgGray.clone();
bilateralFilter(imgGray, detectedEdges, 0, 185, 3, 0);
Canny( detectedEdges, detectedEdges, 20, 65, 3 );
dilate(detectedEdges, detectedEdges, Mat::ones(3,3,CV_8UC1));
Mat cdst = img.clone();
vector<Vec4i> lines;
HoughLinesP(detectedEdges, lines, 1, CV_PI/180, 60, 50, 3 );
for( size_t i = 0; i < lines.size(); i++ )
{
Vec4i l = lines[i];
// For debug
//line( cdst, cv::Point(l[0], l[1]), cv::Point(l[2], l[3]), Scalar(0,0,255), 1);
}
//cdst.copyTo(inImg);
// // Find points of intersection //
cv::Rect imgROI;
int ext = 10;
imgROI.x = ext;
imgROI.y = ext;
imgROI.width = img.size().width - ext;
imgROI.height = img.size().height - ext;
int N = lines.size();
// Creating N amount of points // N == lines.size()
cv::Point** poi = new cv::Point*[N];
for( int i = 0; i < N; i++ )
poi[i] = new cv::Point[N];
vector<cv::Point> poiList;
for( int i = 0; i < N; i++ )
{
poi[i][i] = cv::Point(-1,-1);
Vec4i line1 = lines[i];
for( int j = i + 1; j < N; j++ )
{
Vec4i line2 = lines[j];
cv::Point p = computeIntersect(line1, line2, imgROI);
if( p.x != -1 )
{
//line(cdst, p-cv::Point(2,0), p+cv::Point(2,0), Scalar(0,255,0));
//line(cdst, p-cv::Point(0,2), p+cv::Point(0,2), Scalar(0,255,0));
poiList.push_back(p);
}
poi[i][j] = p;
poi[j][i] = p;
}
}
cdst.copyTo(inImg);
if(poiList.size()==0)
{
outImg = inImg.clone();
//circle(outImg, cv::Point(100,100), 50, Scalar(255,0,0), -1);
return;
}
convexHull(poiList, poiList, false, true);
for( int i=0; i<poiList.size(); i++ )
{
cv::Point p = poiList[i];
//circle(cdst, p, 3, Scalar(255,0,0), 2);
}
//Evaluate all possible quadrilaterals
cv::Point cardCorners[4];
float metric_max = 0;
int Npoi = poiList.size();
for( int p1=0; p1<Npoi; p1++ )
{
cv::Point pts[4];
pts[0] = poiList[p1];
for( int p2=p1+1; p2<Npoi; p2++ )
{
pts[1] = poiList[p2];
if( isCloseBy(pts[1],pts[0]) )
continue;
for( int p3=p2+1; p3<Npoi; p3++ )
{
pts[2] = poiList[p3];
if( isCloseBy(pts[2],pts[1]) || isCloseBy(pts[2],pts[0]) )
continue;
for( int p4=p3+1; p4<Npoi; p4++ )
{
pts[3] = poiList[p4];
if( isCloseBy(pts[3],pts[0]) || isCloseBy(pts[3],pts[1])
|| isCloseBy(pts[3],pts[2]) )
continue;
// get the metrics
float area = getArea(pts);
cv::Point a = pts[0]-pts[1];
cv::Point b = pts[1]-pts[2];
cv::Point c = pts[2]-pts[3];
cv::Point d = pts[3]-pts[0];
float oppLenDiff = abs(a.dot(a)-c.dot(c)) + abs(b.dot(b)-d.dot(d));
float metric = area - 0.35*oppLenDiff;
if( metric > metric_max )
{
metric_max = metric;
cardCorners[0] = pts[0];
cardCorners[1] = pts[1];
cardCorners[2] = pts[2];
cardCorners[3] = pts[3];
}
}
}
}
}
// find the corners corresponding to the 4 corners of the physical card
sortPointsClockwise(cardCorners);
// Calculate Homography //
vector<Point2f> srcPts(4);
srcPts[0] = cardCorners[0]*2;
srcPts[1] = cardCorners[1]*2;
srcPts[2] = cardCorners[2]*2;
srcPts[3] = cardCorners[3]*2;
vector<Point2f> dstPts(4);
cv::Size outImgSize(1400,800);
dstPts[0] = Point2f(0,0);
