How to use the same POD in const and non-const contexts? - c++

The initial problem is that I have some data to save and retrieve from plate and would like to use a helper struct in the following way:
// this is how I want to use my struct for saving
void safeData()
{
Data data;
data.name = getNameToSave(); // returns const char*
save(data);
}
// ... and in the same way for writing.
void readData()
{
Data data;
read(data);
use(data);
}
... whereas
struct Data
{
const char* name;
// potentially many more data members
}
I'm bound to (const) char* instead of std::string for now because this should be used with legacy code. Unfortunately this will bring up a constness problem:
void read(Data& data)
{
// initial legacy free
free(data.name); // warning: can't convert from const char* to void*
// fill with some data
data.name = getNameFromPlate();
}
So the thing is this: Since my data retrieval methods for reading like getNameFromSomewhere returns const char* I'm bound to making my struct members const, too. This however clashes with write-usage because in this case they must be non-const. What is the best and cleanest way to work around this?

The cleanest way is for the Data struct to own the name data. So when you assign to it you should allocate memory and do a memcpy. This is the only way to make sure that a) you don't leak memory b) the data is not freed before you are done with it and c) data is not changed by other processes in the mean time.
Since you do a copy anyway, you can probably make it more manageable by using std::string instead of const char*. When you assign for const char*, std::string will do the copy for you and you can get a const char* back with c_str(), so that you can still work with the legacy architecture. You don't have to do the switch but will make it easier to manage in the long run.

You have not only a problem of constness, but also a problem of ownership. Except if the API states that the return value of getNameToSave() has to be freed by caller after use, you should not free it. While when you read it from a file, you must free it.
So the simpler way is to always use a local copy that you consistently free after use. As you are required to use old const char * instead of std::string you'd better keep using the good old C library function. Here the best function is strdup that automagically allocate memory and copy old string into it.
An alternative way would be to store the status of the member Data::name in a boolean member :
struct Data
{
const char* name;
bool dyn; // must be freed if true
// potentially many more data members
}
You can then safely use:
if (data.dyn && (data.name != nullptr)) {
free(const_cast<char *>(data.name);
}

Related

How to initialize non-const member variables with const actual parameter?

When I initialize the constructor with the given data type of the parameter, I find that it goes wrong with the explaination that " const char* values cannot be assigned to char* entities".
class TString
{
private:
char* m_pData;
int m_nLength;
public:
TString();
TString(const char* pStr);
······
}
TString::TString(const char* pStr) {
this->m_pData = pStr;
}
What should I do to solve this problem? If possible, give me a right example.
Thanks in advance and apolpgize for my ignorance.
Const char * generally are prefined static compiled strings that cannot be changed because they are locked in the source code, or they come from some immutable source. This is in part, why they are marked const to prevent people from trying to change them.
The easiest solution to this problem is to take the const char * and make a copy of it on the heap, then it is no longer constant.
For example:
#include <string.h> // for strdup
...
TString::TString(const char* pStr) {
m_pData = strdup(pStr); // this will malloc and copy the string accepting const char * as input.
}
One thing you will need to consider, the m_pData is now on the heap, so in the destructor, you will want to free this data otherwise you will have a memory leak.
TString::~TString(){
free(m_pData);
}
You will also want in the TString() constructor to set the m_pData=NULL too.
This will work with strings, but if it's binary data i.e. no terminator allocate the data using malloc and use a memcpy, like:
m_pData=(char *)malloc(m_nlength*sizeof(char));
memcpy(m_pData,pStr,m_nlength);
Or some such.

