I am new to cuda and trying to write a little code which should generate random points on a sphere. Here is the code.
__global__
void setup_kernel(curandStateMRG32k3a *state)
{
int id = threadIdx.x + blockIdx.x * blockDim.x;
curand_init(0, id, 0, &state[id]);
}
__global__
void computeRandomVectors(float* x, float* y, float* z, unsigned int numberOfElements,curandStateMRG32k3a *state)
{
float a,b;
unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;
curandStateMRG32k3a localState = state[i];
if(i < numberOfElements)
{
a = curand_uniform(&localState);
b = curand_uniform(&localState);
while(a * a + b * b > 1.0f)
{
a = curand_uniform(&localState) * 2.0f - 1.0f;
b = curand_uniform(&localState) * 2.0f - 1.0f;
}
x[i] = 2.0f * a * sqrtf(1.0f - a * a - b * b);
y[i] = 2.0f * b * sqrtf(1.0f - a * a - b * b);
z[i] = 1.0f - 2.0f * (a * a + b * b);
}
}
void generatePointsOnASphere(thrust::host_vector<float>& h_x, thrust::host_vector<float>& h_y, thrust::host_vector<float>& h_z)
{
if(h_x.size() != h_y.size() && h_x.size() != h_z.size())
{
std::cout << "The three component vectors have unmatching size()" << std::endl;
return;
}
size_t size = h_x.size() * sizeof(float);
float* h_p_x = (float*) calloc(h_x.size(),sizeof(float));
float* h_p_y = (float*) calloc(h_x.size(),sizeof(float));
float* h_p_z = (float*) calloc(h_x.size(),sizeof(float));
if(h_p_x==NULL || h_p_y==NULL || h_p_z==NULL)
{
std::cout << "Host memory allocation failure" << std::endl;
return;
}
float* d_p_x;
float* d_p_y;
float* d_p_z;
if(cudaMalloc((void **)&d_p_x,size) != cudaSuccess ||
cudaMalloc((void **)&d_p_y,size) != cudaSuccess ||
cudaMalloc((void **)&d_p_z,size) != cudaSuccess)
{
std::string errorString(cudaGetErrorName(cudaGetLastError()));
std::cout << errorString << std::endl;
std::cout << "Device memory allocation failure" << std::endl;
return;
}
curandStateMRG32k3a *devStates;
if(cudaMalloc((void **)&devStates, h_x.size() * sizeof(curandStateMRG32k3a)) != cudaSuccess)
{
std::string errorString(cudaGetErrorName(cudaGetLastError()));
std::cout << errorString << std::endl;
std::cout << "Random generator states memory allocation failure" << std::endl;
return;
}
int threads = 256;
dim3 grid = size / threads;
setup_kernel<<<grid,threads>>>(devStates);
if(cudaMemcpy(d_p_x,h_p_x,size,cudaMemcpyHostToDevice) != cudaSuccess ||
cudaMemcpy(d_p_y,h_p_y,size,cudaMemcpyHostToDevice) != cudaSuccess ||
cudaMemcpy(d_p_z,h_p_z,size,cudaMemcpyHostToDevice) != cudaSuccess)
{
std::string errorString(cudaGetErrorName(cudaGetLastError()));
std::cout << errorString << std::endl;
std::cout << "Host to Device memory copy failure" << std::endl;
}
computeRandomVectors<<< grid, threads >>>(d_p_x,d_p_y,d_p_z,size / sizeof(float), devStates);
if(cudaMemcpy(h_p_x,d_p_x,size,cudaMemcpyDeviceToHost) != cudaSuccess ||
cudaMemcpy(h_p_y,d_p_y,size,cudaMemcpyDeviceToHost) != cudaSuccess ||
cudaMemcpy(h_p_z,d_p_z,size,cudaMemcpyDeviceToHost) != cudaSuccess)
{
std::string errorString(cudaGetErrorName(cudaGetLastError()));
std::cout << errorString << std::endl;
std::cout << "Device to Host memory copy failure" << std::endl;
}
for(size_t i = 0; i < h_x.size(); ++i)
{
h_x[i] = h_p_x[i];
h_y[i] = h_p_y[i];
h_z[i] = h_p_z[i];
}
free (h_p_x);
free (h_p_y);
free (h_p_z);
cudaFree (devStates);
cudaFree (d_p_x);
cudaFree (d_p_y);
cudaFree (d_p_z);
cudaDeviceReset();
}
This code works if the number of elements in the vectors is less than 4000 (I tried 1K,2K,3K and 4K). Than it gives me cuda Error Illegal Address in the first cudaMemcpy. I don't think I run out of memory, I am working with gtx 980 (4GB of global memory). Any idea how to fix this?
EDIT: The code after the suggested modifications is the following:
__global__
void setup_kernel(curandStateMRG32k3a *state, unsigned int numberOfElements)
{
int id = threadIdx.x + blockIdx.x * blockDim.x;
if(id < numberOfElements) curand_init(0, id, 0, &state[id]);
}
__global__
void computeRandomVectors(float* x, float* y, float* z, unsigned int numberOfElements,curandStateMRG32k3a *state)
{
float a,b;
unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;
curandStateMRG32k3a localState = state[i];
if(i < numberOfElements)
{
a = curand_uniform(&localState);
b = curand_uniform(&localState);
while(a * a + b * b > 1.0f)
{
a = curand_uniform(&localState) * 2.0f - 1.0f;
b = curand_uniform(&localState) * 2.0f - 1.0f;
}
x[i] = 2.0f * a * sqrtf(1.0f - a * a - b * b);
y[i] = 2.0f * b * sqrtf(1.0f - a * a - b * b);
z[i] = 1.0f - 2.0f * (a * a + b * b);
}
}
void generatePointsOnASphere(thrust::host_vector<float>& h_x, thrust::host_vector<float>& h_y, thrust::host_vector<float>& h_z)
{
if(h_x.size() != h_y.size() && h_x.size() != h_z.size())
{
std::cout << "The three component vectors have unmatching size()" << std::endl;
return;
}
size_t size = h_x.size() * sizeof(float);
float* h_p_x = (float*) calloc(h_x.size(),sizeof(float));
float* h_p_y = (float*) calloc(h_x.size(),sizeof(float));
float* h_p_z = (float*) calloc(h_x.size(),sizeof(float));
if(h_p_x==NULL || h_p_y==NULL || h_p_z==NULL)
{
std::cout << "Host memory allocation failure" << std::endl;
return;
}
float* d_p_x;
float* d_p_y;
float* d_p_z;
if(cudaMalloc((void **)&d_p_x,size) != cudaSuccess ||
cudaMalloc((void **)&d_p_y,size) != cudaSuccess ||
cudaMalloc((void **)&d_p_z,size) != cudaSuccess)
{
std::string errorString(cudaGetErrorName(cudaGetLastError()));
std::cout << errorString << std::endl;
std::cout << "Device memory allocation failure" << std::endl;
return;
}
curandStateMRG32k3a *devStates;
if(cudaMalloc((void **)&devStates, h_x.size() * sizeof(curandStateMRG32k3a)) != cudaSuccess)
{
std::string errorString(cudaGetErrorName(cudaGetLastError()));
std::cout << errorString << std::endl;
std::cout << "Random generator states memory allocation failure" << std::endl;
return;
}
if(cudaMemcpy(d_p_x,h_p_x,size,cudaMemcpyHostToDevice) != cudaSuccess ||
cudaMemcpy(d_p_y,h_p_y,size,cudaMemcpyHostToDevice) != cudaSuccess ||
cudaMemcpy(d_p_z,h_p_z,size,cudaMemcpyHostToDevice) != cudaSuccess)
{
std::string errorString(cudaGetErrorName(cudaGetLastError()));
std::cout << errorString << std::endl;
std::cout << "Host to Device memory copy failure" << std::endl;
}
int threads = 512;
dim3 grid = (h_x.size() + threads - 1) / threads;
setup_kernel<<<grid,threads>>>(devStates, size / sizeof(float));
computeRandomVectors<<< grid, threads >>>(d_p_x,d_p_y,d_p_z,size / sizeof(float), devStates);
cudaDeviceSynchronize();
if(cudaMemcpy(h_p_x,d_p_x,size,cudaMemcpyDeviceToHost) != cudaSuccess ||
cudaMemcpy(h_p_y,d_p_y,size,cudaMemcpyDeviceToHost) != cudaSuccess ||
cudaMemcpy(h_p_z,d_p_z,size,cudaMemcpyDeviceToHost) != cudaSuccess)
{
std::string errorString(cudaGetErrorName(cudaGetLastError()));
std::cout << errorString << std::endl;
std::cout << "Device to Host memory copy failure" << std::endl;
}
for(size_t i = 0; i < h_x.size(); ++i)
{
h_x[i] = h_p_x[i];
h_y[i] = h_p_y[i];
h_z[i] = h_p_z[i];
}
free (h_p_x);
free (h_p_y);
free (h_p_z);
cudaFree (devStates);
cudaFree (d_p_x);
cudaFree (d_p_y);
cudaFree (d_p_z);
cudaDeviceReset();
}
I feel sorry for keeping posting here but I think by understanding what are my mistakes now I think I might get a better understanding of cuda.
