OpenCV Histogram Matching/Specification - c++

I have two gray scale images, and I want to copy the histogram of one image to the other. Since I'm working with OpenCv, I've tried both this method histogram recoloring and this histogram for gray scale images. The first link gives me no results, while the second return this image:
Reference Image:
Input Image:
Result Image:
According to the code of the grayscale histogram matching, I had to implement the cumsum and ScanImageAndReduceC function:
cumsum:
for (size_t i = 0; i < X.rows; i++)
{
for (size_t j = 0; j < X.cols; j++)
{
if (j == 0)
{
result.at<double>(i, j) = X.at<double>(i, j);
}
else
{
result.at<double>(i, j) = X.at<double>(i, j) + result.at<double>(i, j - 1);
}
}
}
while the other functin was picked from here: how to scan images.
How can I succesfully copy the histogram of one image to another?
I'm using OpenCV 3.1
Thank!

I'm also trying to solve the problem,and I find the bug in your function "cumsum".The function of "cumsum" should be written as :
Mat cumsum (Mat & src)
{
Mat result = Mat::zeros(Size(src.cols,src.rows),CV_32FC1);
for (int i = 0; i < src.rows; ++i)
{
for (int j = 0; j < src.cols; ++j)
{
if (i == 0)
{
result.at<float>(i, j) = src.at<float>(i, j);
}
else
{
result.at<float>(i, j) = src.at<float>(i, j) + result.at<float>(i-1, j);
}
}
}
return result;
}

Related

Laplacian Sharpening result is kinda greyish C++

I am trying to implement laplacian filter for sharpening an image.
but the result is kinda grey , I don't know what went wrong with my code.
Here's my work so far
img = imread("moon.png", 0);
Mat convoSharp() {
//creating new image
Mat res = img.clone();
for (int y = 0; y < res.rows; y++) {
for (int x = 0; x < res.cols; x++) {
res.at<uchar>(y, x) = 0.0;
}
}
//variable declaration
//change -5 to -4 for original result.
int filter[3][3] = { {0,1,0},{1,-4,1},{0,1,0} };
//int filter[3][3] = { {-1,-2,-1},{0,0,0},{1,2,1} };
int height = img.rows;
int width = img.cols;
int **temp = new int*[height];
for (int i = 0; i < height; i++) {
temp[i] = new int[width];
}
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
temp[i][j] = 0;
}
}
int filterHeight = 3;
int filterWidth = 3;
int newImageHeight = height - filterHeight + 1;
int newImageWidth = width - filterWidth + 1;
int i, j, h, w;
//convolution
for (i = 0; i < newImageHeight; i++) {
for (j = 0; j < newImageWidth; j++) {
for (h = i; h < i + filterHeight; h++) {
for (w = j; w < j + filterWidth; w++) {
temp[i][j] += filter[h - i][w - j] * (int)img.at<uchar>(h, w);
}
}
}
}
//find max and min
int max = 0;
int min = 100;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
if (temp[i][j] > max) {
max = temp[i][j];
}
if (temp[i][j] < min) {
min = temp[i][j];
}
}
}
//clamp 0 - 255
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
res.at<uchar>(i, j) = 0 + (temp[i][j] - min)*(255 - 0) / (max - min);
}
}
//empty the temp array
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
temp[i][j] = 0;
}
}
//img - res and store it in temp array
for (int y = 0; y < res.rows; y++) {
for (int x = 0; x < res.cols; x++) {
//int a = (int)img.at<uchar>(y, x) - (int)res.at<uchar>(y, x);
//cout << a << endl;
temp[y][x] = (int)img.at<uchar>(y, x) - (int)res.at<uchar>(y, x);
}
}
//find the new max and min
max = 0;
min = 100;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
if (temp[i][j] > max) {
max = temp[i][j];
}
if (temp[i][j] < min) {
min = temp[i][j];
}
}
}
//clamp it back to 0-255
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
res.at<uchar>(i, j) = 0 + (temp[i][j] - min)*(255 - 0) / (max - min);
temp[i][j] = (int)res.at<uchar>(i, j);
}
}
return res;
}
And here's the result
as you can see in my code above , i already normalize the pixel value to 0-255. i still don't know what went wrong here. Can anyone here explain why is that ?
The greyness is because, as Max suggested in his answer, you are scaling to the 0-255 range, not clamping (as your comments in the code suggest).
However, that is not all of the issues in your code. The output of the Laplace operator contains negative values. You nicely store these in an int. But then you scale and copy over to a char. Don't do that!
You need to add the result of the Laplace unchanged to your image. This way, some pixels in your image will become darker, and some lighter. This is what causes the edges to appear sharper.
Simply skip some of the loops in your code, and keep one that does temp = img - temp. That result you can freely scale or clamp to the output range and cast to char.
To clamp, simply set any pixel values below 0 to 0, and any above 255 to 255. Don't compute min/max and scale as you do, because there you reduce contrast and create the greyish wash over your image.
Your recent question is quite similar (though the problem in the code was different), read my answer there again, it suggests a way to further simplify your code so that img-Laplace becomes a single convolution.
The problem is that you are clamping and rescaling the image. Look at the bottom left border of the moon: There are very bright pixels next to very dark pixels, and then some gray pixels right besides the bright ones. Your sharpening filter will really spike on that bright border and increase the maximum. Similarly, the black pixels will be reduced even further.
You then determine minimum and maximum and rescale the entire image. This necessarily means the entire image will lose contrast when displayed in the previous gray scale, because your filter outputted pixel values above 255 and below 0.
Looks closely at the border of the moon in the output image:
There is a black halo (the new 0) and a bright, sharp edge (the new 255). (The browser image scaling made it less crisp in this screenshot, look at your original output). Everything else was squashed by the rescaling, so what was previous black (0) is now dark gray.

