I'm trying to implement connected component labeling in OpenCV using recursive algorithm. I'm not sure what I have implemented wrongly. the algorithm is like this
B is Binary Image, LB is Labelled Binary Image
procedure connected_component(B,LB)
{
LB:=negate(B);
label:=0;
findComponents(LB,label);
display(LB);
}
procedure findComponents(LB,label)
{
for L:=0 to maxRow
for P:= 0 to maxCol
if LB[L,P] == -1 then
{
label:=label+1;
search(LB,label,L,P);
}
}
procedure search(LB,label,L,P)
{
LB[L,P]:=label;;
Nset:= neighbours(L,P);
for each(L',P') in Nset
{
if(LB[L',P'] == -1) then
search(LB,label,L',P');
}
}
I have written the code in OpenCV as follows
#include<iostream>
#include<opencv2\opencv.hpp>
using namespace cv;
using namespace std;
void findComponents(Mat res, int label);
void search(Mat res, int label, int row, int col);
int main()
{
Mat src = imread("D:/My Library/test/peppers.bmp",0);
src.convertTo(src,CV_8S);
Mat th = src.clone();
threshold(src,th,128,255,CV_8S);
Mat res = th.clone();
for(int i=0;i<res.rows;i++)
for(int j=0;j<res.cols;j++)
res.at<signed char>(i,j) = 0 - th.at<signed char>(i,j);
int label = 0;
findComponents(res,label);
waitKey(0);
return 0;
}
void findComponents(Mat res, int label)
{
for (int i = 1; i < res.rows - 1; i++)
{
for (int j = 1; j < res.cols - 1; j++)
{
if (res.at<signed char>(i, j) == -255)
{
label++;
search(res, label, i, j);
}
}
}
imshow("CC Image", res);
}
void search(Mat res, int label, int row, int col)
{
res.at<signed char>(row, col) = label;
if (res.at<signed char>(row, col + 1) == -255) search(res, label, row, col + 1);
if (res.at<signed char>(row + 1, col + 1) == -255) search(res, label, row+1, col + 1);
if (res.at<signed char>(row + 1, col) == -255) search(res, label, row + 1, col);
if (res.at<signed char>(row + 1, col - 1) == -255) search(res, label, row + 1, col - 1);
else return;
}
The code is does not works. What have I made wrong in implementing the algorithm? I'm new to OpenCV.
You have a few problems in your code. The most important is that you shouldn't use CV_8S matrices. Why?
They have values limited in range [-128, 127]
checking for values equal to -255 won't work correctly
you are limited to at most 127 connected components per image
threshold won't work as expected
maybe others...
I re-implemented your code to correct for these issues:
you should use CV_32S for your labels.
you should account for borders
you can use Mat_<Tp> for easy access, instead of .at<Tp>
Below is the code. I used applyCustomColorMap to better visualize results.
#include <opencv2/opencv.hpp>
#include <algorithm>
#include <vector>
#include <stack>
using namespace cv;
void search(Mat1i& LB, int label, int r, int c)
{
LB(r, c) = label;
// 4 connected
if ((r - 1 > 0) && LB(r - 1, c) == -1) { search(LB, label, r - 1, c ); }
if ((r + 1 < LB.rows) && LB(r + 1, c) == -1) { search(LB, label, r + 1, c ); }
if ((c - 1 > 0) && LB(r, c - 1) == -1) { search(LB, label, r , c - 1); }
if ((c + 1 < LB.cols) && LB(r, c + 1) == -1) { search(LB, label, r , c + 1); }
// 8 connected
if ((r - 1 > 0) && (c - 1 > 0) && LB(r - 1, c - 1) == -1) { search(LB, label, r - 1, c - 1); }
if ((r - 1 > 0) && (c + 1 < LB.cols) && LB(r - 1, c + 1) == -1) { search(LB, label, r - 1, c + 1); }
if ((r + 1 < LB.rows) && (c - 1 > 0) && LB(r + 1, c - 1) == -1) { search(LB, label, r + 1, c - 1); }
if ((r + 1 < LB.rows) && (c + 1 < LB.cols) && LB(r + 1, c + 1) == -1) { search(LB, label, r + 1, c + 1); }
}
int findComponents(Mat1i& LB)
{
int label = 0;
for (int r = 0; r < LB.rows; ++r) {
for (int c = 0; c < LB.cols; ++c) {
if (LB(r, c) == -1) {
++label;
search(LB, label, r, c);
}
}
}
return label;
}
int connected_components(const Mat1b& B, Mat1i& LB)
{
// Foreground is > 0
// Background is 0
LB = Mat1i(B.rows, B.cols, 0);
LB.setTo(-1, B > 0);
// Foreground labels are initialized to -1
// Background labels are initialized to 0
return findComponents(LB);
}
void applyCustomColormap(const Mat1i& src, Mat3b& dst);
int main()
{
// Load grayscale image
Mat1b img = imread("path_to_image", IMREAD_GRAYSCALE);
// Binarize the image
Mat1b bin;
threshold(img, bin, 127, 255, THRESH_BINARY);
// Find labels
Mat1i labels;
int n_labels = connected_components(bin, labels);
// Show results
Mat3b out;
applyCustomColormap(labels, out);
imshow("Labels", out);
waitKey();
return 0;
}
void applyCustomColormap(const Mat1i& src, Mat3b& dst)
{
// Create JET colormap
double m;
minMaxLoc(src, nullptr, &m);
m++;
int n = ceil(m / 4);
Mat1d u(n * 3 - 1, 1, double(1.0));
for (int i = 1; i <= n; ++i) {
u(i - 1) = double(i) / n;
u((n * 3 - 1) - i) = double(i) / n;
}
std::vector<double> g(n * 3 - 1, 1);
std::vector<double> r(n * 3 - 1, 1);
std::vector<double> b(n * 3 - 1, 1);