So, now I am getting errorIllegalAdress on cudaMemcpy device->host when h_x.size() is 20k. I still do not understand how the code works for small numbers but not for big ones.
The problem is here:
size_t size = h_x.size() * sizeof(float);
...
int threads = 256;
dim3 grid = size / threads;
Your size variable is scaled by the number of bytes. So that is not the correct variable to use for the grid size. You should compute the grid size like this:
dim3 grid = h_x.size() / threads;
or similar. Also note that this construct won't properly initialize all curand state unless the vector length (h_x.size()) is evenly divisible by threads i.e. 256. The method to address this would be to include a thread check in your setup_kernel similar to the one in your other kernel:
__global__
void setup_kernel(curandStateMRG32k3a *state, int size)
{
int id = threadIdx.x + blockIdx.x * blockDim.x;
if (id < size)
curand_init(0, id, 0, &state[id]);
}
and launch enough threads to cover the vector size:
dim3 grid = (h_x.size()+threads-1) / threads;
Related
I found this question about the speed of Structure of Array (SoA) and Array of Struct (AoS) implementation and the top answer states that the speed of each implementation depends on access pattern. To test this, I've created 3 kernels where one is for raw array of doubles, another is for AoS pattern, and the last is for SoA pattern. Each method adds 1.0 to each respective "element" in some column vector if you will. What I'm finding is that the straight array case is more 3x faster than both SoA and AoS implementations. I cannot understand why the straight array is this much faster when the access patterns are identical between all three methods? The CUDA profiler outputs the same message for each kernel which is
The kernel is utilizing greater than 80.0% of the available compute or memory performance of the device. To further improve performance, work will likely need to be shifted from the most utilized to another unit. Start by analyzing workloads in the Compute Workload Analysis section.
Here is a minimal reproducible example:
#include <iostream>
#include <chrono>
#include <vector>
using namespace std::chrono;
constexpr int nvars = 4;
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
struct AoS {
double t, x, y, z;
__device__ AoS& operator+=(const AoS &vec) {
t += vec.t;
x += vec.x;
y += vec.y;
z += vec.z;
return *this;
};
};
struct SoA {
size_t size;
bool host_allocated, device_allocated;
double* t;
double* x;
double* y;
double* z;
double* gpu_t;
double* gpu_x;
double* gpu_y;
double* gpu_z;
SoA* device_ptr;
SoA(int elements) : size(elements * sizeof(double)), host_allocated(false), device_allocated(false) {};
~SoA(){
if (host_allocated){
free(t);
free(x);
free(y);
free(z);
}
if (device_allocated) {
cudaFree(gpu_t);
cudaFree(gpu_x);
cudaFree(gpu_y);
cudaFree(gpu_z);
cudaFree(device_ptr);
}
}
void host_allocate() {
t = (double*)malloc(size);
x = (double*)malloc(size);
y = (double*)malloc(size);
z = (double*)malloc(size);
host_allocated = true;
};
void device_allocate() {
if (!host_allocated) {
host_allocate();
}
gpuErrchk(cudaMalloc((void**)&device_ptr, sizeof(SoA)));
gpuErrchk(cudaMalloc((void**)&gpu_t, size));
gpuErrchk(cudaMalloc((void**)&gpu_x, size));
gpuErrchk(cudaMalloc((void**)&gpu_y, size));
gpuErrchk(cudaMalloc((void**)&gpu_z, size));
device_allocated = true;
};
void copy_to_device() {
if (!device_allocated) {
device_allocate();
}
gpuErrchk(cudaMemcpy(gpu_t, t, size, cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(gpu_x, x, size, cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(gpu_y, y, size, cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(gpu_z, z, size, cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(&(device_ptr->t), &gpu_t, sizeof(double *), cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(&(device_ptr->x), &gpu_x, sizeof(double *), cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(&(device_ptr->y), &gpu_y, sizeof(double *), cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(&(device_ptr->z), &gpu_z, sizeof(double *), cudaMemcpyHostToDevice));
}
void copy_to_host() {
if (!device_allocated) {
device_allocate();
}
gpuErrchk(cudaMemcpy(t, gpu_t, size, cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(x, gpu_x, size, cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(y, gpu_y, size, cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(z, gpu_z, size, cudaMemcpyDeviceToHost));
}
SoA* get_ptr(){
if (device_allocated) {
return device_ptr;
}
return this;
}
};
__global__ void arr_add(double* vec, int n){
int ii = blockIdx.x * blockDim.x + threadIdx.x;
if (ii >= n)
return;
#pragma unroll
for (int var = 0; var < nvars; var++) {
vec[ii + var] = vec[ii + var] + 1.0;
}
};
__global__ void aos_add(AoS* vec, int n){
int ii = blockIdx.x * blockDim.x + threadIdx.x;
if (ii >= n)
return;
vec[ii] += AoS{1.0, 1.0, 1.0, 1.0};
};
__global__ void soa_add(SoA *vec, int n){
int ii = blockIdx.x * blockDim.x + threadIdx.x;
if (ii >= n)
return;
vec->t[ii] = vec->t[ii] + 1.0;
vec->x[ii] = vec->x[ii] + 1.0;
vec->y[ii] = vec->y[ii] + 1.0;
vec->z[ii] = vec->z[ii] + 1.0;
};
int main() {
constexpr int n = 1 << 25;
constexpr int block_size = 128;
high_resolution_clock::time_point t1, t2;
duration<double> dt1, dt2, dt3;
SoA hybrid_soa(n);
hybrid_soa.device_allocate();
hybrid_soa.copy_to_device();
std::vector<AoS> host_vec_aos(n);
std::vector<double> host_arr(n * nvars);
AoS *dev_aos;
double *dev_arr;
gpuErrchk(cudaMalloc((void**)&dev_aos, n * sizeof(AoS)));
gpuErrchk(cudaMalloc((void**)&dev_arr, n * nvars * sizeof(double)));
gpuErrchk(cudaMemcpy(dev_aos, host_vec_aos.data(), n * sizeof(AoS), cudaMemcpyHostToDevice));
gpuErrchk(cudaMemcpy(dev_arr, host_arr.data(), n * nvars * sizeof(double), cudaMemcpyHostToDevice));
const int nblocks = (n + block_size - 1) / block_size;
std::cout << "Size of AoS struct is " << sizeof(AoS) << " bytes" << "\n";
std::cout << "Size of SoA struct is " << sizeof(SoA) << " bytes" << "\n";\
t1 = high_resolution_clock::now();
arr_add<<<nblocks, block_size>>>(dev_arr, n);
gpuErrchk(cudaDeviceSynchronize());
t2 = high_resolution_clock::now();
dt1 = t2 - t1;
std::cout << "SrA took: " << std::scientific << dt1.count() << " seconds" << "\n";
t1 = high_resolution_clock::now();
aos_add<<<nblocks, block_size>>>(dev_aos, n);
gpuErrchk(cudaDeviceSynchronize());
t2 = high_resolution_clock::now();
dt2 = t2 - t1;
std::cout << "AoS took: " << std::scientific << dt2.count() << " seconds" << "\n";
t1 = high_resolution_clock::now();
soa_add<<<nblocks, block_size>>>(hybrid_soa.get_ptr(), n);
gpuErrchk(cudaDeviceSynchronize());
t2 = high_resolution_clock::now();
dt3 = t2 - t1;
std::cout << "SoA took: " << std::scientific << dt3.count() << " seconds" << "\n";
gpuErrchk(cudaMemcpy(host_vec_aos.data(), dev_aos, n * sizeof(AoS), cudaMemcpyDeviceToHost));
gpuErrchk(cudaMemcpy(host_arr.data(), dev_arr, n * nvars * sizeof(double), cudaMemcpyDeviceToHost));
hybrid_soa.copy_to_host();
std::cout << "Straight array is: " << dt2.count() / dt1.count() << " times faster than AoS" << "\n";
std::cout << "Straight array is: " << dt3.count() / dt1.count() << " times faster than SoA" << "\n";
cudaFree(dev_aos);
cudaFree(dev_arr);
return 0;
}
I was expecting the speed to be near identical.