OpenCV GrabCut Mask

I have utilised the OpenCV GrabCut functionality to perform an image segmentation. When viewing the segmented image as per the code below, the segmentation is reasonable/correct. However, when looking at(at attempting to use) the segmrntation mask values, I am getting some very large numbers, and not the enumerated values one would expect from the cv::GrabCutClasses enum.
void doGrabCut(){
Vector2i imgDims = getImageDims();
//Wite image to OpenCV Mat.
const Vector4u *rgb = getRGB();
cv::Mat rgbMat(imgDims.height, imgDims.width, CV_8UC3);
for (int i = 0; i < imgDims.height; i++) {
for (int j = 0; j < imgDims.width; j++) {
int idx = i * imgDims.width + j;
rgbMat.ptr<cv::Vec3b>(i)[j][2] = rgb[idx].x;
rgbMat.ptr<cv::Vec3b>(i)[j][1] = rgb[idx].y;
rgbMat.ptr<cv::Vec3b>(i)[j][0] = rgb[idx].z;
}
}
//Do graph cut.
cv::Mat res, fgModel, bgModel;
cv::Rect bb(bb_begin.x, bb_begin.y, bb_end.x - bb_begin.x, bb_end.y - bb_begin.y);
cv::grabCut(rgbMat, res, bb, bgModel, fgModel, 10, cv::GC_INIT_WITH_RECT);
cv::compare(res, cv::GC_PR_FGD, res, cv::CMP_EQ);
//Write mask.
Vector4u *maskPtr = getMask();//uchar
for (int i = 0; i < imgDims.height; i++) {
for (int j = 0; j < imgDims.width; j++) {
cv::GrabCutClasses classification = res.at<cv::GrabCutClasses>(i, j);
int idx = i * imgDims.width + j;
std::cout << classification << std::endl;//Strange numbers here.
maskPtr[idx].x = (classification == cv::GC_PR_FGD) ? 255 : 0;//This always evaluates to 0.
}
}
cv::Mat foreground(rgbMat.size(), CV_8UC3, cv::Scalar(255, 255, 255));
rgbMat.copyTo(foreground, res);
cv::imshow("GC Output", foreground);
}
Why would one get numbers outside the enumeration when the segmentation is qualitatively correct?
I doubt on your //Write mask. step, why do you re-iterate the res and modify maskPtr as maskPtr[idx].x = (classification == cv::GC_PR_FGD) ? 255 : 0;, Basically you already have a single channel Binary image stored in the res variable, the cv::compare() returns a binary image
However if you still want to debug the values by iteration then you should use the standard technique for iterating a single channel image as:
for (int i = 0; i < m.rows; i++) {
for (int j = 0; j < m.cols; j++) {
uchar classification = res.at<uchar>(i, j);
std::cout << int(classification) << ", ";
}
}
As you are iterating a single channel mat you must use res.at<uchar>(i, j) and not res.at<cv::GrabCutClasses>.

