LTO with LLVM and CMake - c++

I am trying to apply Link Time Optimization with LLVM on a CMake Project, that creates a shared library. My question is pretty much the same as this one:
Switching between GCC and Clang/LLVM using CMake.
However, the answers do not seem to be applicable anymore, since llvm-ld is not present in the new versions. On the command line, I run the following commands to get LTO (Assuming there are only 2 .cpp files):
Compile to byte code:
clang++ -c FirstClass.cpp -O3 -flto -o FirstClass.bc
clang++ -c SecondClass.cpp -O3 -flto -o SecondClass.bc
Link byte code:
llvm-link FirstClass.bc SecondClass.bc -o unoptimized.bc
Optimize byte code:
opt -O3 unoptimized.bc -o optimized.bc
Convert byte code to shared object:
clang++ -shared optimized.bc -o libTest.so
Could somebody please tell me how to have CMake run the additional steps?

The correct way to use Clang and enable LTO is using the -flto flag to the clang command line both at compile and link time.
In addition, you will need to be working on a platform with a linker that either directly supports LTO (Apple's platforms generally) or that have an LLVM linker plugin (Linux using the Gold linker, but I think some have gotten the BFD linker to support the linker plugin as well). If you're using the linker plugin, you'll need to make sure your install of LLVM built and installed the plugin. If it did, Clang will automatically add the necessary linker command line options to use the plugin when linking with -flto, even for shared objects.
Also, The LLVM project is working on a new linker (LLD) which will support LTO out of the box on all the platforms it supports, but it is still pretty early days. Currently I know of folks testing out its LTO support on Windows and Linux, and it seems to be working well but still misses many features.

check_ipo_supported() resulted for me in "Policy CMP0069 is not set" error on CMake 3.9.1.
Per its help, CMake up to 3.8 only supported Intel compiler's LTO. It didn't work on XCode 9's clang for me either.
What worked, in the end:
cmake_policy(SET CMP0069 NEW)
include(CheckIPOSupported)
check_ipo_supported()
add_executable(Foobar SOURCES)
set_target_properties(Foobar PROPERTIES INTERPROCEDURAL_OPTIMIZATION TRUE)
Looks like add_executable() needs to be after cmake_policy(SET CMP0069 NEW).
LTO cache
target_link_libraries(Foobar "-Wl,-cache_path_lto,${PROJECT_BINARY_DIR}/lto.cache") did no harm.
Pick your command-line option depending on your linker.
More brutal option
According to #ChandlerCarruth's answer:
if ("${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -flto")
target_link_libraries(Foobar -flto)
endif ()

Enabling (thin) lto on Cmake 3.9 and newer should be straightforward:
include(CheckIPOSupported)
check_ipo_supported()
set_target_properties(myProject PROPERTIES INTERPROCEDURAL_OPTIMIZATION TRUE)
Instead of set_target_properties per project, a single global setting of set(CMAKE_INTERPROCEDURAL_OPTIMIZATION TRUE) can be done.
In order to speed up recompiles, a cache for LTO can be set:
function(append value)
foreach(variable ${ARGN})
set(${variable} "${${variable}} ${value}" PARENT_SCOPE)
endforeach(variable)
endfunction()
append("-fuse-ld=gold -Wl,--no-threads,--plugin-opt,cache-dir=${PROJECT_BINARY_DIR}/lto.cache" CMAKE_EXE_LINKER_FLAGS CMAKE_SHARED_LINKER_FLAGS)
This forces gold as linker, in order to use the right command line options. It might require a symlink of /usr/lib/LLVMgold.so to /usr/lib/llvm-4.0/lib/LLVMgold.so.

Related

How to integrate clang-tidy to CMake and GCC?