Here I'm trying to access a dynamically allocated array in CUDA. However, after running the output is c[0][0] = 0. Am I accessing the allocated array correctly? I think the way I'm copying the arrays is probably correct and for some reason, the value of C has not been changed on the device.
#include<iostream>
using namespace std;
__global__ void add_matrix(float *A, float *B, float *C, int n) {
int j = blockIdx.x * blockDim.x + threadIdx.x;
int i = blockIdx.y * blockDim.y + threadIdx.y;
if ((i < n) && (j < n)){
C[i*n+j] = A[i*n+j] + B[i*n+j];
}
}
int main(){
const size_t N = 1024;
const size_t size = N * N * sizeof(float);
float *A, *B, *C;
A = (float*) malloc(size);
B = (float*) malloc(size);
C = (float*) malloc(size);
for (size_t i=0; i<N*N; i++){
A[i] = 5.0;
B[i] = 6.0;
}
float *A_d, *B_d, *C_d;
cudaMalloc((void**)&A_d, size);
cudaMalloc((void**)&B_d, size);
cudaMalloc((void**)&C_d, size);
auto code = cudaMemcpy(A_d, A, size, cudaMemcpyHostToDevice);
if (code != cudaSuccess){
cout << "Error copying A to device" << endl;
}
code = cudaMemcpy(B_d, B, size, cudaMemcpyHostToDevice);
if (code != cudaSuccess){
cout << "Error copying B to device" << endl;
}
dim3 threads(N, N);
dim3 blocks(1,1);
add_matrix<<<blocks, threads>>>(A_d, B_d, C_d, N);
code = cudaMemcpy(C, C_d, size, cudaMemcpyDeviceToHost);
if (code != cudaSuccess){
cout << "Error copying C from device" << endl;
}
std::cout << "C[0][0] : " << C[0] << std::endl;
free(A); free(B); free(C);
cudaFree(A_d); cudaFree(B_d); cudaFree(C_d);
return 0;
}
The problem was arranging the blocks. I totally forgot each block can have a limited number of threads. we can obtain the maximum threads per block by getting maxThreadsPerBlock property using cudaDeviceGetAttribute. It seems the Colab GPU supports 1024 threads in each block. so I changed the arrangement this way:
dim3 threads(32,32);
dim3 blocks(32,32);
And it worked
I'm creating a Matrix math library with CUDA to improve my CNNs performance (and to understand C++ better).
I would like to be able to add error handling and tell the user (me) what has gone wrong when using the matrix class.
This can be seen in my main file as, in this case, I'm trying to add a 10 * 10 matrix to a 15 * 15 matrix. This is an impossible action and would like some output to tell the user. for example
Error in file "Main.cu" on line: 9 (Dimensions inconsistent)
If you check inside the function the line number is line number of the check and I've looked at using macros to check but I'm wondering if there is another way without having to call the macro every time I add two matrices together.
Main.cu
#include "Matrix.cuh"
int main() {
double* init;
cudaMallocManaged(&init, sizeof(double));
Matrix A(10, 10, 2);
Matrix B(15, 15, 3);
Matrix C = A + B;
A.printM("A");
B.printM("B");
C.printM("C");
//cudaFree(init);
return 0;
}
Matrix.cu
#include "Matrix.cuh"
__global__
void sumMatrix(Matrix* A, Matrix* B, Matrix* C)
{
int x = blockIdx.x * BLOCK_SIZE + threadIdx.x;
int y = blockIdx.y * BLOCK_SIZE + threadIdx.y;
if (x < A->ColumnCount && y < A->RowCount)
{
C->VALUES[y * A->ColumnCount + x] = A->VALUES[y * A->ColumnCount + x] + B->VALUES[y * A->ColumnCount + x];
}
}
__global__
void matrixInit(Row* rows, int R, int C, double* VALUES, double val) {
int x = blockIdx.x * BLOCK_SIZE + threadIdx.x;
int y = blockIdx.y * BLOCK_SIZE + threadIdx.y;
if (x < C && y < R)
{
if (x == 0)
{
rows[y].Count = C;
rows[y].values = VALUES + C * y;
}
VALUES[y * C + x] = val;
}
}
Matrix::Matrix(int R, int C, double val)
{
cudaMallocManaged(&VALUES, R * C * sizeof(double));
cudaMallocManaged(&rows, R * sizeof(Row));
RowCount = R;
ColumnCount = C;
dim3 gridDim(ceil(C / (double)BLOCK_SIZE), ceil(R / (double)BLOCK_SIZE), 1);
dim3 blockDim(BLOCK_SIZE, BLOCK_SIZE, 1);
matrixInit << <gridDim, blockDim >> > (rows, R, C, VALUES, val);
cudaDeviceSynchronize();
cudaCheckErrors("MATRIX INIT VAL");
}
Matrix::Matrix(int R, int C)
{
cudaMallocManaged(&VALUES, R * C * sizeof(double));
cudaMallocManaged(&rows, R * sizeof(Row));
RowCount = R;
ColumnCount = C;
dim3 gridDim(ceil(C / (double)BLOCK_SIZE), ceil(R / (double)BLOCK_SIZE), 1);
dim3 blockDim(BLOCK_SIZE, BLOCK_SIZE, 1);
matrixInit << <gridDim, blockDim >> > (rows, R, C, VALUES, 0);
cudaDeviceSynchronize();
cudaCheckErrors("MATRIX INIT VAL");
}
void Matrix::updatePointers()
{
for (size_t i = 0; i < RowCount; i++)
{
rows[i].values = VALUES + (i * ColumnCount);
}
}
void Matrix::removePointers()
{
VALUES = nullptr;
rows = nullptr;
}
void Matrix::printM(const char* msg)
{
std::cout << "Matrix " << msg << ": " << RowCount << "*" << ColumnCount << std::endl;
for (size_t i = 0; i < RowCount; i++)
{
for (size_t j = 0; j < ColumnCount; j++)
{
std::cout << rows[i][j] << " ";
}
std::cout << std::endl;
}
}
Matrix Matrix::sum(Matrix B)
{
Matrix* A_p, * B_p, * C_p;
Matrix C(RowCount, ColumnCount);
cudaMallocManaged(&A_p, sizeof(Matrix));
cudaMallocManaged(&B_p, sizeof(Matrix));
cudaMallocManaged(&C_p, sizeof(Matrix));
memcpy(A_p, this, sizeof(Matrix));
memcpy(B_p, &B, sizeof(Matrix));
memcpy(C_p, &C, sizeof(Matrix));
dim3 gridDim(ceil(ColumnCount / (double)BLOCK_SIZE), ceil(RowCount / (double)BLOCK_SIZE), 1);
dim3 blockDim(BLOCK_SIZE, BLOCK_SIZE, 1);
sumMatrix << < gridDim, blockDim >> > (A_p, B_p, C_p);
cudaDeviceSynchronize();
cudaCheckErrors("SUM");
B.removePointers();
C.removePointers();
return *C_p;
}
Row& Matrix::operator[](size_t i)
{
if (i >= RowCount)
{
std::cout << "OUT OF BOUNDS";
std::exit(1);
}
return rows[i];
}
Matrix& Matrix::operator+(Matrix B)
{
Matrix C = sum(B);
Matrix* C_p;
cudaMallocManaged(&C_p, sizeof(Matrix));
memcpy(C_p, &C, sizeof(Matrix));
B.removePointers();
C.removePointers();
return *C_p;
}
Matrix::~Matrix()
{
if (VALUES != nullptr && rows != nullptr)
{
cudaFree(VALUES);
cudaFree(rows);
}
}
I'm currently trying to get the cublasSgelsbatched (https://docs.nvidia.com/cuda/cublas/index.html) version to work. I started by first making a small test case to see what parameters are needed exactly and how they need to be inputted. However after much trial and error I still can't get it to work, I get a status return of 13, which corresponds to CUBLAS_STATUS_EXECUTION_FAILED which is a very vague error, also I tried some other cublas testcases and they seem to be working fine. I also tested the input matrix in MATlab, which does have a LS solution.