C++ Constant anonymous instance with aggregate initialization

Basically Im wanting to fetch a pointer of a constant and anonymous object, such as an instance of a class, array or struct that is inialised with T {x, y, z...}. Sorry for my poor skills in wording.
The basic code that Im trying to write is as follows:
//Clunky, Im sure there is an inbuilt class that can replace this, any information would be a nice addition
template<class T> class TerminatedArray {
public:
T* children;
int length;
TerminatedArray(const T* children) {
this->children = children;
length = 0;
while ((unsigned long)&children[length] != 0)
length++;
}
TerminatedArray() {
length = 0;
while ((unsigned long)&children[length] != 0)
length++;
}
const T get(int i) {
if (i < 0 || i >= length)
return 0;
return children[i];
}
};
const TerminatedArray<const int> i = (const TerminatedArray<const int>){(const int[]){1,2,3,4,5,6,0}};
class Settings {
public:
struct Option {
const char* name;
};
struct Directory {
const char* name;
TerminatedArray<const int> const children;
};
const Directory* baseDir;
const TerminatedArray<const Option>* options;
Settings(const Directory* _baseDir, const TerminatedArray<const Option> *_options);
};
//in some init method's:
Settings s = Settings(
&(const Settings::Directory){
"Clock",
(const TerminatedArray<const int>){(const int[]){1,2,0}}
},
&(const TerminatedArray<const Settings::Option>){(const Settings::Option[]){
{"testFoo"},
{"foofoo"},
0
}}
);
The code that I refer to is at the very bottom, the definition of s. I seem to be able to initialize a constant array of integers, but when applying the same technique to classes, it fails with:
error: taking address of temporary [-fpermissive]
I don't even know if C++ supports such things, I want to avoid having to have separate const definitions dirtying and splitting up the code, and instead have them clean and anonymous.
The reason for wanting all these definitions as constants is that Im working on an Arduino project that requires efficient balancing of SRAM to Flash. And I have a lot of Flash to my disposal.
My question is this. How can I declare a constant anonymous class/struct using aggregate initialization?
The direct (and better) equivalent to TerminatedArray is std::initializer_list:
class Settings {
public:
struct Option {
const char* name;
};
struct Directory {
const char* name;
std::initializer_list<const int> const children;
};
const Directory* baseDir;
const std::initializer_list<const Option>* options;
Settings(const Directory& _baseDir, const std::initializer_list<const Option>& _options);
};
//in some init method's:
Settings s = Settings(
{
"Clock",
{1,2,0}
},
{
{"testFoo"},
{"foofoo"}
}
);
https://godbolt.org/z/8t7j0f
However, this will almost certainly have lifetime issues (which the compiler tried to warn you about with "taking address of temporary"). If you want to store a (non-owning) pointer (or reference) then somebody else should have ownership of the object. But when initializing with temporary objects like this, nobody else does. The temporaries die at the end of the full expression, so your stored pointers now point to dead objects. Fixing this is a different matter (possibly making your requirements conflicting).
Somewhat relatedly, I'm not sure whether storing a std::initializer_list as class member is a good idea might. But it's certainly the thing you can use as function parameter to make aggregate initialization nicer.
&children[length] != 0 is still true or UB.
If you don't want to allocate memory, you might take reference to existing array:
class Settings {
public:
struct Option {
const char* name;
};
struct Directory {
const char* name;
std::span<const int> const children;
};
const Directory baseDir;
const std::span<const Option> options;
Settings(Directory baseDir, span<const Option> options);
};
//in some method:
const std::array<int, 3> ints{{1,2,0}};
const std::array<Settings::Option> options{{"testFoo"}, {"foofoo"}};
Settings s{"Clock", {ints}}, options};
First, you're not aggregate-initializing anything. This is uniform initialization and you're calling constructors instead of directly initializing members. This is because your classes have user-defined constructors, and classes with constructors can't be aggregate-initialized.
Second, you're not really able to "initialize a constant array of integers". It merely compiles. Trying to run it gives undefined behavior - in my case, trying to construct i goes into an infinite search for element value 0.
In C++, there's values on the stack, there's values on the heap and there's temporary values (I genuinely apologize to anyone who knows C++ for this statement).
Values on the heap have permanent addresses which you can pass around freely.
Values on the stack have temporary addresses which are valid until
the end of the block.
Temporary values either don't have addresses
(as your compiler warns you) or have a valid address for the duration
of the expression they're used for.
You're using such a temporary to initialize i, and trying to store and use the address of a temporary. This is an error and to fix it you can create your "temporary" array on the stack if you don't plan to use i outside of the block where your array will be.
Or you can create your array on the heap, use its address to initialize i, and remember to explicitly delete your array when you're done with it.
I recommend reading https://isocpp.org/faq and getting familiar with lifetime of variables and memory management before attempting to fix this code. It should give you a much better idea of what you need to do to make your code do what you want it to do.
Best of luck.