dstPts[1] = Point2f(outImgSize.width-1,0);
dstPts[2] = Point2f(outImgSize.width-1,outImgSize.height-1);
dstPts[3] = Point2f(0,outImgSize.height-1);
Mat Homography = findHomography(srcPts, dstPts);
// Apply Homography
warpPerspective( img_fullRes, outImg, Homography, outImgSize, INTER_CUBIC );
outImg.copyTo(inImg);
Where computeIntersect is defined as:
cv::Point computeIntersect(cv::Vec4i a, cv::Vec4i b, cv::Rect ROI)
{
int x1 = a[0], y1 = a[1], x2 = a[2], y2 = a[3];
int x3 = b[0], y3 = b[1], x4 = b[2], y4 = b[3];
cv::Point p1 = cv::Point (x1,y1);
cv::Point p2 = cv::Point (x2,y2);
cv::Point p3 = cv::Point (x3,y3);
cv::Point p4 = cv::Point (x4,y4);
// Check to make sure all points are within the image boundrys, if not reject them.
if( !ROI.contains(p1) || !ROI.contains(p2)
|| !ROI.contains(p3) || !ROI.contains(p4) )
return cv::Point (-1,-1);
cv::Point vec1 = p1-p2;
cv::Point vec2 = p3-p4;
float vec1_norm2 = vec1.x*vec1.x + vec1.y*vec1.y;
float vec2_norm2 = vec2.x*vec2.x + vec2.y*vec2.y;
float cosTheta = (vec1.dot(vec2))/sqrt(vec1_norm2*vec2_norm2);
float den = ((float)(x1-x2) * (y3-y4)) - ((y1-y2) * (x3-x4));
if(den != 0)
{
cv::Point2f pt;
pt.x = ((x1*y2 - y1*x2) * (x3-x4) - (x1-x2) * (x3*y4 - y3*x4)) / den;
pt.y = ((x1*y2 - y1*x2) * (y3-y4) - (y1-y2) * (x3*y4 - y3*x4)) / den;
if( !ROI.contains(pt) )
return cv::Point (-1,-1);
// no-confidence metric
float d1 = MIN( dist2(p1,pt), dist2(p2,pt) )/vec1_norm2;
float d2 = MIN( dist2(p3,pt), dist2(p4,pt) )/vec2_norm2;
float no_confidence_metric = MAX(sqrt(d1),sqrt(d2));
// If end point ratios are greater than .5 reject
if( no_confidence_metric < 0.5 && cosTheta < 0.707 )
return cv::Point (int(pt.x+0.5), int(pt.y+0.5));
}
return cv::Point(-1, -1);
}
sortPointsClockWise is defined as:
void sortPointsClockwise(cv::Point a[])
{
cv::Point b[4];
cv::Point ctr = (a[0]+a[1]+a[2]+a[3]);
ctr.x /= 4;
ctr.y /= 4;
b[0] = a[0]-ctr;
b[1] = a[1]-ctr;
b[2] = a[2]-ctr;
b[3] = a[3]-ctr;
for( int i=0; i<4; i++ )
{
if( b[i].x < 0 )
{
if( b[i].y < 0 )
a[0] = b[i]+ctr;
else
a[3] = b[i]+ctr;
}
else
{
if( b[i].y < 0 )
a[1] = b[i]+ctr;
else
a[2] = b[i]+ctr;
}
}
}
getArea is defined as:
float getArea(cv::Point arr[])
{
cv::Point diag1 = arr[0]-arr[2];
cv::Point diag2 = arr[1]-arr[3];
return 0.5*(diag1.cross(diag2));
}
isCloseBy is defined as:
bool isCloseBy( cv::Point p1, cv::Point p2 )
{
int D = 10;
// Checking that X values are within 10, same for Y values.
return ( abs(p1.x-p2.x)<=D && abs(p1.y-p2.y)<=D );
}
And finally dist2:
float dist2( cv::Point p1, cv::Point p2 )
{
return float((p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)*(p1.y-p2.y));
}
Here are several test images and their results:
Sorry for the very lengthy post, however I am hoping someone can suggest a way I can make my method for extracting the card from the image more robust. One that can better handle disruptive backgrounds along with inconsistent lighting.