#include "stdafx.h"
#include "device_launch_parameters.h"
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
#include <cuda_runtime.h>
#include "cublas_v2.h"
#include <algorithm>
#include <cmath>
#include <Windows.h>
int main()
{
//init id, handle and stat
int id = cudaGetDevice(&id);
cublasHandle_t m_cuBLAS;
cublasStatus_t stat;
// create handle
stat = cublasCreate(&m_cuBLAS);
//params
const int C = 3;
const int M = 2;
long lda = C;
long ldb = M;
//init variables
float *Amat, *Ymat, *Xmat;
float *gAmat, *gYmat;
//allocate mem
Amat = (float*) malloc(M * C * sizeof(float));
Ymat = (float*) malloc(C * sizeof(float));
Xmat = (float*) malloc(M * sizeof(float));
srand(100);
for (int i = 0; i < C * M; i++) {
Amat[i] = rand() % 10 + 1;
Amat[i] = (float)Amat[i];
}
for (int i = 0; i < C; i++) {
Ymat[i] = rand() % 10 + 1;
Ymat[i] = (float)Ymat[i];
}
//allocate mem
cudaMalloc( &gAmat, M * C * sizeof(float));
cudaMalloc( &gYmat, C * sizeof(float));
//copy mem
cudaMemcpy(gAmat, Amat, M * C * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(gYmat, Ymat, C * 1 * sizeof(float), cudaMemcpyHostToDevice);
//init info params
int info = 0;
int devInfoArray[1] = { 0 };
//Synchronize (not necesarry I think, but just to test)
cudaDeviceSynchronize();
//run cublas
cublasStatus_t status = cublasSgelsBatched(m_cuBLAS,
CUBLAS_OP_N,
C,
M,
1,
&gAmat,
lda, //or 1
&gYmat,
lda,
&info,
NULL,
1);
//Output info
std::cout << "status = " << status << std::endl;
std::cout << "info = " << info << std::endl;
std::cout << "devInfoArray = " << devInfoArray[0] << std::endl;
cudaMemcpy(Xmat, gYmat, C * 1 * sizeof(float), cudaMemcpyDeviceToHost);
//Output printed
std::cout << Xmat[0] << ", " << Xmat[1] << ", " << Xmat[2] << std::endl;
//free memory
free(Amat);
free(Ymat);
free(Xmat);
cudaFree(gAmat);
cudaFree(gYmat);
//destory handle
cublasDestroy(m_cuBLAS);
return 0;
}
I'm on Windows 10 running in MVS using CUDA 9.0
I'd really appreciate some help
As pointed out in the comments, you are not creating a proper array of pointers on the device. The batched function works with an array of pointers that lives in device memory, for the data parameters, for example:
Aarray device input/output array of pointers to array, with each array of dim. m x n with lda>=max(1,m). Matrices Aarray[i] should not overlap; otherwise, undefined behavior is expected.
Passing for example &gAmat seems to satisfy the type requirement, but that pointer does not point to device memory.
The following modifications to your code focused on proper handling of gAmat and gYmat seem to run without error for me:
$ cat t130.cu
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <algorithm>
#include <cmath>
int main()
{
//init id, handle and stat
int id = cudaGetDevice(&id);
cublasHandle_t m_cuBLAS;
cublasStatus_t stat;
// create handle
stat = cublasCreate(&m_cuBLAS);
//params
const int C = 3;
const int M = 2;
long lda = C;
long ldb = M;
//init variables
float *Amat, *Ymat, *Xmat;
float *gAmat, *gYmat;
//allocate mem
Amat = (float*) malloc(M * C * sizeof(float));
Ymat = (float*) malloc(C * sizeof(float));
Xmat = (float*) malloc(M * sizeof(float));
srand(100);
for (int i = 0; i < C * M; i++) {
Amat[i] = rand() % 10 + 1;
Amat[i] = (float)Amat[i];
}
for (int i = 0; i < C; i++) {
Ymat[i] = rand() % 10 + 1;
Ymat[i] = (float)Ymat[i];
}
//allocate mem
cudaMalloc( &gAmat, M * C * sizeof(float));
cudaMalloc( &gYmat, C * sizeof(float));
//copy mem
cudaMemcpy(gAmat, Amat, M * C * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(gYmat, Ymat, C * 1 * sizeof(float), cudaMemcpyHostToDevice);
float **ggAmat, **ggYmat;
cudaMalloc(&ggAmat, sizeof(float*));
cudaMalloc(&ggYmat, sizeof(float*));
cudaMemcpy(ggAmat, &gAmat, sizeof(float*), cudaMemcpyHostToDevice);
cudaMemcpy(ggYmat, &gYmat, sizeof(float*), cudaMemcpyHostToDevice);
//init info params
int info = 0;
int devInfoArray[1] = { 0 };
//Synchronize (not necesarry I think, but just to test)
cudaDeviceSynchronize();
//run cublas
cublasStatus_t status = cublasSgelsBatched(m_cuBLAS,
CUBLAS_OP_N,
C,
M,
1,
ggAmat,
lda, //or 1
ggYmat,
lda,
&info,
NULL,
1);
//Output info
std::cout << "status = " << status << std::endl;
std::cout << "info = " << info << std::endl;
std::cout << "devInfoArray = " << devInfoArray[0] << std::endl;
cudaMemcpy(Xmat, gYmat, C * 1 * sizeof(float), cudaMemcpyDeviceToHost);
//Output printed
std::cout << Xmat[0] << ", " << Xmat[1] << ", " << Xmat[2] << std::endl;
//free memory
free(Amat);
free(Ymat);
free(Xmat);
cudaFree(gAmat);
cudaFree(gYmat);
//destory handle
cublasDestroy(m_cuBLAS);
return 0;
}
$ nvcc -o t130 t130.cu -lcublas
t130.cu(15): warning: variable "stat" was set but never used
t130.cu(24): warning: variable "ldb" was declared but never referenced
$ cuda-memcheck ./t130
========= CUDA-MEMCHECK
status = 0
info = 0
devInfoArray = 0
-0.0226168, 0.514827, -4.29722
========= ERROR SUMMARY: 0 errors
$
Your code only shows a single array. If you had a batch of arrays, you would pass an actual array of device-allocated pointers, for each of A and Y.