Use a string as a char

I have been given this definitions, the function should return what is in info->phrase. However info->phrase can contain a string in which case I can only make it return the first char on info->phrase. Is there a way to make a string compatible with the char type? I am new to c++.
struct rep_info {
int num;
char *phrase;
};
I´ve tried few thing but get type errors, this was my latest attempt
char *phrase_info(rep_info info) {
char text[std::strlen(info->phrase) + 1];
text = info->phrase;
return text;
}
Since you said you have been given these definitions, let's fix the problem with the current setup first. Looking at your function, you are trying to copy into this local array (incorrectly I might add), and return this local variable. There are a number of things wrong with this, including the syntax and the fact that the local variable is destroyed when the function exits.
If you just need to get the value of the phrase member variable, the simplest solution would be to just access the member variable directly and return it:
char *phrase_info(rep_info info) {
return info.phrase; //since info is not a pointer, use the '.' accessor
}
If you mean to pass a pointer to the function, you would re-write it like this:
char *phrase_info(rep_info *info) {
return info->phrase;
}
But it seems like you feel the need to copy the contents of info->phrase into a new memory space? If so, then you would do something like this where you first allocate new memory and return this buffer:
char *phrase_info(rep_info *info) {
char *buf = new char[std::strlen(info->phrase) + 1];
std::strcpy(buf,info->phrase); //copies info->phrase into buf
return buf;
}
You would then need to use delete on the returned memory value to clean up the memory allocated by new, otherwise you will have a memory leak.
Overall, all the above solution would potentially solve the problem given some parameters you haven't made clear. To round this out, this should be written more like:
class rep_info {
private:
int num;
std::string phrase;
public:
rep_info(int n, std::string p) : num(n), phrase(p) {}
std::string get_phrase() { return phrase; }
// other functions
};
//later in the code
rep_info info(...);
info.get_phrase();
Ideally, you would wrap these member variables into their own object with corresponding member functions that can get and set these values. Moreover, for handling strings in C++, std::string is the preferred option for storing, copying, modifying, etc. strings over the older char * C-style string.

Returning boost::interprocess memory-mapped file from function?

How can I put this code in to a function so that I pass a file path and it returns the file-mapped bytes in to a char array? Whenever I have tried I can never read the contents once the function finishes?
using boost::interprocess;
using boost;
boost::shared_ptr<char> getBytes(const char* FilePath){
shared_ptr<file_mapping> fm(new file_mapping(FilePath, read_only));
shared_ptr<mapped_region> region(new mapped_region(*fm, read_only));
shared_ptr<char> bytes(static_cast<char*>(region->get_address()));
return bytes;
}
You probably need to go about your objective quite differently! Clearly you don't want to just delete the pointer to the memory mapped array which is what the boost::shared_ptr<char> initialized with the pointer to the base address would do. In fact, you probably should not release that pointer at all.
The other two objects you create will go out of scope when getBytes() is exited but these are the objects which actually cling to the shared memory. What you might want to do is to put the file_mapping and the mapped_region together into an object which is put into the returned boost::shared_ptr<char> as a deleter object: this way these two objects would live long enough to keep the pointed to array alive. Upon the deleter function being called the two objects would be released. Here is how this would roughly look like although I haven't checked whether these are indeed the correct interfaces:
struct shared_memory_deleter
{
shared_memory_deleter(char const* file)
: d_fm(new file_mapping(file, read_only))
, d_region(new mapped_region(*fm, read_only))
{
}
void operator()(char*) {
this->d_region.reset(0);
this->d_fm.reset(0);
}
shared_ptr<file_mapping> d_fm;
shared_ptr<mapped_region> d_region);
};
boost::shared_ptr<char> getBytes(const char* FilePath){
shared_memory_deleter deleter(FilePath);
shared_ptr<char> bytes(deleter.d_region->get_address(), deleter);
return bytes;
}
I'm not sure if this would work but it has, at least, a chance. It is probably not a good idea to do something like this. Instead, you are probably much better off wrapping the logic into an object and not using any shared pointers at all:
class shared_memory
{
public:
shared_memory(char const* name)
: d_file(name, read_only)
, d_region(d_file, read_only)
{
}
char const* buffer() const { return d_region.get_address(); }
};