for (int i = 0; i < g.size(); ++i)
{
g[i] = ceil(double(n) / 2) - (int(m) % 4 == 1 ? 1 : 0) + i + 1;
r[i] = g[i] + n;
b[i] = g[i] - n;
}
g.erase(std::remove_if(g.begin(), g.end(), [m](double v){ return v > m; }), g.end());
r.erase(std::remove_if(r.begin(), r.end(), [m](double v){ return v > m; }), r.end());
b.erase(std::remove_if(b.begin(), b.end(), [](double v){ return v < 1.0; }), b.end());
Mat1d cmap(m, 3, double(0.0));
for (int i = 0; i < r.size(); ++i) { cmap(int(r[i]) - 1, 0) = u(i); }
for (int i = 0; i < g.size(); ++i) { cmap(int(g[i]) - 1, 1) = u(i); }
for (int i = 0; i < b.size(); ++i) { cmap(int(b[i]) - 1, 2) = u(u.rows - b.size() + i); }
Mat3d cmap3 = cmap.reshape(3);
Mat3b colormap;
cmap3.convertTo(colormap, CV_8U, 255.0);
// Apply color mapping
dst = Mat3b(src.rows, src.cols, Vec3b(0, 0, 0));
for (int r = 0; r < src.rows; ++r)
{
for (int c = 0; c < src.cols; ++c)
{
dst(r, c) = colormap(src(r, c));
}
}
}
Please take care that a recursive implementation is not a good idea for labeling:
it's quite slow
it may fail if you go too deep with recursion, i.e. your components are very big
I suggest to use another algorithm. Here is an implementation of (almost) your algorithm in iterative form. I strongly recommend this one over yours. It can be trivially modified to output the points for each connected component as vector<vector<Point>>, just like cv::findContours would do:
int connected_components2(const Mat1b& img, Mat1i& labels)
{
Mat1b src = img > 0;
labels = Mat1i(img.rows, img.cols, 0);
int label = 0;
int w = src.cols;
int h = src.rows;
int i;
cv::Point point;
for (int y = 0; y<h; y++)
{
for (int x = 0; x<w; x++)
{
if ((src(y, x)) > 0) // Seed found
{
std::stack<int, std::vector<int>> stack2;
i = x + y*w;
stack2.push(i);
// Current component
std::vector<cv::Point> comp;
while (!stack2.empty())
{
i = stack2.top();
stack2.pop();
int x2 = i%w;
int y2 = i / w;
src(y2, x2) = 0;
point.x = x2;
point.y = y2;
comp.push_back(point);
// 4 connected
if (x2 > 0 && (src(y2, x2 - 1) != 0))
{
stack2.push(i - 1);
src(y2, x2 - 1) = 0;
}
if (y2 > 0 && (src(y2 - 1, x2) != 0))
{
stack2.push(i - w);
src(y2 - 1, x2) = 0;
}
if (y2 < h - 1 && (src(y2 + 1, x2) != 0))
{
stack2.push(i + w);
src(y2 + 1, x2) = 0;
}
if (x2 < w - 1 && (src(y2, x2 + 1) != 0))
{
stack2.push(i + 1);
src(y2, x2 + 1) = 0;
}
// 8 connected
if (x2 > 0 && y2 > 0 && (src(y2 - 1, x2 - 1) != 0))
{
stack2.push(i - w - 1);
src(y2 - 1, x2 - 1) = 0;
}
if (x2 > 0 && y2 < h - 1 && (src(y2 + 1, x2 - 1) != 0))
{
stack2.push(i + w - 1);
src(y2 + 1, x2 - 1) = 0;
}
if (x2 < w - 1 && y2>0 && (src(y2 - 1, x2 + 1) != 0))
{
stack2.push(i - w + 1);
src(y2 - 1, x2 + 1) = 0;
}
if (x2 < w - 1 && y2 < h - 1 && (src(y2 + 1, x2 + 1) != 0))
{
stack2.push(i + w + 1);
src(y2 + 1, x2 + 1) = 0;
}
}
++label;
for (int k = 0; k <comp.size(); ++k)
{
labels(comp[k]) = label;
}
}
}
}
return label;
}
Related
I am encountering an issue with my code. I aim to generate three seeds at different locations in the image and observe the pixels growing. I am using the onMouse function to select the areas, however, only the last point is being recognized. What changes do I need to make for this code to function correctly?
Pont seed,seed2,seed3;
bool clicked = false;
void onmouse(int event, int x, int y, int flags, void* userdata)
{
if (event == EVENT_LBUTTONDOWN) {
seed = Point2i(y, x);
seed2 = Point2i(y, x);
seed3 = Point2i(y, x);
clicked = true;
}
}
int main() {
string path = "C:/img_4.jpg";
Mat im_gray = imread(path, IMREAD_GRAYSCALE);
Mat im_new;
int threshold = 50;
imshow("Image", im_gray);
setMouseCallback("Image", onmouse, NULL);
while (!clicked) {
waitKey(0);
}
regionGrowing_teste1(im_gray, im_new, seed, seed2, seed3, threshold);
imshow("Segmented", im_new);
waitKey(0);
return 0;
}
Mat regionGrowing_teste1(Mat& src, Mat& dst, Point2i seed1, Point2i seed2, Point2i seed3, int threshold) {
dst = Mat::zeros(src.rows, src.cols, CV_8UC1);
vector<Point2i> queue1, queue2, queue3;
queue1.push_back(seed1);
queue2.push_back(seed2);
queue3.push_back(seed3);
int intensity1 = (int)src.at<uchar>(seed1);
int intensity2 = (int)src.at<uchar>(seed2);
int intensity3 = (int)src.at<uchar>(seed3);
int x, y;
while (!queue1.empty() || !queue2.empty() || !queue3.empty()) {
if (!queue1.empty()) {
Point2i p = queue1.back();
queue1.pop_back();
x = p.x; y = p.y;
if (x > 0 && x < src.rows - 1 && y > 0 && y < src.cols - 1) {
if ((int)dst.at<uchar>(x, y) == 0) {
int intensityNeighbor = (int)src.at<uchar>(x, y);
if (abs(intensity1 - intensityNeighbor) < threshold) {
dst.at<uchar>(x, y) = 255;
queue1.push_back(Point2i(x + 1, y));
queue1.push_back(Point2i(x - 1, y));
queue1.push_back(Point2i(x, y + 1));
queue1.push_back(Point2i(x, y - 1));
}
}
}
}
