How to apply an if at compile time in C++ - c++

I am trying to write a general static_for implementation that can accept bounds, an increment function & a comparison function to run a loop through. I have been using this construct with simple loops that increment by 1. In that case it is easy to stop the loop unrolling by simply specializing on the IDX & END being equal.
However when the increment could be with an arbitrary integer, it is not guaranteed that the IDX & END will always be equal. The if conditional is only evaluated at run time. In the code snippet below I was trying to specialize on the std::false_type which stops the recursion. The integral_constant is constructed by evaluating the std::less functional (which could be substituted by the user for any other evaluation). Unfortunately this comparator functional is also evaluated only at run time and therefore the compiler fails. Could someone advise on how to get this to work?
NOTE: Using C++11.
template <int idx, int end, typename eval, int count, typename comparator>
struct static_for_loop {
template <typename Lambda, typename... Args>
void operator()(const Lambda& function, Args... args) const {
if (comparator()(idx, end)) {
std::integral_constant<int, idx> i;
function(i, args...);
constexpr bool lesser = comparator()(idx + count, end);
static_for_loop<idx + count, end, std::integral_constant<bool, lesser>, count,
comparator>()(function, args...);
}
}
};
template <int idx, int end, int count, typename comparator>
struct static_for_loop<idx, end, std::false_type, count, comparator> {
template <typename Lambda, typename... Args>
void operator()(const Lambda& function, Args... args) const {}
};
template <int idx, int end, int count = 1, typename comparator = std::less<int>>
struct static_for {
template <typename Lambda, typename... Args>
void operator()(const Lambda& function, Args... args) const {
static_for_loop<idx, end, std::true_type, count, comparator>()(function, args...);
}
};

I find it easier to just wrap everything in an object:
template <int S, int E, int step>
struct iter {
auto next() { return iter<std::min(E, S+step), E, step>{}; }
};
And then you just have an overload for the case where it's done and the case where it's not:
template <int S, int E, int step, class F, class... Args>
void for_loop(iter<S, E, step> i, F func, Args... args) {
func(S, args...);
for_loop(i.next(), func, args...);
}
template <int E, int step, class F, class... Args>
void for_loop(iter<E, E, step>, F, Args... ) {
}
For instance:
// prints 0 4 8
for_loop(iter<0, 10, 4>{}, [](int i){std::cout << i << ' ';});
Alternatively, could use enable_if to differentiate the cases to avoid the need for min:
template <int S, int E, int step, class F, class... Args>
std::enable_if_t<(S<E)> for_loop(iter<S, E, step>, F func, Args... args)
{
func(S, args...);
for_loop(iter<S+step, E, step>{}, func, args...);
}
template <int S, int E, int step, class F, class... Args>
std::enable_if_t<!(S<E)> for_loop(iter<S, E, step>, F , Args... )
{
}
YMMV on which you prefer.

You can use sfinae to overcome the problem:
template <int idx, int end, typename eval, int count, typename Comparator>
struct static_for_loop {
template <typename Lambda, typename... Args>
auto operator()(Lambda&& function, Args&&... args) const
-> std::enable_if_t<Comparator{}(idx, end)> {
std::integral_constant<int, idx> i;
std::forward<Lambda>(function)(i, std::forward<Args>(args)...);
constexpr bool lesser = comparator{}(idx + count, end);
static_for_loop<
idx + count,
END,
std::integral_constant<bool, lesser>,
count,
Comparator
>()(std::forward<Lambda>(function), std::forward<Args>(args)...);
}
// do nothing when false
template <typename Lambda, typename... Args>
auto operator()(Lambda&& function, Args&&... args) const
-> std::enable_if_t<!Comparator{}(idx, end)> {
}
};
std::enable_if will select the right function with sfinae. It will act as a compile time if.
I used perfect forwarding too, as your code didn't work in all case, like passing non copiable or a mutable lambda. Now it will.
If you do not have c++14, you can write typename std::enable_if<...>::type instead.
Try to use less all uppercase name, it hurts lisibility.

Isn't the problem that you are underspecifying comparator? Just specify your API such that comparator<IDX>::type is std::true_type if the loop should continue for IDX, and stop when it's false_type. Your simple loop case then uses template<int IDX> using Comp = std::integral_constant<bool, (IDX < 5)>`.

Related

How to include different number of objects at compile time with variadic arguments in the initializer list?

This is an extension of previous question (Link)
I need to include a different number of objects depending on the provided 'define' and with different ctor parameters. First parameter is an 'index' of object from zero and to (NUMBER-1), other parameters are optional.
So far I don't have issues when only single 'index' parameter is presented but I'm still straggling to add optional parameters Args... args.
That's how I'm trying to do that. Let's say we are gonna to instantiate 2 following classes
class Output
{
public:
explicit Output(uint32_t idx) : m_idx(idx) { printf("ctor: %u\n", m_idx); };
private:
uint32_t m_idx = -1;
};
class Input
{
public:
explicit Input(uint32_t idx, std::string name) : m_idx(idx), m_name(name) { printf("ctor: %u [%s]\n", m_idx, m_name.data()); };
private:
uint32_t m_idx = -1;
std::string m_name;
};
There are 2 templates to instantiate with sequential indexing
template<typename T, typename... Args, typename TInts, TInts... I>
constexpr auto MakeArrayHelper(Args... args, std::integer_sequence<TInts, I...>)
{
return std::array<T, sizeof...(I)>{ (I)..., std::forward<Args>(args)... };
}
template <typename T, size_t Count, typename... Args, typename BaseType = uint32_t>
constexpr auto MakeArray(Args... args)
{
return MakeArrayHelper<T>((args)..., std::make_integer_sequence<BaseType, Count>());
}
And I wanted to instantiate classes like that
auto outputs = MakeArray<Output, 5>();
auto inputs = MakeArray<Input, 3>(std::string("Analog"));
expanded into:
std::array<Output, 5> = { Output{0}, Output{1}, Output{2}, Output{3}, Output{4} };
std::array<Input, 3> = { Input{0, "Analog"}, Input{1, "Analog"}, Input{2, "Analog"} };
This leaves me with a compilation error: could not deduce template argument for 'TInts'
Could you help me with understanding what I'm doing wrong.
Thanks.
It's difficult to give a full answer without a full example but... I see some problems in MakeArrayHelper()
First of all, the variadic pack of parameter has to be in last position, or the deduction fails.
So, instead of
template<typename T, typename... Args, typename TInts, TInts... I>
constexpr auto MakeArrayHelper(Args... args, std::integer_sequence<TInts, I...>)
you can try with
template<typename T, typename TInts, TInts... I, typename... Args>
constexpr auto MakeArrayHelper(std::integer_sequence<TInts, I...>, Args ... args)
Second: if you want use forwarding, the args arguments has to be forwarding references
template<typename T, typename TInts, TInts... I, typename... Args>
constexpr auto MakeArrayHelper(std::integer_sequence<TInts, I...>, Args && ... args)
// .....................................................................^^
Third: inside the function you declare a std::array<T, sizeof...(TInts)> but you initialize it with
{ (I)..., std::forward<Args>(args)... };
a sequence of sizeof...(TInts) and some args....
I don't understand what you want obtain but this e clearly wrong.
--- EDIT ---
Or maybe I understand what do you want... If I understand correctly, what you want is something as (caution: code not tested)
template <typename T, typename TInts, TInts... I, typename ... Args>
constexpr auto MakeArrayHelper (std::integer_sequence<TInts, I...>, Args const & ... args)
{
return std::array<T, sizeof...(I)>{ T{I, args...} ... };
}
template <typename T, std::size_t Count, typename BaseType = std::uint32_t, typename ... args>
constexpr auto MakeArray (Args const & ... args)
{
return MakeArrayHelper<T>(std::make_integer_sequence<BaseType, Count>(), args...);
}
Avoid forwarding args... in MakeArrayHelper() because you can't (without risks) forward the same variable more than a time.

Expanding a tuple with perfect forwarding [duplicate]