Based on comments below, here is a version of the code using non-random input:
$ cat t130.cu
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <algorithm>
#include <cmath>
int main()
{
//init id, handle and stat
int id = cudaGetDevice(&id);
cublasHandle_t m_cuBLAS;
cublasStatus_t status;
// create handle
status = cublasCreate(&m_cuBLAS);
std::cout << "status = " << status << std::endl;
//params
const int C = 3;
const int M = 2;
long lda = C;
//init variables
float *Amat, *Ymat, *Xmat;
float *gAmat, *gYmat;
//allocate mem
Amat = (float*) malloc(M * C * sizeof(float));
Ymat = (float*) malloc(C * sizeof(float));
Xmat = (float*) malloc(M * sizeof(float));
srand(100);
#if 0
for (int i = 0; i < C * M; i++) {
Amat[i] = rand() % 10 + 1;
Amat[i] = (float)Amat[i];
}
for (int i = 0; i < C; i++) {
Ymat[i] = rand() % 10 + 1;
Ymat[i] = (float)Ymat[i];
}
#endif
Amat[0] = 6;
Amat[1] = 7;
Amat[2] = 6;
Amat[3] = 5;
Amat[4] = 5;
Amat[5] = 5;
Ymat[0] = 9;
Ymat[1] = 3;
Ymat[2] = 10;
//allocate mem
cudaMalloc( &gAmat, M * C * sizeof(float));
cudaMalloc( &gYmat, C * sizeof(float));
//copy mem
cudaMemcpy(gAmat, Amat, M * C * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(gYmat, Ymat, C * 1 * sizeof(float), cudaMemcpyHostToDevice);
float **ggAmat, **ggYmat;
cudaMalloc(&ggAmat, sizeof(float*));
cudaMalloc(&ggYmat, sizeof(float*));
cudaMemcpy(ggAmat, &gAmat, sizeof(float*), cudaMemcpyHostToDevice);
cudaMemcpy(ggYmat, &gYmat, sizeof(float*), cudaMemcpyHostToDevice);
//init info params
int info = 0;
int devInfoArray[1] = { 0 };
//Synchronize (not necesarry I think, but just to test)
cudaDeviceSynchronize();
//run cublas
status = cublasSgelsBatched(m_cuBLAS,
CUBLAS_OP_N,
C,
M,
1,
ggAmat,
lda, //or 1
ggYmat,
lda,
&info,
NULL,
1);
//Output info
std::cout << "status = " << status << std::endl;
std::cout << "info = " << info << std::endl;
std::cout << "devInfoArray = " << devInfoArray[0] << std::endl;
cudaMemcpy(Xmat, gYmat, C * 1 * sizeof(float), cudaMemcpyDeviceToHost);
//Output printed
std::cout << Xmat[0] << ", " << Xmat[1] << ", " << Xmat[2] << std::endl;
//free memory
free(Amat);
free(Ymat);
free(Xmat);
cudaFree(gAmat);
cudaFree(gYmat);
//destory handle
cublasDestroy(m_cuBLAS);
return 0;
}
$ nvcc -o t130 t130.cu -lcublas
$ cuda-memcheck ./t130
========= CUDA-MEMCHECK
status = 0
status = 0
info = 0
devInfoArray = 0
-6.5, 9.7, 0.707106
========= ERROR SUMMARY: 0 errors
$
I am fairly new to CUDA, and I am trying to offload to the GPU some cumbersome computations I am doing for a performance-critical project. On my computer I have two NVS 510 Graphic cards, but I am currently experimenting with one only.
I have some big column-major matrix (1000-5000 rows x 1-5 M columns) to be filled. I was so far able to write the code to fill the matrix like it were an array, and it works well for matrices of relatively small size.
__global__ void interp_kernel(fl_type * d_matrix, fl_type* weights, [other params],
int n_rows, int num_cols) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
int column = index / n_rows;
int row = index % n_rows;
if (row > n_sim || column > num_cols) return;
d_matrix[index] = …something(row, column,[other params]);
}
The kernel is called:
fl_type *res;
cudaMalloc((void**)&res, n_columns*n_rows*fl_size);
int block_size = 1024;
int num_blocks = (n_rows* n_columns + block_size - 1) / block_size;
std::cout << "num_blocks:" << num_blocks << std::endl;
interp_kernel << < num_blocks, block_size >> > (res,[other params], n_rows,n_columns);
and everything works just fine.
If I change the kernel to work with 2D threads:
__global__ void interp_kernel2D(fl_type * d_matrix, fl_type* weights, [other params],
int n_rows, int num_cols) {
int column = blockIdx.x * blockDim.x + threadIdx.x;
int row = blockIdx.y * blockDim.y + threadIdx.y;
int index = column* n_rows + row;
if (row > n_rows || column > num_cols) return;
d_matrix[index] = …something(row, column,[other params]);
}
and I invoke it
int block_size2 = 32; //each block will have block_size2*block_size2 threads
dim3 num_blocks2(block_size2, block_size2);
int x_grid = (n_columns + block_size2 - 1) / block_size2;
int y_grid = (n_rows + block_size2 - 1) / block_size2;
dim3 grid_size2(x_grid, y_grid);
interp_kernel2D <<< grid_size2, num_blocks2 >>> (res,[other params], n_rows,n_columns);
the results are all zero and CUDA returns unknown error. What am I missing? the actual code, which compiles without error with VS2015 and CUDA 8.0, can be found here: https://pastebin.com/XBCVC7VV
Here is the code from the pastebin link:
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
#include <assert.h>
#include <iostream>
#include <random>
#include <chrono>
typedef float fl_type;
typedef int pos_type;
typedef std::chrono::milliseconds ms;
//declaration of the cuda function
void cuda_interpolation_function(fl_type* interp_value_back, int result_size, fl_type * grid_values, int grid_values_size, fl_type* weights, pos_type* node_map, int total_action_number, int interp_dim, int n_sim);
fl_type iterp_cpu(fl_type* weights, pos_type* node_map, fl_type* grid_values, int& row, int& column, int& interp_dim, int& n_sim) {
int w_p = column*interp_dim;
fl_type res = weights[w_p] * grid_values[row + node_map[w_p] * n_sim];
for (int inter_point = 1; inter_point < interp_dim; inter_point++) {
res += weights[w_p + inter_point] * grid_values[node_map[w_p + inter_point] * n_sim + row];
}
return res;
}
__global__ void interp_kernel(fl_type * d_matrix, fl_type* weights, pos_type* node_map, fl_type* grid_values, int interp_dim, int n_sim, int num_cols) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
int column = index / n_sim;
int row = index % n_sim;
int w_p = column*interp_dim;
if (row > n_sim || column > num_cols) return;
fl_type res = weights[w_p] * grid_values[row + node_map[w_p] * n_sim];
for (int inter_point = 1; inter_point < interp_dim; inter_point++) {
res += weights[w_p + inter_point] * grid_values[row + node_map[w_p + inter_point] * n_sim];
}
d_matrix[index] = res;
}
__global__ void interp_kernel2D(fl_type * d_matrix, fl_type* weights, pos_type* node_map, fl_type* grid_values, int interp_dim, int n_sim, int num_cols) {
int column = blockIdx.x * blockDim.x + threadIdx.x;
int row = blockIdx.y * blockDim.y + threadIdx.y;
int index = column*n_sim + row;
int w_p = column*interp_dim;
if (row > n_sim || column > num_cols) return;
fl_type res = weights[w_p] * grid_values[row + node_map[w_p] * n_sim];
for (int inter_point = 1; inter_point < interp_dim; inter_point++) {
res += weights[w_p + inter_point] * grid_values[row + node_map[w_p + inter_point] * n_sim];
}
d_matrix[index] = res;
}
void verify(fl_type *host, fl_type *device, int size) {
int count = 0;
int count_zero = 0;
for (int i = 0; i < size; i++) {
if (host[i] != device[i]) {
count++;
//std::cout <<"pos: " <<i<< " CPU:" <<h[i] << ", GPU: " << d[i] <<std::endl;
assert(host[i] == device[i]);
if (device[i] == 0.0)
count_zero++;
}
}
if (count) {
std::cout << "Non matching: " << count << "out of " << size << "(" << (float(count) / size * 100) << "%)" << std::endl;
std::cout << "Zeros returned from the device: " << count_zero <<"(" << (float(count_zero) / size * 100) << "%)" << std::endl;
}
else
std::cout << "Perfect match!" << std::endl;
}
int main() {
int fl_size = sizeof(fl_type);
int pos_size = sizeof(pos_type);
int dim = 5; // range: 2-5
int number_nodes = 5500; // range: 10.000-500.000
int max_actions = 12; // range: 6-200
int n_sim = 1000; // range: 1.000-10.000
int interp_dim = std::pow(2, dim);
int grid_values_size = n_sim*number_nodes;