if (!queue2.empty()) {
Point2i p = queue2.back();
queue2.pop_back();
x = p.x; y = p.y;
if (x > 0 && x < src.rows - 1 && y > 0 && y < src.cols - 1) {
if ((int)dst.at<uchar>(x, y) == 0) {
int intensityNeighbor = (int)src.at<uchar>(x, y);
if (abs(intensity2 - intensityNeighbor) < threshold) {
dst.at<uchar>(x, y) = 255;
queue2.push_back(Point2i(x + 1, y));
queue2.push_back(Point2i(x - 1, y));
queue2.push_back(Point2i(x, y + 1));
queue2.push_back(Point2i(x, y - 1));
}
}
}
}
// process points in queue3
if (!queue3.empty()) {
Point2i p = queue3.back();
queue3.pop_back();
x = p.x; y = p.y;
if (x > 0 && x < src.rows - 1 && y > 0 && y < src.cols - 1) {
if ((int)dst.at<uchar>(x, y) == 0) {
int intensityNeighbor = (int)src.at<uchar>(x, y);
if (abs(intensity3 - intensityNeighbor) < threshold) {
dst.at<uchar>(x, y) = 255;
queue3.push_back(Point2i(x + 1, y));
queue3.push_back(Point2i(x - 1, y));
queue3.push_back(Point2i(x, y + 1));
queue3.push_back(Point2i(x, y - 1));
}
}
}
}
}
for (int i = 0; i < src.rows; i++) {
for (int j = 0; j < src.cols; j++) {
if (dst.at<uchar>(i, j) == 0) {
dst.at<uchar>(i, j) = src.at<uchar>(i, j);
}
}
}
return dst;
}
I hope to see the placement of three points and watch them grow.
I want to implement region growing algorithm for components Cr and Cb (YCbCr) (separate and combined) with manually chosen seed point (mouse click).
At the moment I have two functions that implement region growing for the H component in the HSV color space.
bool isOk(int new_x, int new_y, int width, int height)
{
if (new_x < 0 || new_y < 0 || new_x >= width || new_y >= height)
return false;
return true;
}
void lab04_MouseCallback(int event, int x, int y, int flags, void* param)
{
Mat* src = (Mat*)param;
int height = (*src).rows;
int width = (*src).cols;
if (event == CV_EVENT_LBUTTONDOWN)
{
printf("Seed point(x,y): %d,%d\n", x, y);
Mat labels = Mat::zeros((*src).size(), CV_16UC1);
int w = 3,
hue_avg = 0,
inf_x, sup_x,
inf_y, sup_y,
cnt = 0;
inf_x = (x - w < 0) ? 0 : x - w;
inf_y = (y - w < 0) ? 0 : y - w;
sup_x = (x + w >= width) ? (width - 1) : x + w;
sup_y = (y + w >= height) ? (height - 1) : y + w;
printf("inf x: %d sup x: %d --- inf y: %d sup y: %d\n", inf_x, sup_x, inf_y, sup_y);
for (int i = inf_y; i <= sup_y; ++i)
{
for (int j = inf_x; j <= sup_x; ++j)
{
hue_avg += (*src).data[i * width + j];
//printf("H at <%d, %d> is %d\n", i, j, (*src).data[i * width + j]);
}
}
hue_avg /= (sup_x - inf_x + 1) * (sup_y - inf_y + 1);
printf("Hue average: %d\n\n", hue_avg);
int k = 1, N = 1, hue_std = 10;
int konst = 3;
int T = konst * (float)hue_std;
queue<Point> Q;
Q.push(Point(x, y));
while (!Q.empty())
{
int dx[8] = { -1, 0, 1, 1, 1, 0, -1, -1 };
int dy[8] = { -1, -1, -1, 0, 1, 1, 1, 0 };
Point temp = Q.front();
Q.pop();
for (int dir = 0; dir < 8; ++dir)
{
int new_x = temp.x + dx[dir];
int new_y = temp.y + dy[dir];
if (isOk(new_x, new_y, width, height))
{
//printf("(%d, %d)\n", new_x, new_y);
if (labels.at<ushort>(new_y, new_x) == 0)
{
//printf("labels(%d, %d) = %hu\n", new_x, new_y, labels.at<ushort>(new_y, new_x));
if (abs((*src).at<uchar>(new_y, new_x) - hue_avg) < T)
{
//printf("this one\n");
Q.push(Point(new_x, new_y));
labels.at<ushort>(new_y, new_x) = k;
hue_avg = ((N * hue_avg) + (*src).at<uchar>(new_y, new_x)) / (N + 1);
++N;
}
}
}
}
}
Mat dst = (*src).clone();
for (int i = 0; i < height; i++)
{
for (int j = 0; j < width; j++)
{
if (labels.at<ushort>(i, j) == 1)
{
dst.at<uchar>(i, j) = 255;
}
else
{
dst.at<uchar>(i, j) = 0;
}
}
}
imshow("dst", dst);
}
}
void lab04_MouseClick()
{
Mat src;
Mat hsv;
// Read image from file
char fname[MAX_PATH];
while (openFileDlg(fname))
{
src = imread(fname);
int height = src.rows;
int width = src.cols;
//Create a window
namedWindow("My Window", 1);
// Aplicare FTJ gaussian pt. eliminare zgomote: essential sa il aplicati
GaussianBlur(src, src, Size(5, 5), 0, 0);
// Componenta de culoare Hue a modelului HSV
Mat H = Mat(height, width, CV_8UC1);
// definire pointeri la matricea (8 biti/pixeli) folosita la stocarea
// componentei individuale H
uchar* lpH = H.data;
cvtColor(src, hsv, CV_BGR2HSV); // conversie RGB -> HSV
// definire pointer la matricea (24 biti/pixeli) a imaginii HSV
uchar* hsvDataPtr = hsv.data;
for (int i = 0; i < height; i++)
{
for (int j = 0; j < width; j++)
{
// index in matricea hsv (24 biti/pixel)
int hi = i * width * 3 + j * 3;
int gi = i * width + j; // index in matricea H (8 biti/pixel)
lpH[gi] = hsvDataPtr[hi] * 510 / 360; // lpH = 0 .. 255
}
}
//set the callback function for any mouse event
setMouseCallback("My Window", lab04_MouseCallback, &H);
//show the image
imshow("My Window", src);
// Wait until user press some key
waitKey(0);
}
}
How can I change this code to be for components Cr and Cb?