Alpha-trimmed filter troubles

I am trying to make an alphatrimmed filter in openCV library. My code is not working properly and the resultant image is not looking as image after filtering.
The filter should work in the following way.
Chossing some (array) of pixels in my example it is 9 pixels '3x3' window.
Ordering them in increasing way.
Cutting our 'array' both sides for alpha-2.
calculating arithmetic mean of remaining pixels and inserting them in proper place.
int alphatrimmed(Mat img, int alpha)
{
Mat img9 = img.clone();
const int start = alpha/2 ;
const int end = 9 - (alpha/2);
//going through whole image
for (int i = 1; i < img.rows - 1; i++)
{
for (int j = 1; j < img.cols - 1; j++)
{
uchar element[9];
Vec3b element3[9];
int k = 0;
int a = 0;
//selecting elements for window 3x3
for (int m = i -1; m < i + 2; m++)
{
for (int n = j - 1; n < j + 2; n++)
{
element3[a] = img.at<Vec3b>(m*img.cols + n);
a++;
for (int c = 0; c < img.channels(); c++)
{
element[k] += img.at<Vec3b>(m*img.cols + n)[c];
}
k++;
}
}
//comparing and sorting elements in window (uchar element [9])
for (int b = 0; b < end; b++)
{
int min = b;
for (int d = b + 1; d < 9; d++)
{
if (element[d] < element[min])
{
min = d;
const uchar temp = element[b];
element[b] = element[min];
element[min] = temp;
const Vec3b temporary = element3[b];
element3[b] = element3[min];
element3[min] = temporary;
}
}
}
// index in resultant image( after alpha-trimmed filter)
int result = (i - 1) * (img.cols - 2) + j - 1;
for (int l = start ; l < end; l++)
img9.at<Vec3b>(result) += element3[l];
img9.at<Vec3b>(result) /= (9 - alpha);
}
}
namedWindow("AlphaTrimmed Filter", WINDOW_AUTOSIZE);
imshow("AlphaTrimmed Filter", img9);
return 0;
}
Without actual data, it's somewhat of a guess, but an uchar can't hold the sum of 3 channels. It works modulo 256 (at least on any platform OpenCV supports).
The proper solution is std::sort with a proper comparator for your Vec3b :
void L1(Vec3b a, Vec3b b) { return a[0]+a[1]+a[2] < b[0]+b[1]+b[2]; }

How to set pixel value of a cv::Mat1b?

I have copied a grayscale image into a cv::Mat1b, and I want to loop through each pixel and read and change its value. How can I do that?
My code looks like this :
cv::Mat1b newImg;
grayImg.copyTo(newImg);
for (int i = 0; i < grayImg.rows; i++) {
for (int j = 0; i < grayImg.cols; j++) {
int pixelValue = static_cast<int>(newImg.at<uchar>(i, j));
if(pixelValue > thresh)
newImg.at<int>(i,j) = 0;
else
newImg.at<int>(i, j) = 255;
}
}
But in the assignments (inside of if and else), I get the error Access violation writing location.
How do I read and write specific pixels correctly?
Thanks !
Edit
Thanks to #Miki and #Micka, this is how I solved it :
for (int i = 0; i < newImg.rows; i++) {
for (int j = 0; j < newImg.cols; j++) {
// read :
cv::Scalar intensity1 = newImg.at<uchar>(i,j);
int intensity = intensity1.val[0];
// write :
newImg(i, j) = 255;
}
}
newImg.at<int>(i,j)
should be
newImg.at<uchar>(i,j)
Because cv::Mat1b is of uchar type
i suggest :
cv::Mat1b newImg;
newImg = grayImg > thresh ;
or
cv::Mat1b newImg;
newImg = grayImg < thresh ;
also look at the OpenCV Tutorials to know how to go through each and every pixel of an image