Consider the case of a templated function with variadic template arguments:
template<typename Tret, typename... T> Tret func(const T&... t);
Now, I have a tuple t of values. How do I call func() using the tuple values as arguments?
I've read about the bind() function object, with call() function, and also the apply() function in different some now-obsolete documents. The GNU GCC 4.4 implementation seems to have a call() function in the bind() class, but there is very little documentation on the subject.
Some people suggest hand-written recursive hacks, but the true value of variadic template arguments is to be able to use them in cases like above.
Does anyone have a solution to is, or hint on where to read about it?
In C++17 you can do this:
std::apply(the_function, the_tuple);
This already works in Clang++ 3.9, using std::experimental::apply.
Responding to the comment saying that this won't work if the_function is templated, the following is a work-around:
#include <tuple>
template <typename T, typename U> void my_func(T &&t, U &&u) {}
int main(int argc, char *argv[argc]) {
std::tuple<int, float> my_tuple;
std::apply([](auto &&... args) { my_func(args...); }, my_tuple);
return 0;
}
This work around is a simplified solution to the general problem of passing overload sets and function template where a function would be expected. The general solution (one that is taking care of perfect-forwarding, constexpr-ness, and noexcept-ness) is presented here: https://blog.tartanllama.xyz/passing-overload-sets/.
Here's my code if anyone is interested
Basically at compile time the compiler will recursively unroll all arguments in various inclusive function calls <N> -> calls <N-1> -> calls ... -> calls <0> which is the last one and the compiler will optimize away the various intermediate function calls to only keep the last one which is the equivalent of func(arg1, arg2, arg3, ...)
Provided are 2 versions, one for a function called on an object and the other for a static function.
#include <tr1/tuple>
/**
* Object Function Tuple Argument Unpacking
*
* This recursive template unpacks the tuple parameters into
* variadic template arguments until we reach the count of 0 where the function
* is called with the correct parameters
*
* #tparam N Number of tuple arguments to unroll
*
* #ingroup g_util_tuple
*/
template < uint N >
struct apply_obj_func
{
template < typename T, typename... ArgsF, typename... ArgsT, typename... Args >
static void applyTuple( T* pObj,
void (T::*f)( ArgsF... ),
const std::tr1::tuple<ArgsT...>& t,
Args... args )
{
apply_obj_func<N-1>::applyTuple( pObj, f, t, std::tr1::get<N-1>( t ), args... );
}
};
//-----------------------------------------------------------------------------
/**
* Object Function Tuple Argument Unpacking End Point
*
* This recursive template unpacks the tuple parameters into
* variadic template arguments until we reach the count of 0 where the function
* is called with the correct parameters
*
* #ingroup g_util_tuple
*/
template <>
struct apply_obj_func<0>
{
template < typename T, typename... ArgsF, typename... ArgsT, typename... Args >
static void applyTuple( T* pObj,
void (T::*f)( ArgsF... ),
const std::tr1::tuple<ArgsT...>& /* t */,
Args... args )
{
(pObj->*f)( args... );
}
};
//-----------------------------------------------------------------------------
/**
* Object Function Call Forwarding Using Tuple Pack Parameters
*/
// Actual apply function
template < typename T, typename... ArgsF, typename... ArgsT >
void applyTuple( T* pObj,
void (T::*f)( ArgsF... ),
std::tr1::tuple<ArgsT...> const& t )
{
apply_obj_func<sizeof...(ArgsT)>::applyTuple( pObj, f, t );
}
//-----------------------------------------------------------------------------
/**
* Static Function Tuple Argument Unpacking
*
* This recursive template unpacks the tuple parameters into
* variadic template arguments until we reach the count of 0 where the function
* is called with the correct parameters
*
* #tparam N Number of tuple arguments to unroll
*
* #ingroup g_util_tuple
*/
template < uint N >
struct apply_func
{
template < typename... ArgsF, typename... ArgsT, typename... Args >
static void applyTuple( void (*f)( ArgsF... ),
const std::tr1::tuple<ArgsT...>& t,
Args... args )
{
apply_func<N-1>::applyTuple( f, t, std::tr1::get<N-1>( t ), args... );
}
};
//-----------------------------------------------------------------------------
/**
* Static Function Tuple Argument Unpacking End Point
*
* This recursive template unpacks the tuple parameters into
* variadic template arguments until we reach the count of 0 where the function
* is called with the correct parameters
*
* #ingroup g_util_tuple
*/
template <>
struct apply_func<0>
{
template < typename... ArgsF, typename... ArgsT, typename... Args >
static void applyTuple( void (*f)( ArgsF... ),
const std::tr1::tuple<ArgsT...>& /* t */,
Args... args )
{
f( args... );
}
};
//-----------------------------------------------------------------------------
/**
* Static Function Call Forwarding Using Tuple Pack Parameters
*/
// Actual apply function
template < typename... ArgsF, typename... ArgsT >
void applyTuple( void (*f)(ArgsF...),
std::tr1::tuple<ArgsT...> const& t )
{
apply_func<sizeof...(ArgsT)>::applyTuple( f, t );
}
// ***************************************
// Usage
// ***************************************
template < typename T, typename... Args >
class Message : public IMessage
{
typedef void (T::*F)( Args... args );
public:
Message( const std::string& name,
T& obj,
F pFunc,
Args... args );
private:
virtual void doDispatch( );
T* pObj_;
F pFunc_;
std::tr1::tuple<Args...> args_;
};
//-----------------------------------------------------------------------------
template < typename T, typename... Args >
Message<T, Args...>::Message( const std::string& name,
T& obj,
F pFunc,
Args... args )
: IMessage( name ),
pObj_( &obj ),
pFunc_( pFunc ),
args_( std::forward<Args>(args)... )
{
}
//-----------------------------------------------------------------------------
template < typename T, typename... Args >
void Message<T, Args...>::doDispatch( )
{
try
{
applyTuple( pObj_, pFunc_, args_ );
}
catch ( std::exception& e )
{
}
}
In C++ there is many ways of expanding/unpacking tuple and apply those tuple elements to a variadic template function. Here is a small helper class which creates index array. It is used a lot in template metaprogramming:
// ------------- UTILITY---------------
template<int...> struct index_tuple{};
template<int I, typename IndexTuple, typename... Types>
struct make_indexes_impl;
template<int I, int... Indexes, typename T, typename ... Types>
struct make_indexes_impl<I, index_tuple<Indexes...>, T, Types...>
{
typedef typename make_indexes_impl<I + 1, index_tuple<Indexes..., I>, Types...>::type type;
};
template<int I, int... Indexes>
struct make_indexes_impl<I, index_tuple<Indexes...> >
{
typedef index_tuple<Indexes...> type;
};
template<typename ... Types>
struct make_indexes : make_indexes_impl<0, index_tuple<>, Types...>
{};
Now the code which does the job is not that big:
// ----------UNPACK TUPLE AND APPLY TO FUNCTION ---------
#include <tuple>
#include <iostream>
using namespace std;
template<class Ret, class... Args, int... Indexes >
Ret apply_helper( Ret (*pf)(Args...), index_tuple< Indexes... >, tuple<Args...>&& tup)
{
return pf( forward<Args>( get<Indexes>(tup))... );
}
template<class Ret, class ... Args>
Ret apply(Ret (*pf)(Args...), const tuple<Args...>& tup)
{
return apply_helper(pf, typename make_indexes<Args...>::type(), tuple<Args...>(tup));
}
template<class Ret, class ... Args>
Ret apply(Ret (*pf)(Args...), tuple<Args...>&& tup)
{
return apply_helper(pf, typename make_indexes<Args...>::type(), forward<tuple<Args...>>(tup));
}
Test is shown bellow:
// --------------------- TEST ------------------
void one(int i, double d)
{
std::cout << "function one(" << i << ", " << d << ");\n";
}
int two(int i)
{
std::cout << "function two(" << i << ");\n";
return i;
}
int main()
{
std::tuple<int, double> tup(23, 4.5);
apply(one, tup);
int d = apply(two, std::make_tuple(2));
return 0;
}
I'm not big expert in other languages, but I guess that if these languages do not have such functionality in their menu, there is no way to do that. At least with C++ you can, and I think it is not so much complicated...
I find this to be the most elegant solution (and it is optimally forwarded):
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
template<size_t N>
struct Apply {
template<typename F, typename T, typename... A>
static inline auto apply(F && f, T && t, A &&... a)
-> decltype(Apply<N-1>::apply(
::std::forward<F>(f), ::std::forward<T>(t),
::std::get<N-1>(::std::forward<T>(t)), ::std::forward<A>(a)...
))
{
return Apply<N-1>::apply(::std::forward<F>(f), ::std::forward<T>(t),
::std::get<N-1>(::std::forward<T>(t)), ::std::forward<A>(a)...
);
}
};
template<>
struct Apply<0> {
template<typename F, typename T, typename... A>
static inline auto apply(F && f, T &&, A &&... a)
-> decltype(::std::forward<F>(f)(::std::forward<A>(a)...))
{
return ::std::forward<F>(f)(::std::forward<A>(a)...);
}
};
template<typename F, typename T>
inline auto apply(F && f, T && t)
-> decltype(Apply< ::std::tuple_size<
typename ::std::decay<T>::type
>::value>::apply(::std::forward<F>(f), ::std::forward<T>(t)))
{
return Apply< ::std::tuple_size<
typename ::std::decay<T>::type
>::value>::apply(::std::forward<F>(f), ::std::forward<T>(t));
}
Example usage:
void foo(int i, bool b);
std::tuple<int, bool> t = make_tuple(20, false);
void m()
{
apply(&foo, t);
}
Unfortunately GCC (4.6 at least) fails to compile this with "sorry, unimplemented: mangling overload" (which simply means that the compiler doesn't yet fully implement the C++11 spec), and since it uses variadic templates, it wont work in MSVC, so it is more or less useless. However, once there is a compiler that supports the spec, it will be the best approach IMHO. (Note: it isn't that hard to modify this so that you can work around the deficiencies in GCC, or to implement it with Boost Preprocessor, but it ruins the elegance, so this is the version I am posting.)
GCC 4.7 now supports this code just fine.
Edit: Added forward around actual function call to support rvalue reference form *this in case you are using clang (or if anybody else actually gets around to adding it).
Edit: Added missing forward around the function object in the non-member apply function's body. Thanks to pheedbaq for pointing out that it was missing.
Edit: And here is the C++14 version just since it is so much nicer (doesn't actually compile yet):
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
template<size_t N>
struct Apply {
template<typename F, typename T, typename... A>
static inline auto apply(F && f, T && t, A &&... a) {
return Apply<N-1>::apply(::std::forward<F>(f), ::std::forward<T>(t),
::std::get<N-1>(::std::forward<T>(t)), ::std::forward<A>(a)...
);
}
};
template<>
struct Apply<0> {
template<typename F, typename T, typename... A>
static inline auto apply(F && f, T &&, A &&... a) {
return ::std::forward<F>(f)(::std::forward<A>(a)...);
}
};
template<typename F, typename T>
inline auto apply(F && f, T && t) {
return Apply< ::std::tuple_size< ::std::decay_t<T>
>::value>::apply(::std::forward<F>(f), ::std::forward<T>(t));
}
Here is a version for member functions (not tested very much!):
using std::forward; // You can change this if you like unreadable code or care hugely about namespace pollution.
template<size_t N>
struct ApplyMember
{
template<typename C, typename F, typename T, typename... A>
static inline auto apply(C&& c, F&& f, T&& t, A&&... a) ->
decltype(ApplyMember<N-1>::apply(forward<C>(c), forward<F>(f), forward<T>(t), std::get<N-1>(forward<T>(t)), forward<A>(a)...))
{
return ApplyMember<N-1>::apply(forward<C>(c), forward<F>(f), forward<T>(t), std::get<N-1>(forward<T>(t)), forward<A>(a)...);
}
};
template<>
struct ApplyMember<0>
{
template<typename C, typename F, typename T, typename... A>
static inline auto apply(C&& c, F&& f, T&&, A&&... a) ->
decltype((forward<C>(c)->*forward<F>(f))(forward<A>(a)...))
{
return (forward<C>(c)->*forward<F>(f))(forward<A>(a)...);
}
};
// C is the class, F is the member function, T is the tuple.
template<typename C, typename F, typename T>
inline auto apply(C&& c, F&& f, T&& t) ->
decltype(ApplyMember<std::tuple_size<typename std::decay<T>::type>::value>::apply(forward<C>(c), forward<F>(f), forward<T>(t)))
{
return ApplyMember<std::tuple_size<typename std::decay<T>::type>::value>::apply(forward<C>(c), forward<F>(f), forward<T>(t));
}
// Example:
class MyClass
{
public:
void foo(int i, bool b);
};
MyClass mc;
std::tuple<int, bool> t = make_tuple(20, false);
void m()
{
apply(&mc, &MyClass::foo, t);
}
template<typename F, typename Tuple, std::size_t ... I>
auto apply_impl(F&& f, Tuple&& t, std::index_sequence<I...>) {
return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
}
template<typename F, typename Tuple>
auto apply(F&& f, Tuple&& t) {
using Indices = std::make_index_sequence<std::tuple_size<std::decay_t<Tuple>>::value>;
return apply_impl(std::forward<F>(f), std::forward<Tuple>(t), Indices());
}
This is adapted from the C++14 draft using index_sequence. I might propose to have apply in a future standard (TS).
All this implementations are good. But due to use of pointer to member function compiler often cannot inline the target function call (at least gcc 4.8 can't, no matter what Why gcc can't inline function pointers that can be determined?)
But things changes if send pointer to member function as template arguments, not as function params:
/// from https://stackoverflow.com/a/9288547/1559666
template<int ...> struct seq {};
template<int N, int ...S> struct gens : gens<N-1, N-1, S...> {};
template<int ...S> struct gens<0, S...>{ typedef seq<S...> type; };
template<typename TT>
using makeSeq = typename gens< std::tuple_size< typename std::decay<TT>::type >::value >::type;
// deduce function return type
template<class ...Args>
struct fn_type;
template<class ...Args>
struct fn_type< std::tuple<Args...> >{
// will not be called
template<class Self, class Fn>
static auto type_helper(Self &self, Fn f) -> decltype((self.*f)(declval<Args>()...)){
//return (self.*f)(Args()...);
return NULL;
}
};
template<class Self, class ...Args>
struct APPLY_TUPLE{};
template<class Self, class ...Args>
struct APPLY_TUPLE<Self, std::tuple<Args...>>{
Self &self;
APPLY_TUPLE(Self &self): self(self){}
template<class T, T (Self::* f)(Args...), class Tuple>
void delayed_call(Tuple &&list){
caller<T, f, Tuple >(forward<Tuple>(list), makeSeq<Tuple>() );
}