When a card is placed on a contrasting background with good lighting my method works nearly 90% of the time. But it is clear I need a more robust approach.
Does anyone have any suggestions?
Thanks.
ATTEMPT of dhanushka's soloution
Mat gray, bw; pyrDown(inImg, inImg);
cvtColor(inImg, gray, CV_RGB2GRAY);
int morph_size = 3;
Mat element = getStructuringElement( MORPH_ELLIPSE, cv::Size( 4*morph_size + 1, 2*morph_size+1 ), cv::Point( morph_size, morph_size ) );
morphologyEx(gray, gray, 2, element);
threshold(gray, bw, 160, 255, CV_THRESH_BINARY);
vector<vector<cv::Point> > contours;
vector<Vec4i> hierarchy;
findContours( bw, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, cv::Point(0, 0) );
int largest_area=0;
int largest_contour_index=0;
cv::Rect bounding_rect;
for( int i = 0; i< contours.size(); i++ )
{
double a=contourArea( contours[i],false); // Find the area of contour
if(a>largest_area){
largest_area=a;
largest_contour_index=i; //Store the index of largest contour
bounding_rect=boundingRect(contours[i]);
}
}
//Scalar color( 255,255,255);
rectangle(inImg, bounding_rect, Scalar(0,255,0),1, 8,0);
Mat biggestRect = inImg(bounding_rect);
Mat card1 = biggestRect.clone();
The art of image processing is (in my 10+ years experience) just that: an art. No single answer exists, and there is always more than one way to do it. And it will definitely fail in some cases.
In my experience of working on automatically detecting features in medical images, it takes a long time to build to reliable algorithm, but in hindsight the best result is obtained with a relative simple algorithm. However, it takes a lot of time to get to this simple algorithm.
To get to this, the general approach is always the same:
get started is to build up a large database of test-images (at least 100). This defines 'normal' images which should work. By collecting the images you already start thinking about the problem.
annotate the images to build a kind of 'ground truth'. In this case, the 'ground truth' should contain the 4 corners of the card since these are the interesting points.
create an application which runs over these images an algorithm and compares the result with the ground truth. In this case, the 'comparing with ground truth' would be to take the mean distance of the found 4 corner point with the ground truth corner points.
Output a tab-delimited file which you call .xls, and therefore can be opened (on Windows) in Excel by double clicking. Good to get an quick overview of the cases. Look at the worst cases first. Then open these cases manually to try to understand why they do not work.
Now you are ready to change the algorithm. Change something, and re-run. Compare new Excel sheet to old Excel sheet. Now you start realizing the trade-offs you have to make.
That having said, I think that you need to answer these questions during the tuning of the algorithm:
Do you allow a little folded cards? So no completely straight lines? If so, concentrate more on corners instead of lines / edges.
Do you allow gradual differences in lighting? If so, a local contrast-stretch filter might help.
Do you allow the same color for the card as the background? If so, you have to concentrate on the contents of the card instead of the border of the card.
Do you allow non-perfect lenses? If so, to which extend?
Do you allow rotated cards? If so, to which extend?
Should the background be uniform in color and/or texture?
How small should the smallest detectable card be relative to the image size? If you assume that at least 80% of the width or height should be covered, you get robustness back.
If more than one card is visible in the image, should the algorithm be robust and only pick one, or is any output ok?
If no card is visible, should it detect this case? Building in detection of this case will make it more user friendly ('no card found'), but also less robust.