So, I decided to create a simple Canny edge detector just as exercise before biting harder topics with image processing.
I tried to follow the typical path of Canny:
1. Grayscaling the image
2. Gaussian filter to blur the noise
3. Edge detection - I use both Sobel and Scharr
4. Edge thinning - I used non-maximum suppression in direction depending on gradient direction - vertical, horizontal, 45 diagonal or 135 diagonal
5. Hysteresis
I somehow managed to get it working with Scharr's detection but I have recurring problem with double or multiple edges, espacially with Sobel. I can't really find a set of parameters which will make it work.
My algorithm for Sobel:
void sobel(sf::Image &image, pixldata **garray, float division)
{
int t1 = 0, t2 = 0, t3 = 0, t4 = 0;
sf::Color color;
sf::Image bufor;
bufor.create(image.getSize().x, image.getSize().y, sf::Color::Cyan);
for (int i = 1;i < image.getSize().y - 1;i++)
{
for (int j = 1;j < image.getSize().x - 1;j++)
{
t1 = (- image.getPixel(j - 1, i - 1).r - 2 * image.getPixel(j - 1, i).r - image.getPixel(j - 1, i + 1).r + image.getPixel(j + 1, i - 1).r + 2 * image.getPixel(j + 1, i).r + image.getPixel(j + 1, i + 1).r) / division;
t2 = (- image.getPixel(j - 1, i).r - 2 * image.getPixel(j - 1, i + 1).r - image.getPixel(j, i + 1).r + image.getPixel(j + 1, i).r + 2 * image.getPixel(j + 1, i - 1).r + image.getPixel(j, i - 1).r) / division;
t3 = (- image.getPixel(j - 1, i + 1).r - 2 * image.getPixel(j, i + 1).r - image.getPixel(j + 1, i + 1).r + image.getPixel(j - 1, i - 1).r + 2 * image.getPixel(j, i - 1).r + image.getPixel(j + 1, i - 1).r) / division;
t4 = (- image.getPixel(j, i + 1).r - 2 * image.getPixel(j + 1, i + 1).r - image.getPixel(j + 1, i).r + image.getPixel(j - 1, i).r + 2 * image.getPixel(j - 1, i - 1).r + image.getPixel(j, i - 1).r) / division;
color.r = (abs(t1) + abs(t2) + abs(t3) + abs(t4));
color.g = (abs(t1) + abs(t2) + abs(t3) + abs(t4));
color.b = (abs(t1) + abs(t2) + abs(t3) + abs(t4));
garray[j][i].gx = t1;
garray[j][i].gy = t3;
garray[j][i].gtrue = sqrt(t1*t1 + t2*t2 + t3*t3 + t4*t4);
garray[j][i].gsimpl = sqrt(t1*t1 + t2*t2);
t1 = abs(t1);
t2 = abs(t2);
t3 = abs(t3);
t4 = abs(t4);
if (t1 > t4 && t1 > t3 && t1 > t2)
garray[j][i].fi = 0;
else if (t2 > t4 && t2 > t3 && t2 > t1)
garray[j][i].fi = 45;
else if (t3 > t4 && t3 > t2 && t3 > t1)
garray[j][i].fi = 90;
else if (t4 > t3 && t4 > t2 && t4 > t1)
garray[j][i].fi = 135;
else
garray[j][i].fi = 0;
if (sqrt(t1*t1 + t2*t2 + t3*t3 + t4*t4) < 0)
{
color.r = 0;
color.g = 0;
color.b = 0;
}
else if (sqrt(t1*t1 + t2*t2 + t3*t3 + t4*t4) > 255)
{
color.r = 255;
color.g = 255;
color.b = 255;
}
else
{
color.r = sqrt(t1*t1 + t2*t2 + t3*t3 + t4*t4);
color.g = sqrt(t1*t1 + t2*t2 + t3*t3 + t4*t4);
color.b = sqrt(t1*t1 + t2*t2 + t3*t3 + t4*t4);
}
bufor.setPixel(j, i, color);
}
}
image.copy(bufor, 0, 0);
}
Code for Scharr differs only in multiplying the pixels' values.