template<class T, T (Self::* f)(Args...), class Tuple, int ...S>
void caller(Tuple &&list, const seq<S...>){
(self.*f)( std::get<S>(forward<Tuple>(list))... );
}
};
#define type_of(val) typename decay<decltype(val)>::type
#define apply_tuple(obj, fname, tuple) \
APPLY_TUPLE<typename decay<decltype(obj)>::type, typename decay<decltype(tuple)>::type >(obj).delayed_call< \
decltype( fn_type< type_of(tuple) >::type_helper(obj, &decay<decltype(obj)>::type::fname) ), \
&decay<decltype(obj)>::type::fname \
> \
(tuple);
And ussage:
struct DelayedCall
{
void call_me(int a, int b, int c){
std::cout << a+b+c;
}
void fire(){
tuple<int,int,int> list = make_tuple(1,2,3);
apply_tuple(*this, call_me, list); // even simpler than previous implementations
}
};
Proof of inlinable http://goo.gl/5UqVnC
With small changes, we can "overload" apply_tuple:
#define VA_NARGS_IMPL(_1, _2, _3, _4, _5, _6, _7, _8, N, ...) N
#define VA_NARGS(...) VA_NARGS_IMPL(X,##__VA_ARGS__, 7, 6, 5, 4, 3, 2, 1, 0)
#define VARARG_IMPL_(base, count, ...) base##count(__VA_ARGS__)
#define VARARG_IMPL(base, count, ...) VARARG_IMPL_(base, count, __VA_ARGS__)
#define VARARG(base, ...) VARARG_IMPL(base, VA_NARGS(__VA_ARGS__), __VA_ARGS__)
#define apply_tuple2(fname, tuple) apply_tuple3(*this, fname, tuple)
#define apply_tuple3(obj, fname, tuple) \
APPLY_TUPLE<typename decay<decltype(obj)>::type, typename decay<decltype(tuple)>::type >(obj).delayed_call< \
decltype( fn_type< type_of(tuple) >::type_helper(obj, &decay<decltype(obj)>::type::fname) ), \
&decay<decltype(obj)>::type::fname \
/* ,decltype(tuple) */> \
(tuple);
#define apply_tuple(...) VARARG(apply_tuple, __VA_ARGS__)
...
apply_tuple(obj, call_me, list);
apply_tuple(call_me, list); // call this->call_me(list....)
Plus this is the only one solution which works with templated functions.
1) if you have a readymade parameter_pack structure as function argument, you can just use std::tie like this:
template <class... Args>
void tie_func(std::tuple<Args...> t, Args&... args)
{
std::tie<Args...>(args...) = t;
}
int main()
{
std::tuple<int, double, std::string> t(2, 3.3, "abc");
int i;
double d;
std::string s;
tie_func(t, i, d, s);
std::cout << i << " " << d << " " << s << std::endl;
}
2) if you don't have a readymade parampack arg, you'll have to unwind the tuple like this
#include <tuple>
#include <functional>
#include <iostream>
template<int N>
struct apply_wrap {
template<typename R, typename... TupleArgs, typename... UnpackedArgs>
static R applyTuple( std::function<R(TupleArgs...)>& f, const std::tuple<TupleArgs...>& t, UnpackedArgs... args )
{
return apply_wrap<N-1>::applyTuple( f, t, std::get<N-1>( t ), args... );
}
};
template<>
struct apply_wrap<0>
{
template<typename R, typename... TupleArgs, typename... UnpackedArgs>
static R applyTuple( std::function<R(TupleArgs...)>& f, const std::tuple<TupleArgs...>&, UnpackedArgs... args )
{
return f( args... );
}
};
template<typename R, typename... TupleArgs>
R applyTuple( std::function<R(TupleArgs...)>& f, std::tuple<TupleArgs...> const& t )
{
return apply_wrap<sizeof...(TupleArgs)>::applyTuple( f, t );
}
int fac(int n)
{
int r=1;
for(int i=2; i<=n; ++i)
r *= i;
return r;
}
int main()
{
auto t = std::make_tuple(5);
auto f = std::function<decltype(fac)>(&fac);
cout << applyTuple(f, t);
}
The news does not look good.
Having read over the just-released draft standard, I'm not seeing a built-in solution to this, which does seem odd.
The best place to ask about such things (if you haven't already) is comp.lang.c++.moderated, because some folks involved in drafting the standard post there regularly.
If you check out this thread, someone has the same question (maybe it's you, in which case you're going to find this whole answer a little frustrating!), and a few butt-ugly implementations are suggested.
I just wondered if it would be simpler to make the function accept a tuple, as the conversion that way is easier. But this implies that all functions should accept tuples as arguments, for maximum flexibility, and so that just demonstrates the strangeness of not providing a built-in expansion of tuple to function argument pack.
Update: the link above doesn't work - try pasting this:
http://groups.google.com/group/comp.lang.c++.moderated/browse_thread/thread/750fa3815cdaac45/d8dc09e34bbb9661?lnk=gst&q=tuple+variadic#d8dc09e34bbb9661
How about this:
// Warning: NOT tested!
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
using std::declval;
using std::forward;
using std::get;
using std::integral_constant;
using std::size_t;
using std::tuple;
namespace detail
{
template < typename Func, typename ...T, typename ...Args >
auto explode_tuple( integral_constant<size_t, 0u>, tuple<T...> const &t,
Func &&f, Args &&...a )
-> decltype( forward<Func>(f)(declval<T const>()...) )
{ return forward<Func>( f )( forward<Args>(a)... ); }
template < size_t Index, typename Func, typename ...T, typename ...Args >
auto explode_tuple( integral_constant<size_t, Index>, tuple<T...> const&t,
Func &&f, Args &&...a )
-> decltype( forward<Func>(f)(declval<T const>()...) )
{
return explode_tuple( integral_constant<size_t, Index - 1u>{}, t,
forward<Func>(f), get<Index - 1u>(t), forward<Args>(a)... );
}
}
template < typename Func, typename ...T >
auto run_tuple( Func &&f, tuple<T...> const &t )
-> decltype( forward<Func>(f)(declval<T const>()...) )
{
return detail::explode_tuple( integral_constant<size_t, sizeof...(T)>{}, t,
forward<Func>(f) );
}
template < typename Tret, typename ...T >
Tret func_T( tuple<T...> const &t )
{ return run_tuple( &func<Tret, T...>, t ); }
The run_tuple function template takes the given tuple and pass its elements individually to the given function. It carries out its work by recursively calling its helper function templates explode_tuple. It's important that run_tuple passes the tuple's size to explode_tuple; that number acts as a counter for how many elements to extract.
If the tuple is empty, then run_tuple calls the first version of explode_tuple with the remote function as the only other argument. The remote function is called with no arguments and we're done. If the tuple is not empty, a higher number is passed to the second version of explode_tuple, along with the remote function. A recursive call to explode_tuple is made, with the same arguments, except the counter number is decreased by one and (a reference to) the last tuple element is tacked on as an argument after the remote function. In a recursive call, either the counter isn't zero, and another call is made with the counter decreased again and the next-unreferenced element is inserted in the argument list after the remote function but before the other inserted arguments, or the counter reaches zero and the remote function is called with all the arguments accumulated after it.
I'm not sure I have the syntax of forcing a particular version of a function template right. I think you can use a pointer-to-function as a function object; the compiler will automatically fix it.
I am evaluating MSVS 2013RC, and it failed to compile some of the previous solutions proposed here in some cases. For example, MSVS will fail to compile "auto" returns if there are too many function parameters, because of a namespace imbrication limit (I sent that info to Microsoft to have it corrected). In other cases, we need access to the function's return, although that can also be done with a lamda: the following two examples give the same result..
apply_tuple([&ret1](double a){ret1 = cos(a); }, std::make_tuple<double>(.2));
ret2 = apply_tuple((double(*)(double))cos, std::make_tuple<double>(.2));
And thanks again to those who posted answers here before me, I wouldn't have gotten to this without it... so here it is:
template<size_t N>
struct apply_impl {
template<typename F, typename T, typename... A>
static inline auto apply_tuple(F&& f, T&& t, A&&... a)
-> decltype(apply_impl<N-1>::apply_tuple(std::forward<F>(f), std::forward<T>(t),
std::get<N-1>(std::forward<T>(t)), std::forward<A>(a)...)) {
return apply_impl<N-1>::apply_tuple(std::forward<F>(f), std::forward<T>(t),
std::get<N-1>(std::forward<T>(t)), std::forward<A>(a)...);
}
template<typename C, typename F, typename T, typename... A>
static inline auto apply_tuple(C*const o, F&& f, T&& t, A&&... a)
-> decltype(apply_impl<N-1>::apply_tuple(o, std::forward<F>(f), std::forward<T>(t),
std::get<N-1>(std::forward<T>(t)), std::forward<A>(a)...)) {
return apply_impl<N-1>::apply_tuple(o, std::forward<F>(f), std::forward<T>(t),
std::get<N-1>(std::forward<T>(t)), std::forward<A>(a)...);
}
};
// This is a work-around for MSVS 2013RC that is required in some cases
#if _MSC_VER <= 1800 /* update this when bug is corrected */
template<>
struct apply_impl<6> {
template<typename F, typename T, typename... A>
static inline auto apply_tuple(F&& f, T&& t, A&&... a)
-> decltype(std::forward<F>(f)(std::get<0>(std::forward<T>(t)), std::get<1>(std::forward<T>(t)), std::get<2>(std::forward<T>(t)),
std::get<3>(std::forward<T>(t)), std::get<4>(std::forward<T>(t)), std::get<5>(std::forward<T>(t)), std::forward<A>(a)...)) {
return std::forward<F>(f)(std::get<0>(std::forward<T>(t)), std::get<1>(std::forward<T>(t)), std::get<2>(std::forward<T>(t)),
std::get<3>(std::forward<T>(t)), std::get<4>(std::forward<T>(t)), std::get<5>(std::forward<T>(t)), std::forward<A>(a)...);
}
template<typename C, typename F, typename T, typename... A>
static inline auto apply_tuple(C*const o, F&& f, T&& t, A&&... a)
-> decltype((o->*std::forward<F>(f))(std::get<0>(std::forward<T>(t)), std::get<1>(std::forward<T>(t)), std::get<2>(std::forward<T>(t)),
std::get<3>(std::forward<T>(t)), std::get<4>(std::forward<T>(t)), std::get<5>(std::forward<T>(t)), std::forward<A>(a)...)) {
return (o->*std::forward<F>(f))(std::get<0>(std::forward<T>(t)), std::get<1>(std::forward<T>(t)), std::get<2>(std::forward<T>(t)),
std::get<3>(std::forward<T>(t)), std::get<4>(std::forward<T>(t)), std::get<5>(std::forward<T>(t)), std::forward<A>(a)...);
}
};
#endif
template<>
struct apply_impl<0> {
template<typename F, typename T, typename... A>
static inline auto apply_tuple(F&& f, T&&, A&&... a)
-> decltype(std::forward<F>(f)(std::forward<A>(a)...)) {
return std::forward<F>(f)(std::forward<A>(a)...);
}
template<typename C, typename F, typename T, typename... A>
static inline auto apply_tuple(C*const o, F&& f, T&&, A&&... a)
-> decltype((o->*std::forward<F>(f))(std::forward<A>(a)...)) {
return (o->*std::forward<F>(f))(std::forward<A>(a)...);
}
};
// Apply tuple parameters on a non-member or static-member function by perfect forwarding
template<typename F, typename T>
inline auto apply_tuple(F&& f, T&& t)
-> decltype(apply_impl<std::tuple_size<typename std::decay<T>::type>::value>::apply_tuple(std::forward<F>(f), std::forward<T>(t))) {
return apply_impl<std::tuple_size<typename std::decay<T>::type>::value>::apply_tuple(std::forward<F>(f), std::forward<T>(t));
}
// Apply tuple parameters on a member function
template<typename C, typename F, typename T>
inline auto apply_tuple(C*const o, F&& f, T&& t)
-> decltype(apply_impl<std::tuple_size<typename std::decay<T>::type>::value>::apply_tuple(o, std::forward<F>(f), std::forward<T>(t))) {
return apply_impl<std::tuple_size<typename std::decay<T>::type>::value>::apply_tuple(o, std::forward<F>(f), std::forward<T>(t));
}
Extending on #David's solution, you can write a recursive template that
Doesn't use the (overly-verbose, imo) integer_sequence semantics
Doesn't use an extra temporary template parameter int N to count recursive iterations
(Optional for static/global functors) uses the functor as a template parameter for compile-time optimizaion
E.g.:
template <class F, F func>
struct static_functor {
template <class... T, class... Args_tmp>
static inline auto apply(const std::tuple<T...>& t, Args_tmp... args)
-> decltype(func(std::declval<T>()...)) {
return static_functor<F,func>::apply(t, args...,
std::get<sizeof...(Args_tmp)>(t));
}
template <class... T>
static inline auto apply(const std::tuple<T...>& t, T... args)
-> decltype(func(args...)) {
return func(args...);
}
};
static_functor<decltype(&myFunc), &myFunc>::apply(my_tuple);
Alternatively if your functor is not defined at compile-time (e.g., a non-constexpr functor instance, or a lambda expression), you can use it as a function parameter instead of a class template parameter, and in fact remove the containing class entirely:
template <class F, class... T, class... Args_tmp>
inline auto apply_functor(F&& func, const std::tuple<T...>& t,
Args_tmp... args) -> decltype(func(std::declval<T>()...)) {
return apply_functor(func, t, args..., std::get<sizeof...(Args_tmp)>(t));
}
template <class F, class... T>
inline auto apply_functor(F&& func, const std::tuple<T...>& t,
T... args) -> decltype(func(args...)) {
return func(args...);
}
apply_functor(&myFunc, my_tuple);
For pointer-to-member-function callables, you can adjust either of the above code pieces similarly as in #David's answer.
Explanation
In reference to the second piece of code, there are two template functions: the first one takes the functor func, the tuple t with types T..., and a parameter pack args of types Args_tmp.... When called, it recursively adds the objects from t to the parameter pack one at a time, from beginning (0) to end, and calls the function again with the new incremented parameter pack.
The second function's signature is almost identical to the first, except that it uses type T... for the parameter pack args. Thus, once args in the first function is completely filled with the values from t, it's type will be T... (in psuedo-code, typeid(T...) == typeid(Args_tmp...)), and thus the compiler will instead call the second overloaded function, which in turn calls func(args...).
The code in the static functor example works identically, with the functor instead used as a class template argument.
Why not just wrap your variadic arguments into a tuple class and then use compile time recursion (see link) to retrieve the index you are interested in. I find that unpacking variadic templates into a container or collection may not be type safe w.r.t. heterogeneous types
template<typename... Args>
auto get_args_as_tuple(Args... args) -> std::tuple<Args...>
{
return std::make_tuple(args);
}
This simple solution works for me:
template<typename... T>
void unwrap_tuple(std::tuple<T...>* tp)
{
std::cout << "And here I have the tuple types, all " << sizeof...(T) << " of them" << std::endl;
}
int main()
{
using TupleType = std::tuple<int, float, std::string, void*>;
unwrap_tuple((TupleType*)nullptr); // trick compiler into using template param deduction
}