These will make the requirements and assumptions on the image to acquire. Assumptions on which you can rely are very strong: they make the algorithm fast, robust and simple if you choose the right ones. Also let these requirements and assumptions be part of the testing database.
So what would I choose? Based on the three images you provided I would start with something like:
Assume the cards are filling the image from 50% to 100%.
Assume the cards are rotated at most 10 degrees or so.
Assume the corners are well visible.
Assume the aspect ratio (height divided by width) of the cards to be between 1/3 and 3.
Assume no card-like objects in the background
The algorithm then would look like:
Detect in each quadrant of the image a specific corner with a corner-filter. So in the upper left quadrant of the image the upper left corner of the card. Look for example at http://www.ee.surrey.ac.uk/CVSSP/demos/corners/results3.html , or use an OpenCV function for it like cornerHarris .
To be more robust, calculate more than one corner per quadrant.
Try to build parallelograms with one corner per each quadrant by combining points from each quadrant. Create a fitness function which gives higher score to:
having internal angles close to 90 degrees
be large
optionally, compare the corners of the card based on lighting or another feature.
This fitness function gives a lot of tuning possibilities later on.
Return the parallelogram with the highest score.
So why using corner-detection instead of a hough-transform to do line detection? In my opinion the hough-transform is (next to being slow) quite sensitive to patterns in the background (which is what you see in your first image -- it detects a stronger line in the background then of the card), and it cannot handle a little curved lines that well, unless you use a larger bin size which will worsen the detection.
Good luck!
A more general approach would definitely be something like Rutger Nijlunsing suggested in his answer. However, in your case, at least for the provided sample images, a very simple approach like morphological opening followed by thresholding, contour processing and convexhull would yield the result you want. Use a scaled down version of the images for processing so that you don't have to use a large kernel for morphological operations. Below are the images processed this way.
pyrDown(large, rgb0);
pyrDown(rgb0, rgb0);
pyrDown(rgb0, rgb0);
Mat small;
cvtColor(rgb0, small, CV_BGR2GRAY);
Mat morph;
Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(11, 11));
morphologyEx(small, morph, MORPH_OPEN, kernel);
Mat bw;
threshold(morph, bw, 0, 255.0, CV_THRESH_BINARY | CV_THRESH_OTSU);
Mat bdry;
kernel = getStructuringElement(MORPH_ELLIPSE, Size(3, 3));
erode(bw, bdry, kernel);
subtract(bw, bdry, bdry);
// do contour processing on bdry
This approach will not work in general, so I would strongly recommend something like Rutger suggested.

How to find the radius of an irregular circle using OpenCV C++

How can I estimate the radius of an irregular circle I have detected? I have used findContours() to find where the circles are and used moments() to find the centre of mass. I now just need the radius of the circle so I can estimate it's volume.
For finding contours I have used the following code:
findContours(Closed_Image, Contours, Hierarchy,
CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, Point(0,0) );
For finding the centre of mass I have used the following code:
vector<Moments> mu(Contours.size() );
b = 0;
for(b = 0; b < Contours.size(); b++)
{
mu[b] = moments(Contours[b], true);
}
vector<Point2f> mc(Contours.size() );
c = 0;
for(c = 0; c < Contours.size(); c++)
{
mc[c] = Point2f(mu[c].m10/mu[c].m00, mu[c].m01/mu[c].m00);
cout << "Contours Centre = " << mc[c] << endl;
}
I'm guessing that I need to use the contour points stored in Contours but the shape isn't a perfect circle so the distance between each point in the contour and its centre of mass would be different. Is this just a matter of averaging the distance between the centre of mass and each point in the contour (average distance = radius)? If so, how can I actually implement it (I'm not sure how to access data in vector<vector<Point> > Contours;). Otherwise, how would I be able to achieve estimating the radius?
(Click here for the image I am working with)
Centre of mass is as follows: [424.081, 13.4634], [291.159, 10.4545], [157.833, 10.4286], [24.5198, 8.09127]