t1 = (-3 * image.getPixel(j - 1, i - 1).r - 10 * image.getPixel(j - 1, i).r - 3 * image.getPixel(j - 1, i + 1).r + 3 * image.getPixel(j + 1, i - 1).r + 10 * image.getPixel(j + 1, i).r + 3 * image.getPixel(j + 1, i + 1).r) / division;
t2 = (-3 * image.getPixel(j - 1, i).r - 10 * image.getPixel(j - 1, i + 1).r - 3 * image.getPixel(j, i + 1).r + 3 * image.getPixel(j + 1, i).r + 10 * image.getPixel(j + 1, i - 1).r + 3 * image.getPixel(j, i - 1).r) / division;
t3 = (-3 * image.getPixel(j - 1, i + 1).r - 10 * image.getPixel(j, i + 1).r - 3 * image.getPixel(j + 1, i + 1).r + 3 * image.getPixel(j - 1, i - 1).r + 10 * image.getPixel(j, i - 1).r + 3 * image.getPixel(j + 1, i - 1).r) / division;
t4 = (-3 * image.getPixel(j, i + 1).r - 10 * image.getPixel(j + 1, i + 1).r - 3 * image.getPixel(j + 1, i).r + 3 * image.getPixel(j - 1, i).r + 10 * image.getPixel(j - 1, i - 1).r + 3 * image.getPixel(j, i - 1).r) / division;
Thinning code:
void intelligentThin(sf::Image &image, int radius, pixldata **garray)
{
int xmax = image.getSize().x;
int ymax = image.getSize().y;
bool judgeandjury = true;
for (int i = 0;i < xmax;i++)
{
int leftBound = 0, rightBound = 0, ceilBound = 0, bottomBound = 0;
if (i < radius)
{
leftBound = 0;
rightBound = i + radius;
}
else if (i >= xmax - radius)
{
leftBound = i - radius;
rightBound = xmax - 1;
}
else
{
leftBound = i - radius;
rightBound = i + radius;
}
for (int j = 0;j < ymax;j++)
{
if (j < radius)
{
ceilBound = 0;
bottomBound = j + radius;
}
else if (j >= ymax - radius)
{
ceilBound = j - radius;
bottomBound = ymax - 1;
}
else
{
ceilBound = j - radius;
bottomBound = j + radius;
}
if (garray[i][j].fi == 0)
{
for (int t = leftBound; t <= rightBound; t++)
{
if ((image.getPixel(t, j).r >= image.getPixel(i, j).r) && (t != i))
{
judgeandjury = false;
}
}
}
else if (garray[i][j].fi == 135)
{
for (int l = leftBound, t = ceilBound; (l <= rightBound && t <= bottomBound); l++, t++)
{
if ((image.getPixel(l, t).r >= image.getPixel(i, j).r) && (t != j))
{
judgeandjury = false;
}
}
}
else if (garray[i][j].fi == 90)
{
for (int t = ceilBound; t <= bottomBound; t++)
{
if ((image.getPixel(i, t).r >= image.getPixel(i, j).r) && (t != j))
{
judgeandjury = false;
}
}
}
else if (garray[i][j].fi == 45)
{
for (int l = rightBound, t = ceilBound; (l >= leftBound && t <= bottomBound); l--, t++)
{
if ((image.getPixel(l, t).r >= image.getPixel(i, j).r) && (t != j))
{
judgeandjury = false;
}
}
}
if (judgeandjury == false)
{
image.setPixel(i, j, sf::Color::Black);
}
judgeandjury = true;
}
leftBound = rightBound = 0;
}
}
Hysteresis code:
void hysteresis(sf::Image &image, int radius, int uplevel, int lowlevel)
{
int xmax = image.getSize().x;
int ymax = image.getSize().y;
bool judgeandjury = false;
sf::Image bufor;
bufor.create(image.getSize().x, image.getSize().y, sf::Color::Cyan);
for (int i = 0;i < xmax;i++)
{
int leftBound = 0, rightBound = 0, ceilBound = 0, bottomBound = 0;
if (i < radius)
{
leftBound = 0;
rightBound = i + radius;
}
else if (i >= xmax - radius)
{
leftBound = i - radius;
rightBound = xmax - 1;
}
else
{
leftBound = i - radius;
rightBound = i + radius;
}
for (int j = 0;j < ymax;j++)
{
int currentPoint = image.getPixel(i, j).r;
if (j < radius)
{
ceilBound = 0;
bottomBound = j + radius;
}
else if (j >= ymax - radius)
{
ceilBound = j - radius;
bottomBound = ymax - 1;
}
else
{
ceilBound = j - radius;
bottomBound = j + radius;
}
if (currentPoint > uplevel)
{
judgeandjury = true;
}
else if (currentPoint > lowlevel)
{
for (int t = leftBound; t <= rightBound; t++)
{
for (int l = ceilBound; l <= bottomBound; l++)
{
if (image.getPixel(t, l).r > uplevel)
{
judgeandjury = true;
}
}
}
}
else judgeandjury = false;
if (judgeandjury == true)
{
bufor.setPixel(i, j, sf::Color::White);
}
else
{
bufor.setPixel(i, j, sf::Color::Black);
}
judgeandjury = false;
currentPoint = 0;
}
leftBound = rightBound = 0;
}
image.copy(bufor, 0, 0);
}
The results are quite unsatisfactionary for Sobel:
Thinning the Sobel
Sobel after hysteresis
With Scharr the results are way better:
Thinned Scharr
Scharr after hysteresis
Set of parameters:
#define thinsize 1
#define scharrDivision 1
#define sobelDivision 1
#define hysteresisRadius 1
#define level 40
#define hysteresisUpperLevelSobel 80
#define hysteresisLowerLevelSobel 60
#define hysteresisUpperLevelScharr 200
#define hysteresisLowerLevelScharr 100
As you can see, there is a problem with Sobel, which generate double edges. Scharr also generates some noise but I think it's acceptable. Of course, it always can get better, if someone could give some advice :)
What is the cause of this behaviour? Does it result from my mistakes or poor algorithms or maybe is it just a case of parameters?
EDIT:
posting main()
sf::Image imydz;
imydz.loadFromFile("lena.jpg");
int x = imydz.getSize().x;
int y = imydz.getSize().y;
pixldata **garray = new pixldata *[x];
for (int i = 0;i < x;i++)
{
garray[i] = new pixldata[y];
}
monochrome(imydz);
gauss(imydz, radius, sigma);
//sobel(imydz, garray, sobelDivision);
scharr(imydz, garray, scharrDivision);
intelligentThin(imydz, thinsize, garray);
hysteresis(imydz, hysteresisRadius, hysteresisUpperLevel, hysteresisLowerLevel);
Second edit - repaired suppression:
sf::Image bufor;
bufor.create(image.getSize().x, image.getSize().y, sf::Color::Black);
for (int i = 1;i < xmax - 1;i++)
{
for (int j = 1;j < ymax - 1;j++)
{
if (garray[i][j].fi == 0)
{
if (((image.getPixel(i, j).r >= image.getPixel(i + 1, j).r) && (image.getPixel(i, j).r > image.getPixel(i - 1, j).r)) ||
((image.getPixel(i, j).r > image.getPixel(i + 1, j).r) && (image.getPixel(i, j).r >= image.getPixel(i - 1, j).r)))
{
judgeandjury = true;
}
else judgeandjury = false;
}
...