I want to integrate clang-tidy to our C and C++, CMake based project which is compiled using a custom GCC toolchain.
I've tried following this tutorial, setting CMAKE_CXX_CLANG_TIDY. I've also tried generating a compilation database by setting CMAKE_EXPORT_COMPILE_COMMANDS to ON and pointing run-clang-tidy.py to its directory.
In both cases, I've encountered (the same) few errors that are probably related to differences between Clang and GCC:
Some warning flags that are enabled in the CMake files are not supported in Clang but are supported in GCC (like -Wlogical-op). As the compiler is GCC, the file builds correctly, and the flag is written to the compilation database, but clang-tidy complains about it.
clang-tidy complains some defines and functions are unavailable, even though the code compiles just fine. As an example, the android-cloexec-open check suggested using O_CLOEXEC to improve security and force the closing of files, but trying to use this define leads to an undefined identifier error (even though our GCC compiles the code).
As an example to a function that is not found, there is clock_gettime.
Our code compiles with the C11 standard and C++14 standard, without GNU extensions:
set(CMAKE_C_STANDARD 11)
set(CMAKE_CXX_STANDARD 14)
set(CMAKE_C_EXTENSIONS OFF)
set(CMAKE_CXX_EXTENSIONS OFF)
The custom toolchain is a cross-compilation toolchain which runs on Linux and compiles to FreeBSD.
Is there a way to disable the passing of some flags by CMake to clang-tidy? Am I using clang-tidy wrong?
I suspect this issue is related to disabling GNU extensions, using a cross-compilation toolchain, and some feature-test-macro which is not defined by default in Clang but is defined with GCC (e.g. _GNU_SOURCE/_POSIX_SOURCE). If this is the case, how can I check it? If not, should I use clang-tidy differently?
EDIT
As #pablo285 asked, here are 2 warnings I get for a single file, and then as I added --warnings-as-errors=*, the build stops:
error: unknown warning option '-Wlogical-op' ; did you mean '-Wlong-long'? [clang-diagnostic-error]
<file path>: error: use of undeclared identifier 'O_CLOEXEC' [clang-diagnostic-error]
O_WRONLY | O_CLOEXEC
^
I decided to write a python script that will replace clang-tidy, receive the commandline from CMake and edit it to fix various errors. Here are the modification to the commandline I tried:
Remove none clang compile flags
This helps with things like the first warning, as now I don't pass flags that clang doesn't know. It seems like I can't configure CMake to pass different set of flags to GCC and to clang-tidy, so if anyone is familiar with some solution to this problem, I'll be happy to hear!
I changed the include directories that are passed to clang-tidy
As mentioned in the post, I use a custom toolchain (which cross-compiles). I used this post and Python to extract the list of standard include directories, and added them to the flag list as a list of -isystem <dir>. I also added -nostdinc so that clang-tidy won't try to look on his own headers instead of mine
This helped with the issue above, as now various defines such as O_CLOEXEC is defined in the toolchain's headers, but as my toolchain is based on GCC, clang couldn't parse the <type_traits> header which includes calls to many compiler intrinsics
I'm not sure what's the best approach in this case
#shycha: Thanks for the tip, I'll try disabling this specific check and I'll edit this post again
Ok, I think that I have a solution. After a couple of evenings I was able to make it work.
In general I compile like this
rm -rf build
mkdir build
cd build
cmake -C ../cmake-scripts/clang-tidy-all.cmake .. && make
Where cmake-scripts directory contains:
clang-tidy-all.cmake
toolchain_arm_clang.cmake
The two important files are listed below.
But what is more important, is how you need to compile this.
First, toolchain_arm_clang.cmake is referenced directly from clang-tidy-all.cmake via set(CMAKE_TOOLCHAIN_FILE ...). It must be, however, referenced from the point of view of the building directory, so if you use multiple levels of build-dirs, e.g.: build/x86, build/arm, build/darwin, etc., then you must modify that path accordingly.
Second, the purpose of set(CONFIG_SCRIPT_PRELOADED ...) is to be sure that the config script was pre-loaded, i.e., cmake -C ../cmake-scripts/clang-tidy-all.cmake ..
Typically, you would want to have something like this somewhere in your CMakeLists.txt file:
message(STATUS "CONFIG_SCRIPT_PRELOADED: ${CONFIG_SCRIPT_PRELOADED}")
if(NOT CONFIG_SCRIPT_PRELOADED)
message(FATAL_ERROR "Run cmake -C /path/to/cmake.script to preload a config script!")