std::default_random_engine generator;
std::normal_distribution<fl_type> normal_dist(0.0, 1);
std::uniform_int_distribution<> uniform_dist(0, number_nodes - 1);
double bit_allocated = 0;
fl_type * grid_values; //flattened 2d array, containing the value of the grid (n_sims x number_nodes)
grid_values = (fl_type *)malloc(grid_values_size * fl_size);
bit_allocated += grid_values_size * fl_size;
for (int i = 0; i < grid_values_size; i++)
grid_values[i] = normal_dist(generator);
pos_type * map_node2values_start; //vector that maps each node to the first column of the result matrix regarding that done
pos_type * map_node2values_how_many; //vector that stores how many action we have per node
map_node2values_start = (pos_type *)malloc(number_nodes * pos_size);
map_node2values_how_many = (pos_type *)malloc(number_nodes * pos_size);
bit_allocated += 2 * (number_nodes * pos_size);
for (int i = 0; i < number_nodes; i++) {
//each node as simply max_actions
map_node2values_start[i] = max_actions*i;
map_node2values_how_many[i] = max_actions;
}
//total number of actions, which is amount of column of the results
int total_action_number = map_node2values_start[number_nodes - 1] + map_node2values_how_many[number_nodes - 1];
//vector that keep tracks of the columnt to grab, and their weight in the interpolation
fl_type* weights;
pos_type * node_map;
weights = (fl_type *)malloc(total_action_number*interp_dim * pos_size);
bit_allocated += total_action_number * fl_size;
node_map = (pos_type *)malloc(total_action_number*interp_dim * pos_size);
bit_allocated += total_action_number * pos_size;
//filling with random numbers
for (int i = 0; i < total_action_number*interp_dim; i++) {
node_map[i] = uniform_dist(generator); // picking random column
weights[i] = 1.0 / interp_dim; // uniform weights
}
std::cout << "done filling!" << std::endl;
std::cout << bit_allocated / 8 / 1024 / 1024 << "MB allocated" << std::endl;
int result_size = n_sim*total_action_number;
fl_type *interp_value_cpu;
bit_allocated += result_size* fl_size;
interp_value_cpu = (fl_type *)malloc(result_size* fl_size);
auto start = std::chrono::steady_clock::now();
for (int row = 0; row < n_sim; row++) {
for (int column = 0; column < total_action_number; column++) {
auto zz = iterp_cpu(weights, node_map, grid_values, row, column, interp_dim, n_sim);
interp_value_cpu[column*n_sim + row] = zz;
}
}
auto elapsed_cpu = std::chrono::steady_clock::now() - start;
std::cout << "Crunching values on the CPU (serial): " << std::chrono::duration_cast<ms>(elapsed_cpu).count() / 1000.0 << "s" << std::endl;
int * pp;
cudaMalloc((void**)&pp, sizeof(int)); //initializing the device, to not affect the benchmark
fl_type *interp_value_gpu;
interp_value_gpu = (fl_type *)malloc(result_size* fl_size);
start = std::chrono::steady_clock::now();
cuda_interpolation_function(interp_value_gpu, result_size, grid_values, grid_values_size, weights, node_map, total_action_number, interp_dim, n_sim);
auto elapsed_gpu = std::chrono::steady_clock::now() - start;
std::cout << "Crunching values on the GPU: " << std::chrono::duration_cast<ms>(elapsed_gpu).count() / 1000.0 << "s" << std::endl;
float ms_cpu = std::chrono::duration_cast<ms>(elapsed_cpu).count();
float ms_gpu = std::chrono::duration_cast<ms>(elapsed_gpu).count();
int n_proc = 4;
std::cout << "Performance: " << (ms_gpu- ms_cpu / n_proc) / (ms_cpu / n_proc) * 100 << " % less time than parallel CPU!" << std::endl;
verify(interp_value_cpu, interp_value_gpu, result_size);
free(interp_value_cpu);
free(interp_value_gpu);
free(grid_values);
free(node_map);
free(weights);
}
void cuda_interpolation_function(fl_type* interp_value_gpu, int result_size, fl_type * grid_values, int grid_values_size, fl_type* weights, pos_type* node_map, int total_action_number, int interp_dim, int n_sim) {
int fl_size = sizeof(fl_type);
int pos_size = sizeof(pos_type);
auto start = std::chrono::steady_clock::now();
//device versions of the inputs
fl_type * grid_values_device;
fl_type* weights_device;
pos_type * node_map_device;
fl_type *interp_value_device;
int lenght_node_map = interp_dim*total_action_number;
std::cout << "size grid_values: " << grid_values_size <<std::endl;
std::cout << "size weights: " << lenght_node_map << std::endl;
std::cout << "size interp_value: " << result_size << std::endl;
//allocating and moving to the GPU the inputs
auto error_code=cudaMalloc((void**)&grid_values_device, grid_values_size*fl_size);
if (error_code != cudaSuccess) {
std::cout << "Error during cudaMalloc of the grid_values" << std::endl;
}
error_code=cudaMemcpy(grid_values_device, grid_values, grid_values_size*fl_size, cudaMemcpyHostToDevice);
if (error_code != cudaSuccess) {
std::cout << "Error during cudaMemcpy of the grid_values" << std::endl;
}
error_code=cudaMalloc((void**)&weights_device, lenght_node_map*fl_size);
if (error_code != cudaSuccess) {
std::cout << "Error during cudaMalloc of the weights" << std::endl;
}
error_code=cudaMemcpy(weights_device, weights, lenght_node_map*fl_size, cudaMemcpyHostToDevice);
if (error_code != cudaSuccess) {
std::cout << "Error during cudaMemcpy of the weights" << std::endl;
}
error_code=cudaMalloc((void**)&node_map_device, lenght_node_map*pos_size);
if (error_code != cudaSuccess) {
std::cout << "Error during cudaMalloc of node_map" << std::endl;
}
error_code=cudaMemcpy(node_map_device, node_map, lenght_node_map*pos_size, cudaMemcpyHostToDevice);
if (error_code != cudaSuccess) {
std::cout << "Error during cudaMemcpy of node_map" << std::endl;
}
error_code=cudaMalloc((void**)&interp_value_device, result_size*fl_size);
if (error_code != cudaSuccess) {
std::cout << "Error during cudaMalloc of interp_value_device " << std::endl;
}
auto elapsed_moving = std::chrono::steady_clock::now() - start;
float ms_moving = std::chrono::duration_cast<ms>(elapsed_moving).count();
cudaDeviceSynchronize();
//1d
int block_size = 1024;
int num_blocks = (result_size + block_size - 1) / block_size;
std::cout << "num_blocks:" << num_blocks << std::endl;
interp_kernel << < num_blocks, block_size >> > (interp_value_device, weights_device, node_map_device, grid_values_device, interp_dim, n_sim, total_action_number);
//2d
//int block_size2 = 32; //each block will have block_size2*block_size2 threads
//dim3 num_blocks2(block_size2, block_size2);
//int x_grid = (total_action_number + block_size2 - 1) / block_size2;
//int y_grid = (n_sim + block_size2 - 1) / block_size2;
//dim3 grid_size2(x_grid, y_grid);
//std::cout <<"grid:"<< x_grid<<" x "<< y_grid<<std::endl;
//interp_kernel2D <<< grid_size2, num_blocks2 >>> (interp_value_device, weights_device, node_map_device, grid_values_device, interp_dim, n_sim, total_action_number);
cudaDeviceSynchronize();
cudaError err = cudaGetLastError();
if (cudaSuccess != err)
{
std::cout << "Cuda kernel failed! " << cudaGetErrorString(err) <<std::endl;
}
start = std::chrono::steady_clock::now();
cudaMemcpy(interp_value_gpu, interp_value_device, result_size*fl_size, cudaMemcpyDeviceToHost);
auto elapsed_moving_back = std::chrono::steady_clock::now() - start;
float ms_moving_back = std::chrono::duration_cast<ms>(elapsed_moving_back).count();
std::cout << "Time spent moving the data to the GPU:" << ms_moving << " ms"<<std::endl;
std::cout << "Time spent moving the results back to the host: " << ms_moving_back << " ms" << std::endl;
cudaFree(interp_value_device);
cudaFree(weights_device);
cudaFree(node_map_device);
cudaFree(grid_values_device);
}
Moreover, I would extremely grateful for any direction on how to improve the performance of the code.