if (judgeandjury == false)
{
bufor.setPixel(i, j, sf::Color::Black);
}
else bufor.setPixel(i, j, image.getPixel(i, j));
judgeandjury = false;
}
}
image.copy(bufor, 0, 0);
Repaired Scharr on Lena
It seems strange
Another test image - strange results
Before binarization
Ready gears
I haven't read your whole code in detail, there is much too much code there. But obviously your non-maximum suppression code is wrong. Let's look at what it does for one pixel in the middle of the image, where the gradient is close to 0 degrees:
leftBound = i - radius;
rightBound = i + radius;
// ...
for (int t = leftBound; t <= rightBound; t++)
{
if ((image.getPixel(t, j).r >= image.getPixel(i, j).r) && (t != i))
{
judgeandjury = false; // it's not a maximum: suppress
}
}
// ...
if (judgeandjury == false)
{
image.setPixel(i, j, sf::Color::Black);
}
Here, radius is set to 1 by the calling code. Any other value would be bad, so this is OK. I would remove that as a parameter altogether. Now your loop is:
for (int t = i-1; t <= t+1; t++)
if (t != i)
This means that you hit exactly two values of t. So this should of course be replaced with simpler code that does not loop, it will be more readable.
This is what it now does:
if ( (image.getPixel(i-1, j).r >= image.getPixel(i, j).r)
|| (image.getPixel(i+1, j).r >= image.getPixel(i, j).r)) {
judgeandjury = false; // it's not a maximum: suppress
}
So you suppress the pixel if it is not strictly larger than its neighbors. Looking back at the Wikipedia article, it seems that they suggest the same. But in fact, this is not correct, you want the point to be strictly larger than one of the two neighbors, and larger or equal to the other. This prevents the situation where the gradient happens to be equally strong on two neighboring pixels. The actual maximum can fall right in the middle of two pixels, yielding two pixels on this local maximum gradient with exactly the same value. But let's ignore this case for now, it is possible but not all that likely.
Next, you suppress the maximum... in the input image! This means that, when you reach the next pixel on this line, you will compare its value to this value that was just suppressed. Of course it will be larger, even though it was smaller than the original value at that location. That is, non-maxima will look like maxima because you put a neighboring pixel to 0.
So: write the result of the algorithm to an output image:
if (judgeandjury == true)
{
output.setPixel(i, j, image.getPixel(i, j));
}
...which of course you need to allocate, but you already know that.
Your second problem is in the sobel function, where you compute the gradient magnitude. It clips (saturates) the output. By cutting values of the output above 255 to 255, you create very broad lines along the edges of a constant value. The test of the non-maximum suppression is satisfied at the two edges of this line, but not in the middle, where pixels have the same value as both its neighbors.
To solve this, either:
Use a floating-point buffer to store the gradient magnitude. Here you don’t need to worry about data ranges.
Divide the magnitude by some value such that it will never exceed 255. Now you’re quantifying the magnitude rather than clipping it. Quantizing should be fine in this case.
I strongly recommend that you follow (1). I typically use floating-point—values images for everything, and only convert to 8-bit ints for display. This simplified a lot of things!
I want to implement the harris corner detector. I found this page to be very helpful, since it shows how the detector is implemented using the basic opencv functions (like gaussianBlur and Sobel):
https://compvisionlab.wordpress.com/2013/03/02/harris-interest-point-detection-implementation-opencv/
Now I even want to implement Gaussian Blur and Sobel. If I run my Gaussian or Sobel over some Images it works but in combination with my Corner Detector it does not work. Can anybody help me please. The full Code is below, thx.
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace cv;
using namespace std;
/// Global variables
Mat src, src_gray, dst;
int thresh = 200;
int max_thresh = 255;
char* source_window = "Source Image";
char* corners_window = "Corner Image";
/// Function header
void cornerHarris_demo(int, void*);
void cornerHarrisMe(int, int, double);
int xGradient(Mat, int, int);
int yGradient(Mat, int, int);
void SobelMe(Mat&,Mat&,int,int);
int borderCheck(int M, int x);
void SepGaussian(Mat&, Mat&, int, int);
/** #function main */
int main(int argc, char** argv)
{
/// Load source image and convert it to gray
src = imread("data/a-real-big-church.jpg", 1);
//Mat src_gray(src.size(), CV_8UC1);
cvtColor(src, src_gray, CV_BGR2GRAY);
/// Create a window and a trackbar
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
createTrackbar("Threshold: ", source_window, &thresh, max_thresh, cornerHarris_demo);
imshow(source_window, src);
cornerHarris_demo(0, 0);
waitKey(0);
return(0);
}
/** #function cornerHarris_demo */
void cornerHarris_demo(int, void*)
{
Mat dst_norm, dst_norm_scaled;
/// Detector parameters
int blockSize = 2;
int apertureSize = 3;
double k = 0.04;
/// Detecting corners
cornerHarrisMe(blockSize, apertureSize, k);
/// Normalizing
normalize(dst, dst_norm, 0, 255, NORM_MINMAX, CV_32FC1, Mat());
convertScaleAbs(dst_norm, dst_norm_scaled);
/// Drawing a circle around corners
for (int j = 0; j < dst_norm.rows; j++)
{
for (int i = 0; i < dst_norm.cols; i++)
{
if ((int)dst_norm.at<float>(j, i) > thresh)
{
circle(dst_norm_scaled, Point(i, j), 5, Scalar(255), 2, 8, 0);
}
}
}
/// Showing the result