How to implement a variadic tuple_map operation?

I want to implement a function which maps a variadic list of tuples to another tuple, given a function.
It applies an N-ary function f to a list of elements taken from a list of N tuples (each with size at least M) and creates a new M-element tuple from the result of these applications.
For a list of N tuples, each with M elements, the call to std::make_tuple would look like this pseudocode:
std::make_tuple(
f(t1_1, t2_1, t3_1, ..., tN_1),
f(t1_2, t2_2, t3_2, ..., tN_2),
f(t1_3, t2_3, t3_3, ..., tN_3),
...
f(t1_M, t2_M, t3_M, ..., tN_M)
)
Sometimes this operation is named zipWith in other languages.
I want this function, tuple_map, to have the following signature:
template<class Tuple1, class... Tuples2, class Function>
auto tuple_map(Tuple1&& tuple1, Tuples&&... tuples, Function f);
I've figured out the implementation for a function taking a single tuple:
#include <tuple>
#include <integer_sequence>
#include <type_traits>
#include <utility>
template<class Tuple, class Function, size_t... I>
auto tuple_map_impl(Tuple&& t, Function f, std::index_sequence<I...>)
-> decltype(
std::make_tuple(
f(std::get<I>(std::forward<Tuple>(t)))...
)
)
{
return std::make_tuple(
f(std::get<I>(std::forward<Tuple>(t)))...
);
}
template<class Tuple, class Function>
auto tuple_map(Tuple&& t, Function f)
-> decltype(
tuple_map_impl(
std::forward<Tuple>(t),
f,
std::make_index_sequence<
std::tuple_size<std::decay_t<Tuple>>::value
>()
)
)
{
using indices = std::make_index_sequence<
std::tuple_size<std::decay_t<Tuple>>::value
>;
return tuple_map_impl(std::forward<Tuple>(t), indices());
}
When I introduce another parameter pack (Tuples) in addition to I..., it causes problems:
template<class Tuple1, class... Tuples, class Function, size_t... I>
auto tuple_map_impl(Tuple1&& tuple1, Tuples&&... tuples, Function f, std::index_sequence<I...>)
-> decltype(
std::make_tuple(
f(
std::get<I>(std::forward<Tuple1>(t1)),
std::get<I>(std::forward<Tuples>(tuples))...
)...
)
)
{
return std::make_tuple(
f(
std::get<I>(std::forward<Tuple>(t)),
std::get<I>(std::forward<Tuples>(tuples))...
)...
);
}
Compiler error:
error: mismatched argument pack lengths while expanding ‘get<I>(forward<Tuples>(tuples))’
This is because I've used two packs with different lengths (I and Tuples) within the same expression.
I can't think of a different way to write this function which would not use the two packs within the same expression.
What is the best way to implement tuple_map?
If I understand what you're trying to do correctly, this code seems to do the trick with Visual Studio 2013 (November 2013 CTP):
#include <iostream>
#include <tuple>
#include <utility>
using namespace std;
// index_sequence implementation since VS2013 doesn't have it yet
template <size_t... Ints> class index_sequence {
public:
static size_t size() { return sizeof...(Ints); }
};
template <size_t Start, typename Indices, size_t End>
struct make_index_sequence_impl;
template <size_t Start, size_t... Indices, size_t End>
struct make_index_sequence_impl<Start, index_sequence<Indices...>, End> {
typedef typename make_index_sequence_impl<
Start + 1, index_sequence<Indices..., Start>, End>::type type;
};
template <size_t End, size_t... Indices>
struct make_index_sequence_impl<End, index_sequence<Indices...>, End> {
typedef index_sequence<Indices...> type;
};
template <size_t N>
using make_index_sequence =
typename make_index_sequence_impl<0, index_sequence<>, N>::type;
// The code that actually implements tuple_map
template <size_t I, typename F, typename... Tuples>
auto tuple_zip_invoke(F f, const Tuples &... ts) {
return f(get<I>(ts)...);
}
template <typename F, size_t... Is, typename... Tuples>
auto tuple_map_impl(F f, index_sequence<Is...>, const Tuples &... ts) {
return make_tuple(tuple_zip_invoke<Is>(f, ts...)...);
}
template <typename F, typename Tuple, typename... Tuples>
auto tuple_map(F f, const Tuple &t, const Tuples &... ts) {
return tuple_map_impl(f, make_index_sequence<tuple_size<Tuple>::value>(), t,
ts...);
}
int sum(int a, int b, int c) { return a + b + c; }
int main() {
auto res =
tuple_map(sum, make_tuple(1, 4), make_tuple(2, 5), make_tuple(3, 6));
cout << "(" << get<0>(res) << ", " << get<1>(res) << ")\n";
return 0;
}
Output is:
(6, 15)
I might approach this problem by factoring the mapping and the catting. Using your existing tuple_map, try this:
template <typename ...Tuple, typename F>
auto tuple_map(Tuple && tuple, F f)
{
return std::tuple_cat(tuple_map(std::forward<Tuple>(tuple), f)...);
}
You can use recursion and std::tuple_cat() like this:
template <class Function, class Tuple, size_t... I>
auto tuple_map_impl(Function f, Tuple&& t, std::index_sequence<I...>)
{
return std::make_tuple(f(std::get<I>(std::forward<Tuple>(t)))...);
}
template <class F, class Tuple, class... Tuples>
auto tuple_map(F f, Tuple&& t, Tuples&&... tuples)
{
return std::tuple_cat(tuple_map_impl(f, std::forward<Tuple>(t), std::make_index_sequence<std::tuple_size<std::decay_t<Tuple>>::value>{}),
tuple_map(f, tuples...));
}
template <class F>
auto tuple_map(F) { return std::make_tuple(); }
Live Demo