Any time you are having trouble with a CUDA code, I recommend doing proper CUDA error checking (which you mostly seem to be doing), and also run your code with cuda-memcheck. This last utility is similar to "enabling the memory checker" in Nsight VSE, but not quite the same. However the Nsight VSE memory checker may have given you the same indication.
In C (or C++) indexing of arrays generally starts at 0. Therefore, to test for an out-of-bounds index, I must check to see if the generated index is equal to or greater than the size of the array. But in your case you are only testing for greater than:
if (row > n_sim || column > num_cols) return;
You make a similar error in both your 1D kernel and in your 2D kernel, and although you believe your 1D kernel is working correctly, it is actually making out-of-bounds accesses. You can verify this if you run with the aforementioned cuda-memcheck utility (or probably also with the memory checker that can be enabled in Nsight VSE).
When I modify your code in the pastebin link to use proper range/bounds checking, cuda-memcheck reports no errors, and your program reports the correct results. I've tested both cases, but the code below is modified from your pastebin link to uncomment the 2D case, and use that instead of the 1D case:
$ cat t375.cu | more
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
#include <assert.h>
#include <iostream>
#include <random>
#include <chrono>
typedef float fl_type;
typedef int pos_type;
typedef std::chrono::milliseconds ms;
//declaration of the cuda function
void cuda_interpolation_function(fl_type* interp_value_back, int result_size, fl
_type * grid_values, int grid_values_size, fl_type* weights, pos_type* node_map,
int total_action_number, int interp_dim, int n_sim);
fl_type iterp_cpu(fl_type* weights, pos_type* node_map, fl_type* grid_values, in
t& row, int& column, int& interp_dim, int& n_sim) {
int w_p = column*interp_dim;
fl_type res = weights[w_p] * grid_values[row + node_map[w_p] * n_sim];
for (int inter_point = 1; inter_point < interp_dim; inter_point++) {
res += weights[w_p + inter_point] * grid_values[node_map[w_p + inter_poi
nt] * n_sim + row];
}
return res;
}
__global__ void interp_kernel(fl_type * d_matrix, fl_type* weights, pos_type* no
de_map, fl_type* grid_values, int interp_dim, int n_sim, int num_cols) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
int column = index / n_sim;
int row = index % n_sim;
int w_p = column*interp_dim;
if (row >= n_sim || column >= num_cols) return; // modified
fl_type res = weights[w_p] * grid_values[row + node_map[w_p] * n_sim];
for (int inter_point = 1; inter_point < interp_dim; inter_point++) {
res += weights[w_p + inter_point] * grid_values[row + node_map[w_p + int
er_point] * n_sim];
}
d_matrix[index] = res;
}
__global__ void interp_kernel2D(fl_type * d_matrix, fl_type* weights, pos_type*
node_map, fl_type* grid_values, int interp_dim, int n_sim, int num_cols) {
int column = blockIdx.x * blockDim.x + threadIdx.x;
int row = blockIdx.y * blockDim.y + threadIdx.y;
int index = column*n_sim + row;
int w_p = column*interp_dim;
if (row >= n_sim || column >= num_cols) return; // modified
fl_type res = weights[w_p] * grid_values[row + node_map[w_p] * n_sim];
for (int inter_point = 1; inter_point < interp_dim; inter_point++) {
res += weights[w_p + inter_point] * grid_values[row + node_map[w_p + int
er_point] * n_sim];
}
d_matrix[index] = res;
}
void verify(fl_type *host, fl_type *device, int size) {
int count = 0;
int count_zero = 0;
for (int i = 0; i < size; i++) {
if (host[i] != device[i]) {
count++;
//std::cout <<"pos: " <<i<< " CPU:" <<h[i] << ", GPU: " << d[
i] <<std::endl;
assert(host[i] == device[i]);
if (device[i] == 0.0)
count_zero++;
}
}
if (count) {
std::cout << "Non matching: " << count << "out of " << size << "(" << (f
loat(count) / size * 100) << "%)" << std::endl;
std::cout << "Zeros returned from the device: " << count_zero <<"(" << (
float(count_zero) / size * 100) << "%)" << std::endl;
}
else
std::cout << "Perfect match!" << std::endl;
}
int main() {
int fl_size = sizeof(fl_type);
int pos_size = sizeof(pos_type);
int dim = 5; // range: 2-5
int number_nodes = 5500; // range: 10.000-500.000
int max_actions = 12; // range: 6-200
int n_sim = 1000; // range: 1.000-10.000
int interp_dim = std::pow(2, dim);
int grid_values_size = n_sim*number_nodes;
std::default_random_engine generator;
std::normal_distribution<fl_type> normal_dist(0.0, 1);
std::uniform_int_distribution<> uniform_dist(0, number_nodes - 1);
double bit_allocated = 0;
fl_type * grid_values; //flattened 2d array, containing the value of the grid (n_sims x number_nodes)
grid_values = (fl_type *)malloc(grid_values_size * fl_size);
bit_allocated += grid_values_size * fl_size;
for (int i = 0; i < grid_values_size; i++)
grid_values[i] = normal_dist(generator);
pos_type * map_node2values_start; //vector that maps each node to the first column of the result matrix regarding that done
pos_type * map_node2values_how_many; //vector that stores how many action we have per node
map_node2values_start = (pos_type *)malloc(number_nodes * pos_size);
map_node2values_how_many = (pos_type *)malloc(number_nodes * pos_size);
bit_allocated += 2 * (number_nodes * pos_size);
for (int i = 0; i < number_nodes; i++) {
//each node as simply max_actions
map_node2values_start[i] = max_actions*i;
map_node2values_how_many[i] = max_actions;
}
//total number of actions, which is amount of column of the results
int total_action_number = map_node2values_start[number_nodes - 1] + map_node2values_how_many[number_nodes - 1];
//vector that keep tracks of the columnt to grab, and their weight in the interpolation
fl_type* weights;
pos_type * node_map;
weights = (fl_type *)malloc(total_action_number*interp_dim * pos_size);
bit_allocated += total_action_number * fl_size;
node_map = (pos_type *)malloc(total_action_number*interp_dim * pos_size);
bit_allocated += total_action_number * pos_size;
//filling with random numbers
for (int i = 0; i < total_action_number*interp_dim; i++) {
node_map[i] = uniform_dist(generator); // picking random column
weights[i] = 1.0 / interp_dim; // uniform weights
}
std::cout << "done filling!" << std::endl;
std::cout << bit_allocated / 8 / 1024 / 1024 << "MB allocated" << std::endl;
int result_size = n_sim*total_action_number;
fl_type *interp_value_cpu;
bit_allocated += result_size* fl_size;
interp_value_cpu = (fl_type *)malloc(result_size* fl_size);
auto start = std::chrono::steady_clock::now();
for (int row = 0; row < n_sim; row++) {
for (int column = 0; column < total_action_number; column++) {
auto zz = iterp_cpu(weights, node_map, grid_values, row, column, interp_dim, n_sim);
interp_value_cpu[column*n_sim + row] = zz;
}
}
auto elapsed_cpu = std::chrono::steady_clock::now() - start;
std::cout << "Crunching values on the CPU (serial): " << std::chrono::duration_cast<ms>(elapsed_cpu).count() / 1000.0 << "s" << std::endl;
int * pp;