namedWindow(corners_window, CV_WINDOW_AUTOSIZE);
imshow(corners_window, dst_norm_scaled);
}
void cornerHarrisMe(int blockSize, int apertureSize, double k)
{
Mat x2y2, xy, mtrace, x_der, y_der, x2_der, y2_der, xy_der, x2g_der, y2g_der, xyg_der;
//1: calculate x and y derivative of image via Sobel
SobelMe(src_gray, x_der, 1, 0);
SobelMe(src_gray, y_der, 0, 1);
//2: calculate other three images in M
pow(x_der, blockSize, x2_der);
pow(y_der, blockSize, y2_der);
multiply(x_der, y_der, xy_der);
//3: gaussain
SepGaussian(x2_der, x2g_der, 1, 0);
SepGaussian(y2_der, y2g_der, 0, 1);
SepGaussian(xy_der, xyg_der, 1, 1);
//4. calculating R with k
multiply(x2g_der, y2g_der, x2y2);
multiply(xyg_der, xyg_der, xy);
pow((x2g_der + y2g_der), blockSize, mtrace);
dst = (x2y2 - xy) - k * mtrace;
}
// gradient in the x direction
int xGradient(Mat image, int x, int y)
{
return image.at<uchar>(y - 1, x - 1) +
2 * image.at<uchar>(y, x - 1) +
image.at<uchar>(y + 1, x - 1) -
image.at<uchar>(y - 1, x + 1) -
2 * image.at<uchar>(y, x + 1) -
image.at<uchar>(y + 1, x + 1);
}
// gradient in the y direction
int yGradient(Mat image, int x, int y)
{
return image.at<uchar>(y - 1, x - 1) +
2 * image.at<uchar>(y - 1, x) +
image.at<uchar>(y - 1, x + 1) -
image.at<uchar>(y + 1, x - 1) -
2 * image.at<uchar>(y + 1, x) -
image.at<uchar>(y + 1, x + 1);
}
void SobelMe(Mat& source, Mat& destination, int xOrder, int yOrder){
int gradX, gradY, sum;
destination = source.clone();
if (xOrder == 1 && yOrder == 0){
for (int y = 1; y < source.rows - 1; y++){
for (int x = 1; x < source.cols - 1; x++){
gradX = xGradient(source, x, y);
sum = abs(gradX);
sum = sum > 255 ? 255 : sum;
sum = sum < 0 ? 0 : sum;
destination.at<uchar>(y, x) = sum;
}
}
}
else if (xOrder == 0 && yOrder == 1){
for (int y = 1; y < source.rows - 1; y++){
for (int x = 1; x < source.cols - 1; x++){
gradY = yGradient(source, x, y);
sum = abs(gradY);
sum = sum > 255 ? 255 : sum;
sum = sum < 0 ? 0 : sum;
destination.at<uchar>(y, x) = sum;
}
}
}
else if (xOrder == 1 && yOrder == 1)
for (int y = 1; y < source.rows - 1; y++){
for (int x = 1; x < source.cols - 1; x++){
gradX = xGradient(source, x, y);
gradY = yGradient(source, x, y);
sum = abs(gradX) + abs(gradY);
sum = sum > 255 ? 255 : sum;
sum = sum < 0 ? 0 : sum;
destination.at<uchar>(y, x) = sum;
}
}
}
int borderCheck(int M, int x){
if (x < 0)
return -x - 1;
if (x >= M)
return 2 * M - x - 1;
return x;
}
void SepGaussian(Mat& source, Mat& desination, int sigmaX, int sigmaY){
// coefficients of 1D gaussian kernel with sigma = 1
double coeffs[] = { 0.0545, 0.2442, 0.4026, 0.2442, 0.0545 };
Mat tempX, tempY;
float sum, x1, y1;
desination = source.clone();
tempY = source.clone();
tempX = source.clone();
// along y - direction
if (sigmaX == 0 && sigmaY == 1){
for (int y = 0; y < source.rows; y++){
for (int x = 0; x < source.cols; x++){
sum = 0.0;
for (int i = -2; i <= 2; i++){
y1 = borderCheck(source.rows, y - i);
sum = sum + coeffs[i + 2] * source.at<uchar>(y1, x);
}
desination.at<uchar>(y, x) = sum;
}
}
}
// along x - direction
else if (sigmaX == 1 && sigmaY == 0){
for (int y = 0; y < source.rows; y++){
for (int x = 0; x < source.cols; x++){
sum = 0.0;
for (int i = -2; i <= 2; i++){
x1 = borderCheck(source.cols, x - i);
sum = sum + coeffs[i + 2] * source.at<uchar>(y, x1);
}
desination.at<uchar>(y, x) = sum;
}
}
}
// along xy - direction
else if (sigmaX == 1 && sigmaY == 1){
for (int y = 0; y < source.rows; y++){
for (int x = 0; x < source.cols; x++){
sum = 0.0;
for (int i = -2; i <= 2; i++){
y1 = borderCheck(source.rows, y - i);
sum = sum + coeffs[i + 2] * source.at<uchar>(y1, x);
}
tempY.at<uchar>(y, x) = sum;
}
}
for (int y = 0; y < source.rows; y++){
for (int x = 0; x < source.cols; x++){
sum = 0.0;
for (int i = -2; i <= 2; i++){
x1 = borderCheck(source.cols, x - i);
sum = sum + coeffs[i + 2] * tempY.at<uchar>(y, x1);
}
desination.at<uchar>(y, x) = sum;
}
}
}
}
The Result:
Here is the a picture of the Result.
The Result is now the other way around, it detects areas where are no Corners.
In case there are some questions, feel free to ask me.
I have a OpenCV C++ application.
I have segmented an image with pyrMeanShiftFiltering function.
Now I need to count the pixel in a segment and the number of pixel having the most frequent value in the same segment in order to compute a ratio between them. How could I do that?
I am using Tsukuba image and the code is.
Mat image, segmented;
image = imread("TsukubaL.jpg", 1 );
pyrMeanShiftFiltering(image, segmented, 16, 32);
The segmented image is:
If I consider a pixel in a single segment, the part where I count the pixel in that segment is:
int cont=0;
Vec3b x = segmented.at<Vec3b>(160, 136);
for(int i = 160; i < segmented.rows; ++i) { //check right-down
for(int j = 136; j < segmented.cols; ++j) {
if(segmented.at<Vec3b>(i, j) == x)
cont++;
else
continue;
}
}
for(int i = 160; i > 0; --i) { //check right-up
for(int j = 136; j < segmented.cols; ++j) {
if(segmented.at<Vec3b>(i, j) == x)
cont++;
else
continue;
}
}
for(int i = 160; i < segmented.rows; ++i) { //check down-left
for(int j = 136; j > 0; --j) {
if(segmented.at<Vec3b>(i, j) == x)
cont++;
else
continue;
}
}
for(int i = 160; i > 0; --i) { //check up-left
for(int j = 136; j > 0; --j) {
if(segmented.at<Vec3b>(i, j) == x)
cont++;
else
continue;
}
}
cout<<"Pixel "<<x<<"cont = "<<cont<<endl;
In this example, I consider a white pixel in position (160, 136) and count the same pixel to the central one in the four direction starting from it, and the output is:
Pixel [206, 222, 240]cont = 127
Could it be a possible good way to do it?