C++: Forwarding the sum of parameter pack and a std::tuple/array [duplicate]

This question already has answers here:
Constructor arguments from tuple
(6 answers)
Closed 8 years ago.
I want to implement something like the following member function (method), which is supposed to increase each argument by some summand (addend) corresponding to the argument index and forward it to another variadic-template function:
template<typename... Int> // a bunch of integral types (e.g. int, size_t, char)
void ForwardToFuncIncreased(Int... ints) {
static_assert(sizeof...(Ints) == std::tuple_size<decltype(summands_)>::value,
"Incorrect number of integral types provided");
Func( (ints + std::get<PARAM_INDEX(ints)>(summands_))... ); // failed attempt
}
where summands_ is a member variable of type std::tuple or std::array (you can assume either). The basic requirement is that it should have no runtime overhead compared to:
Func(int0 + std::get<0>(summands_), int1 + std::get<1>(summands_), ...);
(Imagine I overload the function for up to N template parameters).
If it is not possible to do it without necessary runtime overhead, I am willing to go with certain modifications (esp. in the way of storing additional stuff in my class or modifying the type).
Note: My intention is not to extract the template argument indexes, but hopefully to achieve what I need without it.
In C++14, you'll be able to do the following, very similar to your original attempt:
template<typename... Ns, size_t... Is>
void ForwardToFuncIncreasedImpl(Ns... nums, std::index_sequence<Is...>)
{
Func( (nums + std::get<Is>(summands_))... );
}
template<typename... Ns>
void ForwardToFuncIncreased(Ns... nums)
{
ForwardToFuncIncreasedImpl(nums..., std::index_sequence_for<Ns...>());
}
In the meantime, you could find or write your own implementation of index_sequence.
Or do something like this: First doing std::make_tuple(ints...) so that we have two tuples which we want to sum (or a tuple and a std::array). Then using the pattern demonstrated by Andrei Alexandrescu in The Way of the Exploding Tuple to expand the sum into a parameter pack which is passed to Func.
template <int N>
struct Pairwise;
template <>
struct Pairwise<0>
{
template <typename F, typename T, typename U, typename... Args>
static void Sum(F f, T const&, U const&, Args... sums)
{
f(sums...);
}
};
template <int N>
struct Pairwise
{
template <typename F, typename T, typename U, typename... Args>
static void Sum(F f, T const& a, U const& b, Args... sums)
{
Pairwise<N - 1>::Sum(f, a, b, std::get<N - 1>(a) + std::get<N - 1>(b), sums...);
}
};
template <typename... Ns>
void ForwardToFuncIncreased(Ns... nums)
{
Pairwise<sizeof...(Ns)>::Sum(Func, std::make_tuple(nums...), summands_);
}
It's also possible to do it without the initial make_tuple:
template <typename... Ns>
struct Pairwise;
template <>
struct Pairwise<>
{
template <typename F, typename T, typename... Args>
static void Sum(F f, T const&, Args... sums)
{
f(sums...);
}
};
template <typename N0, typename... Ns>
struct Pairwise<N0, Ns...>
{
template <typename F, typename T, typename... Args>
static void Sum(F f, N0 num0, Ns... nums, T const& a, Args&&... sums)
{
Pairwise<Ns...>::Sum(f, nums..., a, sums..., num0 + std::get<sizeof...(Args)>(a));
}
};
template <typename... Ns>
void ForwardToFuncIncreased(Ns... nums)
{
Pairwise<Ns...>::Sum(Func, nums..., summands_);
}

How do I expand a tuple into variadic template function's arguments?