Temporary function arguments that last during scope containing function call

Consider a typical function that fills in a buffer:
const char* fillMyBuffer( const char* buf, int size );
Suppose this function fills the buffer with some useful data, that I want to use almost immediately after the call, and then I want to get rid of the buffer.
An efficient way of doing this is to allocate on the stack:
doStuff();
{
char myBuf[BUF_LEN];
const char* pBuf = fillMyBuffer( myBuf, BUF_LEN );
processBuffer( pBuf );
}
doOtherStuff();
So this is great for my library because the buffer is allocated on the stack - being essentially no cost to allocate, use and discard. It lasts the entire scope of the containing braces.
But I have a library where I do this pattern all the time. I'd like to automate this a little. Ideally I'd like code that looks like this:
doStuff();
{
// tricky - the returned buffer lasts the entire scope of the braces.
const char* pBuf = fillMyBufferLocal();
processBuffer( pBuf );
}
doOtherStuff();
But how to achieve this?
I did the following, which seems to work, but I know is counter to the standard:
class localBuf
{
public:
operator char* () { return &mBuf[0]; }
char mBuf[BUF_LEN];
};
#define fillMyBufferLocal() fillMyBuffer( localBuf(), BUF_LEN );
As a practical matter, the buffer is lasting on the stack during the entire lifetime of the containing braces. But the standard says that the object only has to last until the function returns. E.g. technically its just as unsafe as if I'd allocated the buffer on the stack inside the function.
Is there a safe way to achieve this?
I would generally recommend your original solution. It separates the allocation of the buffer from filling it. However, if you want to implement this fillMyBufferLocal alternative, it will have to dynamically allocate the buffer and return a pointer to it. Of course, if you return a raw pointer to dynamically allocated memory, it's very unclear that the memory should later be destroyed. Instead, return a smart pointer that encapsulates the appropriate ownership:
std::unique_ptr<char[]> fillMyBufferLocal()
{
std::unique_ptr<char[]> buffer(new char[BUF_LEN]);
// Fill it
return buffer;
}
Then you can use it like so:
auto buffer = fillMyBufferLocal();
processBuffer(buffer.get());
I do not think you should want to do this. It just makes the code harder to understand.
Automatic storage duration means that when an object goes out of scope, it is destroyed. Here you want trick the system into something that behaves like creating an object with automatic storage duration (i.e. allocates on the stack), but without respecting the corresponding rules (i.e. without being destroyed when returning from fillMyBuffer()).
The closest, meaningful thing you can do in my opinion is to use a global buffer that fillMyBuffer() can reuse, or let that buffer be a static variable inside fillMyBuffer(). For instance:
template<int BUF_LEN = 255>
const char* fill_my_buffer()
{
static char myBuf[BUF_LEN];
// Fill...
return myBuf;
}
However, I strongly suggest reconsidering your requirements, and either:
Keep using the solution you are currently adopting (i.e. transparently allocate on the stack); or
Allocate the buffer dynamically inside fillMyBuffer() and return a RAII wrapper (like a unique_ptr) to this dynamically allocated buffer.
UPDATE:
As a last, desperate attempt, you could define a macro that does the allocation and the invocation of fill_my_buffer() for you:
#define PREPARE_BUFFER(B, S) \
char buffer[S]; \
const char* B = fill_my_buffer(buffer, S);
You would then use it this way:
PREPARE_BUFFER(pBuf, 256);
processBuffer(pBuf);
You could write a class that contains a stack-based buffer and converts to char const *, e.g.
void processBuffer(char const * buffer);
char const * fillMyBuffer(char const * buffer, int size);
int const BUF_LEN = 123;
class Wrapper
{
public:
Wrapper(char const * (*fill)(char const *, int))
{
fill(&m_buffer[0], m_buffer.size());
}
operator char const * () const { return &m_buffer[0]; }
private:
std::array<char, BUF_LEN> m_buffer;
};
void foo()
{
Wrapper wrapper(fillMyBuffer);
processBuffer(wrapper);
}