Implementation of 'imquantize' function in opencv

I am trying to implement the Matlab function imquantize using opencv. Which opencv thresholding function I should use to implement Matlab function multithresh? Once thresholding has been done how do I label the pixels according to the threshold? Is this the right way to implement imquantize ? Are there any other function's I should include in the code?
There is an implementation based on OpenCV here, where you should probably get the idea:
cv::Mat
imquantize(const cv::Mat& in, const arma::fvec& thresholds) {
BOOST_ASSERT_MSG(cv::DataType<float>::type == in.type(), "input is not of type float");
cv::Mat index(in.size(), in.type(), cv::Scalar::all(1));
for (int i = 0; i < thresholds.size() ; i++) {
cv::Mat temp = (in > thresholds(i)) / 255;
temp.convertTo(temp, cv::DataType<float>::type);
index += temp;
}
return index;
}
Updated: thresholds are the vector of the float threshold values (uniform distributed to # of levels that you want to quantize within [0, 1]). Check the code snippet of how it is used:
const float step = 1./levels[i];
arma::fvec thresh = arma::linspace<arma::fvec>(step, 1.-step, levels[i]-1);
channels[i] = imquantize(channels[i], thresh);
I suppose you are looking for something like this
/*function imquantize
* 'inputImage' is the input image.
* 'levels' is an array of threholds
* 'quantizedImage' is the reurned image
* with quantized levels.
*/
Mat imquantize(Mat inputImage, vector<vector<int> > levels)
{
//initialise output label matrix
Mat quantizedImage(inputImage.size(), inputImage.type(), Scalar::all(1));
//Apply labels to the pixels according to the thresholds
for (int i = 0; i < inputImage.cols; i++)
{
for (int j = 0; j < inputImage.rows; j++)
{
// Check if image is grayscale or BGR
if(levels.size() == 1)
{
for (int k = 0; k < levels[0].size(); k++)
{
// if pixel < lowest threshold , then assign 0
if(inputImage.at<uchar>(j,i) <= levels[0][0])
{
quantizedImage.at<uchar>(j,i) = 0;
}
// if pixel > highest threshold , then assign 255
else if(inputImage.at<uchar>(j,i) >= levels[0][levels[0].size()-1])
{
quantizedImage.at<uchar>(j,i) = 255;
}
// Check the level borders for pixel and assign the corresponding
// upper bound quanta to the pixel
else
{
if(levels[0][k] < inputImage.at<uchar>(j,i) && inputImage.at<uchar>(j,i) <= levels[0][k+1])
{
quantizedImage.at<uchar>(j,i) = (k+1)*255/(levels[0].size());
}
}
}
}
else
{
Vec3b pair = inputImage.at<Vec3b>(j,i);
// Processing the Blue Channel
for (int k = 0; k < levels[0].size(); k++)
{
if( pair.val[0] <= levels[0][0])
{
quantizedImage.at<Vec3b>(j,i)[0] = 0;
}
else if( pair.val[0] >= levels[0][levels.size()-1])
{
quantizedImage.at<Vec3b>(j,i)[0] = 255;
}
else
{
if(levels[0][k] < pair.val[0] && pair.val[0] <= levels[0][k+1])
{
quantizedImage.at<Vec3b>(j,i)[0] = (k+1)*255/(levels[0].size());
}
}
}
// Processing the Green Channel
for (int k = 0; k < levels[1].size(); k++)
{
if( pair.val[1] <= levels[1][0])
{
quantizedImage.at<Vec3b>(j,i)[1] = 0;
}
else if( pair.val[1] >= levels[1][levels.size()-1])
{
quantizedImage.at<Vec3b>(j,i)[1] = 255;
}
else
{
if(levels[1][k] < pair.val[1] && pair.val[1] <= levels[1][k+1])
{
quantizedImage.at<Vec3b>(j,i)[1] = (k+1)*255/(levels[1].size());
}
}
}
// Processing the Red Channel
for (int k = 0; k < levels[2].size(); k++)
{
if( pair.val[2] <= levels[2][0])
{
quantizedImage.at<Vec3b>(j,i)[2] = 0;
}
else if( pair.val[2] >= levels[2][levels.size()-1])
{
quantizedImage.at<Vec3b>(j,i)[2] = 255;
}
else
{
if(levels[2][k] < pair.val[2] && pair.val[2] <= levels[2][k+1])
{
quantizedImage.at<Vec3b>(j,i)[2] = (k+1)*255/(levels[2].size());
}
}
}
}
}
}
return quantizedImage;
}
In this function the input had to be an Mat::Image and a 2D vector which can have different levels for different channels.