Consider the case of a templated function with variadic template arguments:
template<typename Tret, typename... T> Tret func(const T&... t);
Now, I have a tuple t of values. How do I call func() using the tuple values as arguments?
I've read about the bind() function object, with call() function, and also the apply() function in different some now-obsolete documents. The GNU GCC 4.4 implementation seems to have a call() function in the bind() class, but there is very little documentation on the subject.
Some people suggest hand-written recursive hacks, but the true value of variadic template arguments is to be able to use them in cases like above.
Does anyone have a solution to is, or hint on where to read about it?
In C++17 you can do this:
std::apply(the_function, the_tuple);
This already works in Clang++ 3.9, using std::experimental::apply.
Responding to the comment saying that this won't work if the_function is templated, the following is a work-around:
#include <tuple>
template <typename T, typename U> void my_func(T &&t, U &&u) {}
int main(int argc, char *argv[argc]) {
std::tuple<int, float> my_tuple;
std::apply([](auto &&... args) { my_func(args...); }, my_tuple);
return 0;
}
This work around is a simplified solution to the general problem of passing overload sets and function template where a function would be expected. The general solution (one that is taking care of perfect-forwarding, constexpr-ness, and noexcept-ness) is presented here: https://blog.tartanllama.xyz/passing-overload-sets/.
Here's my code if anyone is interested
Basically at compile time the compiler will recursively unroll all arguments in various inclusive function calls <N> -> calls <N-1> -> calls ... -> calls <0> which is the last one and the compiler will optimize away the various intermediate function calls to only keep the last one which is the equivalent of func(arg1, arg2, arg3, ...)
Provided are 2 versions, one for a function called on an object and the other for a static function.
#include <tr1/tuple>
/**
* Object Function Tuple Argument Unpacking
*
* This recursive template unpacks the tuple parameters into
* variadic template arguments until we reach the count of 0 where the function
* is called with the correct parameters
*
* #tparam N Number of tuple arguments to unroll
*
* #ingroup g_util_tuple
*/
template < uint N >
struct apply_obj_func
{
template < typename T, typename... ArgsF, typename... ArgsT, typename... Args >
static void applyTuple( T* pObj,
void (T::*f)( ArgsF... ),
const std::tr1::tuple<ArgsT...>& t,
Args... args )
{
apply_obj_func<N-1>::applyTuple( pObj, f, t, std::tr1::get<N-1>( t ), args... );
}
};
//-----------------------------------------------------------------------------
/**
* Object Function Tuple Argument Unpacking End Point
*
* This recursive template unpacks the tuple parameters into
* variadic template arguments until we reach the count of 0 where the function
* is called with the correct parameters
*
* #ingroup g_util_tuple
*/
template <>
struct apply_obj_func<0>
{
template < typename T, typename... ArgsF, typename... ArgsT, typename... Args >
static void applyTuple( T* pObj,
void (T::*f)( ArgsF... ),
const std::tr1::tuple<ArgsT...>& /* t */,
Args... args )
{
(pObj->*f)( args... );
}
};
//-----------------------------------------------------------------------------
/**
* Object Function Call Forwarding Using Tuple Pack Parameters
*/
// Actual apply function
template < typename T, typename... ArgsF, typename... ArgsT >
void applyTuple( T* pObj,
void (T::*f)( ArgsF... ),
std::tr1::tuple<ArgsT...> const& t )
{
apply_obj_func<sizeof...(ArgsT)>::applyTuple( pObj, f, t );
}
//-----------------------------------------------------------------------------
/**
* Static Function Tuple Argument Unpacking
*
* This recursive template unpacks the tuple parameters into
* variadic template arguments until we reach the count of 0 where the function
* is called with the correct parameters
*
* #tparam N Number of tuple arguments to unroll
*
* #ingroup g_util_tuple
*/
template < uint N >
struct apply_func
{
template < typename... ArgsF, typename... ArgsT, typename... Args >
static void applyTuple( void (*f)( ArgsF... ),
const std::tr1::tuple<ArgsT...>& t,
Args... args )
{
apply_func<N-1>::applyTuple( f, t, std::tr1::get<N-1>( t ), args... );
}
};
//-----------------------------------------------------------------------------
/**
* Static Function Tuple Argument Unpacking End Point
*
* This recursive template unpacks the tuple parameters into
* variadic template arguments until we reach the count of 0 where the function
* is called with the correct parameters
*
* #ingroup g_util_tuple
*/
template <>
struct apply_func<0>
{
template < typename... ArgsF, typename... ArgsT, typename... Args >
static void applyTuple( void (*f)( ArgsF... ),
const std::tr1::tuple<ArgsT...>& /* t */,
Args... args )
{
f( args... );
}
};
//-----------------------------------------------------------------------------
/**
* Static Function Call Forwarding Using Tuple Pack Parameters
*/
// Actual apply function
template < typename... ArgsF, typename... ArgsT >
void applyTuple( void (*f)(ArgsF...),
std::tr1::tuple<ArgsT...> const& t )
{
apply_func<sizeof...(ArgsT)>::applyTuple( f, t );
}
// ***************************************
// Usage
// ***************************************
template < typename T, typename... Args >
class Message : public IMessage
{
typedef void (T::*F)( Args... args );
public:
Message( const std::string& name,
T& obj,
F pFunc,
Args... args );
private:
virtual void doDispatch( );
T* pObj_;
F pFunc_;
std::tr1::tuple<Args...> args_;
};
//-----------------------------------------------------------------------------
template < typename T, typename... Args >
Message<T, Args...>::Message( const std::string& name,
T& obj,
F pFunc,
Args... args )
: IMessage( name ),
pObj_( &obj ),
pFunc_( pFunc ),
args_( std::forward<Args>(args)... )
{
}
//-----------------------------------------------------------------------------
template < typename T, typename... Args >
void Message<T, Args...>::doDispatch( )
{
try
{
applyTuple( pObj_, pFunc_, args_ );
}
catch ( std::exception& e )
{
}
}
In C++ there is many ways of expanding/unpacking tuple and apply those tuple elements to a variadic template function. Here is a small helper class which creates index array. It is used a lot in template metaprogramming:
// ------------- UTILITY---------------
template<int...> struct index_tuple{};
template<int I, typename IndexTuple, typename... Types>
struct make_indexes_impl;
template<int I, int... Indexes, typename T, typename ... Types>
struct make_indexes_impl<I, index_tuple<Indexes...>, T, Types...>
{
typedef typename make_indexes_impl<I + 1, index_tuple<Indexes..., I>, Types...>::type type;
};
template<int I, int... Indexes>
struct make_indexes_impl<I, index_tuple<Indexes...> >
{
typedef index_tuple<Indexes...> type;
};
template<typename ... Types>
struct make_indexes : make_indexes_impl<0, index_tuple<>, Types...>
{};
Now the code which does the job is not that big:
// ----------UNPACK TUPLE AND APPLY TO FUNCTION ---------
#include <tuple>
#include <iostream>
using namespace std;
template<class Ret, class... Args, int... Indexes >
Ret apply_helper( Ret (*pf)(Args...), index_tuple< Indexes... >, tuple<Args...>&& tup)
{
return pf( forward<Args>( get<Indexes>(tup))... );
}
template<class Ret, class ... Args>
Ret apply(Ret (*pf)(Args...), const tuple<Args...>& tup)
{
return apply_helper(pf, typename make_indexes<Args...>::type(), tuple<Args...>(tup));
}
template<class Ret, class ... Args>
Ret apply(Ret (*pf)(Args...), tuple<Args...>&& tup)
{
return apply_helper(pf, typename make_indexes<Args...>::type(), forward<tuple<Args...>>(tup));
}
Test is shown bellow:
// --------------------- TEST ------------------
void one(int i, double d)
{
std::cout << "function one(" << i << ", " << d << ");\n";
}
int two(int i)
{
std::cout << "function two(" << i << ");\n";
return i;
}
int main()
{
std::tuple<int, double> tup(23, 4.5);
apply(one, tup);
int d = apply(two, std::make_tuple(2));
return 0;
}
I'm not big expert in other languages, but I guess that if these languages do not have such functionality in their menu, there is no way to do that. At least with C++ you can, and I think it is not so much complicated...
I find this to be the most elegant solution (and it is optimally forwarded):
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
template<size_t N>
struct Apply {
template<typename F, typename T, typename... A>
static inline auto apply(F && f, T && t, A &&... a)
-> decltype(Apply<N-1>::apply(
::std::forward<F>(f), ::std::forward<T>(t),
::std::get<N-1>(::std::forward<T>(t)), ::std::forward<A>(a)...
))
{
return Apply<N-1>::apply(::std::forward<F>(f), ::std::forward<T>(t),
::std::get<N-1>(::std::forward<T>(t)), ::std::forward<A>(a)...
);
}
};
template<>
struct Apply<0> {
template<typename F, typename T, typename... A>
static inline auto apply(F && f, T &&, A &&... a)
-> decltype(::std::forward<F>(f)(::std::forward<A>(a)...))
{
return ::std::forward<F>(f)(::std::forward<A>(a)...);
}
};
template<typename F, typename T>
inline auto apply(F && f, T && t)
-> decltype(Apply< ::std::tuple_size<
typename ::std::decay<T>::type
>::value>::apply(::std::forward<F>(f), ::std::forward<T>(t)))
{
return Apply< ::std::tuple_size<
typename ::std::decay<T>::type
>::value>::apply(::std::forward<F>(f), ::std::forward<T>(t));
}
Example usage:
void foo(int i, bool b);
std::tuple<int, bool> t = make_tuple(20, false);
void m()
{
apply(&foo, t);
}