First you need to define a mask with pixels having the same color of your initial point (called seed here). You can use inRange with a given tolerance. Assuming a seed on the head, you'll get something like:
Now you need to find the connected component that contains your seed. You can do this in many ways. Here I modified a generative labeling algorithm (the can be found here). You get the list of points of the blob that contains the seed. You can then make a mask with these points:
Now that you have all points it's trivial to find the number of points in the segment. To find the most frequent color you can make an histogram with the BGR values contained in the segment. Since an histogram with all RGB values will have 256*256*256 bins, it's more practical to use a map. I modified the code found here to make an histogram with a given mask.
Now you just need to find the color value with higher frequency.
For this example, I got:
# points in segment: 2860
Most frequent color: [209, 226, 244] #: 168
Take a look at the code:
#include <opencv2/opencv.hpp>
#include <vector>
#include <stack>
#include <map>
using namespace cv;
using namespace std;
vector<Point> connected_components(const Mat1b& img, Point seed)
{
Mat1b src = img > 0;
int label = 0;
int w = src.cols;
int h = src.rows;
int i;
cv::Point point;
// Start from seed
std::stack<int, std::vector<int>> stack2;
i = seed.x + seed.y*w;
stack2.push(i);
// Current component
std::vector<cv::Point> comp;
while (!stack2.empty())
{
i = stack2.top();
stack2.pop();
int x2 = i%w;
int y2 = i / w;
src(y2, x2) = 0;
point.x = x2;
point.y = y2;
comp.push_back(point);
// 4 connected
if (x2 > 0 && (src(y2, x2 - 1) != 0))
{
stack2.push(i - 1);
src(y2, x2 - 1) = 0;
}
if (y2 > 0 && (src(y2 - 1, x2) != 0))
{
stack2.push(i - w);
src(y2 - 1, x2) = 0;
}
if (y2 < h - 1 && (src(y2 + 1, x2) != 0))
{
stack2.push(i + w);
src(y2 + 1, x2) = 0;
}
if (x2 < w - 1 && (src(y2, x2 + 1) != 0))
{
stack2.push(i + 1);
src(y2, x2 + 1) = 0;
}
// 8 connected
if (x2 > 0 && y2 > 0 && (src(y2 - 1, x2 - 1) != 0))
{
stack2.push(i - w - 1);
src(y2 - 1, x2 - 1) = 0;
}
if (x2 > 0 && y2 < h - 1 && (src(y2 + 1, x2 - 1) != 0))
{
stack2.push(i + w - 1);
src(y2 + 1, x2 - 1) = 0;
}
if (x2 < w - 1 && y2>0 && (src(y2 - 1, x2 + 1) != 0))
{
stack2.push(i - w + 1);
src(y2 - 1, x2 + 1) = 0;
}
if (x2 < w - 1 && y2 < h - 1 && (src(y2 + 1, x2 + 1) != 0))
{
stack2.push(i + w + 1);
src(y2 + 1, x2 + 1) = 0;
}
}
return comp;
}
struct lessVec3b
{
bool operator()(const Vec3b& lhs, const Vec3b& rhs) {
return (lhs[0] != rhs[0]) ? (lhs[0] < rhs[0]) : ((lhs[1] != rhs[1]) ? (lhs[1] < rhs[1]) : (lhs[2] < rhs[2]));
}
};
map<Vec3b, int, lessVec3b> getPalette(const Mat3b& src, const Mat1b& mask)
{
map<Vec3b, int, lessVec3b> palette;
for (int r = 0; r < src.rows; ++r)
{
for (int c = 0; c < src.cols; ++c)
{
if (mask(r, c))
{
Vec3b color = src(r, c);
if (palette.count(color) == 0)
{
palette[color] = 1;
}
else
{
palette[color] = palette[color] + 1;
}
}
}
}
return palette;
}
int main()
{
// Read the image
Mat3b image = imread("tsukuba.jpg");
// Segment
Mat3b segmented;
pyrMeanShiftFiltering(image, segmented, 16, 32);
// Seed
Point seed(140, 160);
// Define a tolerance
Vec3b tol(10,10,10);
// Extract mask of pixels with same value as seed
Mat1b mask;
inRange(segmented, segmented(seed) - tol, segmented(seed) + tol, mask);
// Find the connected component containing the seed
vector<Point> pts = connected_components(mask, seed);
// Number of pixels in the segment
int n_of_pixels_in_segment = pts.size();
Mat1b mask_segment(image.rows, image.cols, uchar(0));
for (const auto& pt : pts)
{
mask_segment(pt) = uchar(255);
}
// Get palette
map<Vec3b, int, lessVec3b> palette = getPalette(segmented, mask_segment);
// Get most frequent color
Vec3b most_frequent_color;
int freq = 0;
for (const auto& pal : palette)
{
if (pal.second > freq)
{
most_frequent_color = pal.first;
freq = pal.second;
}
}
cout << "# points in segment: " << n_of_pixels_in_segment << endl;
cout << "Most frequent color: " << most_frequent_color << " \t#: " << freq << endl;
return 0;
}
After creating the required mask as shown in previous answer or by any other means, you can create a contour around the mask image. This will give allow you to directly count the number of pixels within segment by using contourArea function.
You can segment out the selected area into a new submat and calculate histogram on it get most frequent values. If you are concerned with color values only and not the intensity values, you should also convert your image into HSV, LAB, or YCbCr color space as per requirement.