cudaMalloc((void**)&pp, sizeof(int)); //initializing the device, to not affect the benchmark
fl_type *interp_value_gpu;
interp_value_gpu = (fl_type *)malloc(result_size* fl_size);
start = std::chrono::steady_clock::now();
cuda_interpolation_function(interp_value_gpu, result_size, grid_values, grid_values_size, weights, node_map, total_action_number, interp_dim, n_sim);
auto elapsed_gpu = std::chrono::steady_clock::now() - start;
std::cout << "Crunching values on the GPU: " << std::chrono::duration_cast<ms>(elapsed_gpu).count() / 1000.0 << "s" << std::endl;
float ms_cpu = std::chrono::duration_cast<ms>(elapsed_cpu).count();
float ms_gpu = std::chrono::duration_cast<ms>(elapsed_gpu).count();
int n_proc = 4;
std::cout << "Performance: " << (ms_gpu- ms_cpu / n_proc) / (ms_cpu / n_proc) * 100 << " % less time than parallel CPU!" << std::endl;
verify(interp_value_cpu, interp_value_gpu, result_size);
free(interp_value_cpu);
free(interp_value_gpu);
free(grid_values);
free(node_map);
free(weights);
}
void cuda_interpolation_function(fl_type* interp_value_gpu, int result_size, fl_type * grid_values, int grid_values_size, fl_type* weights, pos_type* node_map, int total_action_number, int interp_dim, int n_sim) {
int fl_size = sizeof(fl_type);
int pos_size = sizeof(pos_type);
auto start = std::chrono::steady_clock::now();
//device versions of the inputs
fl_type * grid_values_device;
fl_type* weights_device;
pos_type * node_map_device;
fl_type *interp_value_device;
int lenght_node_map = interp_dim*total_action_number;
std::cout << "size grid_values: " << grid_values_size <<std::endl;
std::cout << "size weights: " << lenght_node_map << std::endl;
std::cout << "size interp_value: " << result_size << std::endl;
//allocating and moving to the GPU the inputs
auto error_code=cudaMalloc((void**)&grid_values_device, grid_values_size*fl_size);
if (error_code != cudaSuccess) {
std::cout << "Error during cudaMalloc of the grid_values" << std::endl;
}
error_code=cudaMemcpy(grid_values_device, grid_values, grid_values_size*fl_size, cudaMemcpyHostToDevice);
if (error_code != cudaSuccess) {
std::cout << "Error during cudaMemcpy of the grid_values" << std::endl;
}
error_code=cudaMalloc((void**)&weights_device, lenght_node_map*fl_size);
if (error_code != cudaSuccess) {
std::cout << "Error during cudaMalloc of the weights" << std::endl;
}
error_code=cudaMemcpy(weights_device, weights, lenght_node_map*fl_size, cudaMemcpyHostToDevice);
if (error_code != cudaSuccess) {
std::cout << "Error during cudaMemcpy of the weights" << std::endl;
}
error_code=cudaMalloc((void**)&node_map_device, lenght_node_map*pos_size);
if (error_code != cudaSuccess) {
std::cout << "Error during cudaMalloc of node_map" << std::endl;
}
error_code=cudaMemcpy(node_map_device, node_map, lenght_node_map*pos_size, cudaMemcpyHostToDevice);
if (error_code != cudaSuccess) {
std::cout << "Error during cudaMemcpy of node_map" << std::endl;
}
error_code=cudaMalloc((void**)&interp_value_device, result_size*fl_size);
if (error_code != cudaSuccess) {
std::cout << "Error during cudaMalloc of interp_value_device " << std::endl;
}
auto elapsed_moving = std::chrono::steady_clock::now() - start;
float ms_moving = std::chrono::duration_cast<ms>(elapsed_moving).count();
cudaDeviceSynchronize();
//1d
#if 0
int block_size = 1024;
int num_blocks = (result_size + block_size - 1) / block_size;
std::cout << "num_blocks:" << num_blocks << std::endl;
interp_kernel << < num_blocks, block_size >> > (interp_value_device, weights_device, node_map_device, grid_values_device, interp_dim, n_sim, total_action_number);
#endif
//2d
int block_size2 = 32; //each block will have block_size2*block_size2 threads
dim3 num_blocks2(block_size2, block_size2);
int x_grid = (total_action_number + block_size2 - 1) / block_size2;
int y_grid = (n_sim + block_size2 - 1) / block_size2;
dim3 grid_size2(x_grid, y_grid);
std::cout <<"grid:"<< x_grid<<" x "<< y_grid<<std::endl;
interp_kernel2D <<< grid_size2, num_blocks2 >>> (interp_value_device, weights_device, node_map_device, grid_values_device, interp_dim, n_sim, total_action_number);
cudaDeviceSynchronize();
cudaError err = cudaGetLastError();
if (cudaSuccess != err)
{
std::cout << "Cuda kernel failed! " << cudaGetErrorString(err) <<std::endl;
}
start = std::chrono::steady_clock::now();
cudaMemcpy(interp_value_gpu, interp_value_device, result_size*fl_size, cudaMemcpyDeviceToHost);
auto elapsed_moving_back = std::chrono::steady_clock::now() - start;
float ms_moving_back = std::chrono::duration_cast<ms>(elapsed_moving_back).count();
std::cout << "Time spent moving the data to the GPU:" << ms_moving << " ms"<<std::endl;
std::cout << "Time spent moving the results back to the host: " << ms_moving_back << " ms" << std::endl;
cudaFree(interp_value_device);
cudaFree(weights_device);
cudaFree(node_map_device);
cudaFree(grid_values_device);
}
$ nvcc -arch=sm_52 -o t375 t375.cu -std=c++11
$ cuda-memcheck ./t375
========= CUDA-MEMCHECK
done filling!
2.69079MB allocated
Crunching values on the CPU (serial): 30.081s
size grid_values: 5500000
size weights: 2112000
size interp_value: 66000000
grid:2063 x 32
Time spent moving the data to the GPU:31 ms
Time spent moving the results back to the host: 335 ms
Crunching values on the GPU: 7.089s
Performance: -5.73452 % less time than parallel CPU!
Perfect match!
========= ERROR SUMMARY: 0 errors
$
Note that cuda-memcheck slows down the execution of your program on the GPU to do rigorous memory bounds checking. Therefore the performance may not match the ordinary case. This is what an "ordinary" run looks like:
$ ./t375
done filling!
2.69079MB allocated
Crunching values on the CPU (serial): 30.273s
size grid_values: 5500000
size weights: 2112000
size interp_value: 66000000
grid:2063 x 32
Time spent moving the data to the GPU:32 ms
Time spent moving the results back to the host: 332 ms
Crunching values on the GPU: 1.161s
Performance: -84.6596 % less time than parallel CPU!
Perfect match!
$
You are accessing memory beyond the allocated chunk. To check if row and column indices are within the range:
if (row >= n_rows || column >= num_cols) return; // Do this
if (row > n_rows || column > num_cols) return; // Instead of this
In flat version this int row = index % n_rows; makes row stay below the n_rows. You only access one column beyond the allocated memory, which for small matrix could still be withing the memory alignment. Python demo.
The second version does access an extra column plus and extra element, and one extra element for each row (the first element of the following row), as this:
int row = blockIdx.y * blockDim.y + threadIdx.y;
no longer keeps row index within the valid range. Python demo.
Looking at your pastebin, this is probably the place where it breaks:
44. fl_type res = weights[w_p] * grid_values[row + node_map[w_p] * n_sim];
^^^
45. for (int inter_point = 1; inter_point < interp_dim; inter_point++) {
46. res += weights[w_p + inter_point] * \
grid_values[row + node_map[w_p + inter_point] * n_sim];
^^^
47. }