Unfortunately GCC (4.6 at least) fails to compile this with "sorry, unimplemented: mangling overload" (which simply means that the compiler doesn't yet fully implement the C++11 spec), and since it uses variadic templates, it wont work in MSVC, so it is more or less useless. However, once there is a compiler that supports the spec, it will be the best approach IMHO. (Note: it isn't that hard to modify this so that you can work around the deficiencies in GCC, or to implement it with Boost Preprocessor, but it ruins the elegance, so this is the version I am posting.)
GCC 4.7 now supports this code just fine.
Edit: Added forward around actual function call to support rvalue reference form *this in case you are using clang (or if anybody else actually gets around to adding it).
Edit: Added missing forward around the function object in the non-member apply function's body. Thanks to pheedbaq for pointing out that it was missing.
Edit: And here is the C++14 version just since it is so much nicer (doesn't actually compile yet):
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
template<size_t N>
struct Apply {
template<typename F, typename T, typename... A>
static inline auto apply(F && f, T && t, A &&... a) {
return Apply<N-1>::apply(::std::forward<F>(f), ::std::forward<T>(t),
::std::get<N-1>(::std::forward<T>(t)), ::std::forward<A>(a)...
);
}
};
template<>
struct Apply<0> {
template<typename F, typename T, typename... A>
static inline auto apply(F && f, T &&, A &&... a) {
return ::std::forward<F>(f)(::std::forward<A>(a)...);
}
};
template<typename F, typename T>
inline auto apply(F && f, T && t) {
return Apply< ::std::tuple_size< ::std::decay_t<T>
>::value>::apply(::std::forward<F>(f), ::std::forward<T>(t));
}
Here is a version for member functions (not tested very much!):
using std::forward; // You can change this if you like unreadable code or care hugely about namespace pollution.
template<size_t N>
struct ApplyMember
{
template<typename C, typename F, typename T, typename... A>
static inline auto apply(C&& c, F&& f, T&& t, A&&... a) ->
decltype(ApplyMember<N-1>::apply(forward<C>(c), forward<F>(f), forward<T>(t), std::get<N-1>(forward<T>(t)), forward<A>(a)...))
{
return ApplyMember<N-1>::apply(forward<C>(c), forward<F>(f), forward<T>(t), std::get<N-1>(forward<T>(t)), forward<A>(a)...);
}
};
template<>
struct ApplyMember<0>
{
template<typename C, typename F, typename T, typename... A>
static inline auto apply(C&& c, F&& f, T&&, A&&... a) ->
decltype((forward<C>(c)->*forward<F>(f))(forward<A>(a)...))
{
return (forward<C>(c)->*forward<F>(f))(forward<A>(a)...);
}
};
// C is the class, F is the member function, T is the tuple.
template<typename C, typename F, typename T>
inline auto apply(C&& c, F&& f, T&& t) ->
decltype(ApplyMember<std::tuple_size<typename std::decay<T>::type>::value>::apply(forward<C>(c), forward<F>(f), forward<T>(t)))
{
return ApplyMember<std::tuple_size<typename std::decay<T>::type>::value>::apply(forward<C>(c), forward<F>(f), forward<T>(t));
}
// Example:
class MyClass
{
public:
void foo(int i, bool b);
};
MyClass mc;
std::tuple<int, bool> t = make_tuple(20, false);
void m()
{
apply(&mc, &MyClass::foo, t);
}
template<typename F, typename Tuple, std::size_t ... I>
auto apply_impl(F&& f, Tuple&& t, std::index_sequence<I...>) {
return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
}
template<typename F, typename Tuple>
auto apply(F&& f, Tuple&& t) {
using Indices = std::make_index_sequence<std::tuple_size<std::decay_t<Tuple>>::value>;
return apply_impl(std::forward<F>(f), std::forward<Tuple>(t), Indices());
}
This is adapted from the C++14 draft using index_sequence. I might propose to have apply in a future standard (TS).
All this implementations are good. But due to use of pointer to member function compiler often cannot inline the target function call (at least gcc 4.8 can't, no matter what Why gcc can't inline function pointers that can be determined?)
But things changes if send pointer to member function as template arguments, not as function params:
/// from https://stackoverflow.com/a/9288547/1559666
template<int ...> struct seq {};
template<int N, int ...S> struct gens : gens<N-1, N-1, S...> {};
template<int ...S> struct gens<0, S...>{ typedef seq<S...> type; };
template<typename TT>
using makeSeq = typename gens< std::tuple_size< typename std::decay<TT>::type >::value >::type;
// deduce function return type
template<class ...Args>
struct fn_type;
template<class ...Args>
struct fn_type< std::tuple<Args...> >{
// will not be called
template<class Self, class Fn>
static auto type_helper(Self &self, Fn f) -> decltype((self.*f)(declval<Args>()...)){
//return (self.*f)(Args()...);
return NULL;
}
};
template<class Self, class ...Args>
struct APPLY_TUPLE{};
template<class Self, class ...Args>
struct APPLY_TUPLE<Self, std::tuple<Args...>>{
Self &self;
APPLY_TUPLE(Self &self): self(self){}
template<class T, T (Self::* f)(Args...), class Tuple>
void delayed_call(Tuple &&list){
caller<T, f, Tuple >(forward<Tuple>(list), makeSeq<Tuple>() );
}
template<class T, T (Self::* f)(Args...), class Tuple, int ...S>
void caller(Tuple &&list, const seq<S...>){
(self.*f)( std::get<S>(forward<Tuple>(list))... );
}
};
#define type_of(val) typename decay<decltype(val)>::type
#define apply_tuple(obj, fname, tuple) \
APPLY_TUPLE<typename decay<decltype(obj)>::type, typename decay<decltype(tuple)>::type >(obj).delayed_call< \
decltype( fn_type< type_of(tuple) >::type_helper(obj, &decay<decltype(obj)>::type::fname) ), \
&decay<decltype(obj)>::type::fname \
> \
(tuple);
And ussage:
struct DelayedCall
{
void call_me(int a, int b, int c){
std::cout << a+b+c;
}
void fire(){
tuple<int,int,int> list = make_tuple(1,2,3);
apply_tuple(*this, call_me, list); // even simpler than previous implementations
}
};
Proof of inlinable http://goo.gl/5UqVnC
With small changes, we can "overload" apply_tuple:
#define VA_NARGS_IMPL(_1, _2, _3, _4, _5, _6, _7, _8, N, ...) N
#define VA_NARGS(...) VA_NARGS_IMPL(X,##__VA_ARGS__, 7, 6, 5, 4, 3, 2, 1, 0)
#define VARARG_IMPL_(base, count, ...) base##count(__VA_ARGS__)
#define VARARG_IMPL(base, count, ...) VARARG_IMPL_(base, count, __VA_ARGS__)
#define VARARG(base, ...) VARARG_IMPL(base, VA_NARGS(__VA_ARGS__), __VA_ARGS__)
#define apply_tuple2(fname, tuple) apply_tuple3(*this, fname, tuple)
#define apply_tuple3(obj, fname, tuple) \
APPLY_TUPLE<typename decay<decltype(obj)>::type, typename decay<decltype(tuple)>::type >(obj).delayed_call< \
decltype( fn_type< type_of(tuple) >::type_helper(obj, &decay<decltype(obj)>::type::fname) ), \
&decay<decltype(obj)>::type::fname \
/* ,decltype(tuple) */> \
(tuple);
#define apply_tuple(...) VARARG(apply_tuple, __VA_ARGS__)
...
apply_tuple(obj, call_me, list);
apply_tuple(call_me, list); // call this->call_me(list....)
Plus this is the only one solution which works with templated functions.
1) if you have a readymade parameter_pack structure as function argument, you can just use std::tie like this:
template <class... Args>
void tie_func(std::tuple<Args...> t, Args&... args)
{
std::tie<Args...>(args...) = t;
}
int main()
{
std::tuple<int, double, std::string> t(2, 3.3, "abc");
int i;
double d;
std::string s;
tie_func(t, i, d, s);
std::cout << i << " " << d << " " << s << std::endl;
}
2) if you don't have a readymade parampack arg, you'll have to unwind the tuple like this
#include <tuple>
#include <functional>
#include <iostream>
template<int N>
struct apply_wrap {
template<typename R, typename... TupleArgs, typename... UnpackedArgs>
static R applyTuple( std::function<R(TupleArgs...)>& f, const std::tuple<TupleArgs...>& t, UnpackedArgs... args )
{
return apply_wrap<N-1>::applyTuple( f, t, std::get<N-1>( t ), args... );
}
};
template<>
struct apply_wrap<0>
{
template<typename R, typename... TupleArgs, typename... UnpackedArgs>
static R applyTuple( std::function<R(TupleArgs...)>& f, const std::tuple<TupleArgs...>&, UnpackedArgs... args )
{
return f( args... );
}
};
template<typename R, typename... TupleArgs>
R applyTuple( std::function<R(TupleArgs...)>& f, std::tuple<TupleArgs...> const& t )
{
return apply_wrap<sizeof...(TupleArgs)>::applyTuple( f, t );
}
int fac(int n)
{
int r=1;
for(int i=2; i<=n; ++i)
r *= i;
return r;
}
int main()
{
auto t = std::make_tuple(5);
auto f = std::function<decltype(fac)>(&fac);
cout << applyTuple(f, t);
}
The news does not look good.
Having read over the just-released draft standard, I'm not seeing a built-in solution to this, which does seem odd.
The best place to ask about such things (if you haven't already) is comp.lang.c++.moderated, because some folks involved in drafting the standard post there regularly.
If you check out this thread, someone has the same question (maybe it's you, in which case you're going to find this whole answer a little frustrating!), and a few butt-ugly implementations are suggested.
I just wondered if it would be simpler to make the function accept a tuple, as the conversion that way is easier. But this implies that all functions should accept tuples as arguments, for maximum flexibility, and so that just demonstrates the strangeness of not providing a built-in expansion of tuple to function argument pack.
Update: the link above doesn't work - try pasting this:
http://groups.google.com/group/comp.lang.c++.moderated/browse_thread/thread/750fa3815cdaac45/d8dc09e34bbb9661?lnk=gst&q=tuple+variadic#d8dc09e34bbb9661
How about this:
// Warning: NOT tested!
#include <cstddef>
#include <tuple>
#include <type_traits>
#include <utility>
using std::declval;
using std::forward;
using std::get;
using std::integral_constant;
using std::size_t;
using std::tuple;
namespace detail
{
template < typename Func, typename ...T, typename ...Args >
auto explode_tuple( integral_constant<size_t, 0u>, tuple<T...> const &t,
Func &&f, Args &&...a )
-> decltype( forward<Func>(f)(declval<T const>()...) )
{ return forward<Func>( f )( forward<Args>(a)... ); }
template < size_t Index, typename Func, typename ...T, typename ...Args >
auto explode_tuple( integral_constant<size_t, Index>, tuple<T...> const&t,
Func &&f, Args &&...a )
-> decltype( forward<Func>(f)(declval<T const>()...) )
{
return explode_tuple( integral_constant<size_t, Index - 1u>{}, t,
forward<Func>(f), get<Index - 1u>(t), forward<Args>(a)... );
}
}
template < typename Func, typename ...T >
auto run_tuple( Func &&f, tuple<T...> const &t )
-> decltype( forward<Func>(f)(declval<T const>()...) )
{
return detail::explode_tuple( integral_constant<size_t, sizeof...(T)>{}, t,
forward<Func>(f) );
}
template < typename Tret, typename ...T >
Tret func_T( tuple<T...> const &t )
{ return run_tuple( &func<Tret, T...>, t ); }
The run_tuple function template takes the given tuple and pass its elements individually to the given function. It carries out its work by recursively calling its helper function templates explode_tuple. It's important that run_tuple passes the tuple's size to explode_tuple; that number acts as a counter for how many elements to extract.
If the tuple is empty, then run_tuple calls the first version of explode_tuple with the remote function as the only other argument. The remote function is called with no arguments and we're done. If the tuple is not empty, a higher number is passed to the second version of explode_tuple, along with the remote function. A recursive call to explode_tuple is made, with the same arguments, except the counter number is decreased by one and (a reference to) the last tuple element is tacked on as an argument after the remote function. In a recursive call, either the counter isn't zero, and another call is made with the counter decreased again and the next-unreferenced element is inserted in the argument list after the remote function but before the other inserted arguments, or the counter reaches zero and the remote function is called with all the arguments accumulated after it.
I'm not sure I have the syntax of forcing a particular version of a function template right. I think you can use a pointer-to-function as a function object; the compiler will automatically fix it.
I am evaluating MSVS 2013RC, and it failed to compile some of the previous solutions proposed here in some cases. For example, MSVS will fail to compile "auto" returns if there are too many function parameters, because of a namespace imbrication limit (I sent that info to Microsoft to have it corrected). In other cases, we need access to the function's return, although that can also be done with a lamda: the following two examples give the same result..
apply_tuple([&ret1](double a){ret1 = cos(a); }, std::make_tuple<double>(.2));
ret2 = apply_tuple((double(*)(double))cos, std::make_tuple<double>(.2));
And thanks again to those who posted answers here before me, I wouldn't have gotten to this without it... so here it is:
template<size_t N>
struct apply_impl {
template<typename F, typename T, typename... A>
static inline auto apply_tuple(F&& f, T&& t, A&&... a)
-> decltype(apply_impl<N-1>::apply_tuple(std::forward<F>(f), std::forward<T>(t),
std::get<N-1>(std::forward<T>(t)), std::forward<A>(a)...)) {
return apply_impl<N-1>::apply_tuple(std::forward<F>(f), std::forward<T>(t),
std::get<N-1>(std::forward<T>(t)), std::forward<A>(a)...);
}
template<typename C, typename F, typename T, typename... A>
static inline auto apply_tuple(C*const o, F&& f, T&& t, A&&... a)
-> decltype(apply_impl<N-1>::apply_tuple(o, std::forward<F>(f), std::forward<T>(t),
std::get<N-1>(std::forward<T>(t)), std::forward<A>(a)...)) {
return apply_impl<N-1>::apply_tuple(o, std::forward<F>(f), std::forward<T>(t),
std::get<N-1>(std::forward<T>(t)), std::forward<A>(a)...);
}
};
// This is a work-around for MSVS 2013RC that is required in some cases
#if _MSC_VER <= 1800 /* update this when bug is corrected */
template<>
struct apply_impl<6> {
template<typename F, typename T, typename... A>
static inline auto apply_tuple(F&& f, T&& t, A&&... a)
-> decltype(std::forward<F>(f)(std::get<0>(std::forward<T>(t)), std::get<1>(std::forward<T>(t)), std::get<2>(std::forward<T>(t)),
std::get<3>(std::forward<T>(t)), std::get<4>(std::forward<T>(t)), std::get<5>(std::forward<T>(t)), std::forward<A>(a)...)) {
return std::forward<F>(f)(std::get<0>(std::forward<T>(t)), std::get<1>(std::forward<T>(t)), std::get<2>(std::forward<T>(t)),
std::get<3>(std::forward<T>(t)), std::get<4>(std::forward<T>(t)), std::get<5>(std::forward<T>(t)), std::forward<A>(a)...);
}
template<typename C, typename F, typename T, typename... A>
static inline auto apply_tuple(C*const o, F&& f, T&& t, A&&... a)
-> decltype((o->*std::forward<F>(f))(std::get<0>(std::forward<T>(t)), std::get<1>(std::forward<T>(t)), std::get<2>(std::forward<T>(t)),
std::get<3>(std::forward<T>(t)), std::get<4>(std::forward<T>(t)), std::get<5>(std::forward<T>(t)), std::forward<A>(a)...)) {
return (o->*std::forward<F>(f))(std::get<0>(std::forward<T>(t)), std::get<1>(std::forward<T>(t)), std::get<2>(std::forward<T>(t)),
std::get<3>(std::forward<T>(t)), std::get<4>(std::forward<T>(t)), std::get<5>(std::forward<T>(t)), std::forward<A>(a)...);
}
};
#endif
template<>
struct apply_impl<0> {
template<typename F, typename T, typename... A>
static inline auto apply_tuple(F&& f, T&&, A&&... a)
-> decltype(std::forward<F>(f)(std::forward<A>(a)...)) {
return std::forward<F>(f)(std::forward<A>(a)...);
}
template<typename C, typename F, typename T, typename... A>
static inline auto apply_tuple(C*const o, F&& f, T&&, A&&... a)
-> decltype((o->*std::forward<F>(f))(std::forward<A>(a)...)) {
return (o->*std::forward<F>(f))(std::forward<A>(a)...);
}
};
// Apply tuple parameters on a non-member or static-member function by perfect forwarding
template<typename F, typename T>
inline auto apply_tuple(F&& f, T&& t)
-> decltype(apply_impl<std::tuple_size<typename std::decay<T>::type>::value>::apply_tuple(std::forward<F>(f), std::forward<T>(t))) {
return apply_impl<std::tuple_size<typename std::decay<T>::type>::value>::apply_tuple(std::forward<F>(f), std::forward<T>(t));
}
// Apply tuple parameters on a member function
template<typename C, typename F, typename T>
inline auto apply_tuple(C*const o, F&& f, T&& t)
-> decltype(apply_impl<std::tuple_size<typename std::decay<T>::type>::value>::apply_tuple(o, std::forward<F>(f), std::forward<T>(t))) {
return apply_impl<std::tuple_size<typename std::decay<T>::type>::value>::apply_tuple(o, std::forward<F>(f), std::forward<T>(t));
}
Extending on #David's solution, you can write a recursive template that
Doesn't use the (overly-verbose, imo) integer_sequence semantics
Doesn't use an extra temporary template parameter int N to count recursive iterations
(Optional for static/global functors) uses the functor as a template parameter for compile-time optimizaion
E.g.:
template <class F, F func>
struct static_functor {
template <class... T, class... Args_tmp>
static inline auto apply(const std::tuple<T...>& t, Args_tmp... args)
-> decltype(func(std::declval<T>()...)) {
return static_functor<F,func>::apply(t, args...,
std::get<sizeof...(Args_tmp)>(t));
}
template <class... T>
static inline auto apply(const std::tuple<T...>& t, T... args)
-> decltype(func(args...)) {
return func(args...);
}
};
static_functor<decltype(&myFunc), &myFunc>::apply(my_tuple);
Alternatively if your functor is not defined at compile-time (e.g., a non-constexpr functor instance, or a lambda expression), you can use it as a function parameter instead of a class template parameter, and in fact remove the containing class entirely:
template <class F, class... T, class... Args_tmp>
inline auto apply_functor(F&& func, const std::tuple<T...>& t,
Args_tmp... args) -> decltype(func(std::declval<T>()...)) {
return apply_functor(func, t, args..., std::get<sizeof...(Args_tmp)>(t));
}
template <class F, class... T>
inline auto apply_functor(F&& func, const std::tuple<T...>& t,
T... args) -> decltype(func(args...)) {
return func(args...);
}
apply_functor(&myFunc, my_tuple);
For pointer-to-member-function callables, you can adjust either of the above code pieces similarly as in #David's answer.
Explanation
In reference to the second piece of code, there are two template functions: the first one takes the functor func, the tuple t with types T..., and a parameter pack args of types Args_tmp.... When called, it recursively adds the objects from t to the parameter pack one at a time, from beginning (0) to end, and calls the function again with the new incremented parameter pack.
The second function's signature is almost identical to the first, except that it uses type T... for the parameter pack args. Thus, once args in the first function is completely filled with the values from t, it's type will be T... (in psuedo-code, typeid(T...) == typeid(Args_tmp...)), and thus the compiler will instead call the second overloaded function, which in turn calls func(args...).
The code in the static functor example works identically, with the functor instead used as a class template argument.
Why not just wrap your variadic arguments into a tuple class and then use compile time recursion (see link) to retrieve the index you are interested in. I find that unpacking variadic templates into a container or collection may not be type safe w.r.t. heterogeneous types
template<typename... Args>
auto get_args_as_tuple(Args... args) -> std::tuple<Args...>
{
return std::make_tuple(args);
}
This simple solution works for me:
template<typename... T>
void unwrap_tuple(std::tuple<T...>* tp)
{
std::cout << "And here I have the tuple types, all " << sizeof...(T) << " of them" << std::endl;
}
int main()
{
using TupleType = std::tuple<int, float, std::string, void*>;
unwrap_tuple((TupleType*)nullptr); // trick compiler into using template param deduction
}