endif()
Third, there is /lib/ld-musl-armhf.so.1 hard-coded in set(CMAKE_LINKER_ARM_COMPAT_STATIC ...); on the development box that I use, it points to /lib/libc.so, so it might by OK to use /lib/libc.sh instead. I've never tried.
Fourth, using set(CMAKE_C_LINK_EXECUTABLE ...) and set(CMAKE_LINKER_ARM_COMPAT_STATIC ...) was because CMake was complaining about some linking problems during checking the compiler, i.e., before even running make.
Fifth, I was only compiling C++ code, so if you need to compile some C, then it might be required to also properly configure set(CMAKE_C_CREATE_SHARED_LIBRARY ...), but I have no idea whether there is such a config option.
General Advice
Do not integrate it immediately. First test some simple CMake project with one library (preferably a C++ one) and make it work, then add the second library, but in C, tweak it again. And only after that incorporate it into the code base.
Toolchain
I used a custom toolchain with GCC 8.3.0 and musl C library, so locations of some files might be different for other toolchains.
Custom CMake
Some variables, like (already mentioned) CONFIG_SCRIPT_PRELOADED, EXPORT_PACKAGE_TO_GLOBAL_REGISTRY, DO_NOT_BUILD_TESTS, or DO_NOT_BUILD_BENCHMARKS are not generic CMake options, i.e., I use them only in my CMakeLists.txt, so you can safely ignore them.
Variables that are unset at the end of each *.cmake file, e.g., build_test, extra_clang_tidy_unchecks_for_tests_only, don't need to be present in the project's main CMakeLists.txt.
Clang
$ clang --version
clang version 10.0.0 (https://github.com/llvm/llvm-project.git 4650b2f36949407ef25686440e3d65ac47709deb)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/local/bin
Files
clang-tidy-all.cmake:
set(ALL_CXX_WARNING_FLAGS --all-warnings -Weverything -Wno-c++98-compat -Wno-c++98-c++11-compat -Wno-c++98-c++11-c++14-compat -Wno-padded -Wno-c++98-compat-pedantic)
set(CXX_COMPILE_OPTIONS "-std=c++17;-O3;${ALL_CXX_WARNING_FLAGS}" CACHE INTERNAL "description")
set(CMAKE_CROSSCOMPILING True)
set(CMAKE_TOOLCHAIN_FILE "../cmake-scripts/toolchain_arm_clang.cmake" CACHE FILEPATH "CMake toolchain file")
set(CONFIG_SCRIPT_PRELOADED true CACHE BOOL "Ensures that config script was preloaded")
set(build_test False)
if(build_test)
message(STATUS "Using test mode clang-tidy checks!")
set(extra_clang_tidy_unchecks_for_tests_only ",-google-readability-avoid-underscore-in-googletest-name,-cppcoreguidelines-avoid-magic-numbers,-cppcoreguidelines-special-member-functions")
endif()
set(CMAKE_CXX_CLANG_TIDY "clang-tidy;--enable-check-profile;--checks=-*,abseil-string-find-startswith,bugprone-*,cert-*,clang-analyzer-*,cppcoreguidelines-*,google-*,hicpp-*,llvm-*,misc-*,modernize-*,-modernize-use-trailing-return-type,performance-*,readability-*,-readability-static-definition-in-anonymous-namespace,-readability-simplify-boolean-expr,portability-*${extra_clang_tidy_unchecks_for_tests_only}" CACHE INTERNAL "clang-tidy")
message(STATUS "build_test: ${build_test}")
message(STATUS "extra_clang_tidy_unchecks_for_tests_only: ${extra_clang_tidy_unchecks_for_tests_only}")
message(STATUS "CMAKE_CXX_CLANG_TIDY: ${CMAKE_CXX_CLANG_TIDY}")
# We want to skip building tests when clang-tidy is run (it takes too much time and serves nothing)
if(DEFINED CMAKE_CXX_CLANG_TIDY AND NOT build_test)
set(DO_NOT_BUILD_TESTS true CACHE BOOL "Turns OFF building tests")
set(DO_NOT_BUILD_BENCHMARKS true CACHE BOOL "Turns OFF building benchmarks")
endif()
unset(build_test)
unset(extra_clang_tidy_unchecks_for_tests_only)
set(EXPORT_PACKAGE_TO_GLOBAL_REGISTRY "OFF" CACHE INTERNAL "We don't export clang-tidy-all version to global register")
toolchain_arm_clang.cmake:
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_VERSION 4.14.0)
set(CMAKE_SYSTEM_PROCESSOR arm)
set(gcc_version 8.3.0)
set(x_tools "/opt/zynq/xtl")
set(CMAKE_C_COMPILER "clang" CACHE INTERNAL STRING)
set(CMAKE_CXX_COMPILER "clang++" CACHE INTERNAL STRING)
set(CMAKE_RANLIB "llvm-ranlib" CACHE INTERNAL STRING)
set(CMAKE_AR "llvm-ar" CACHE INTERNAL STRING)
set(CMAKE_AS "llvm-as" CACHE INTERNAL STRING)
set(CMAKE_LINKER "ld.lld" CACHE INTERNAL STRING)
execute_process(
COMMAND bash -c "dirname `whereis ${CMAKE_LINKER} | tr -s ' ' '\n' | grep ${CMAKE_LINKER}`"
OUTPUT_VARIABLE cmake_linker_dir
)
string(REGEX REPLACE "\n$" "" cmake_linker_dir "${cmake_linker_dir}")
set(cmake_linker_with_dir "${cmake_linker_dir}/${CMAKE_LINKER}" CACHE INTERNAL STRING)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -iwithsysroot /include/c++/${gcc_version} -iwithsysroot /include/c++/${gcc_version}/arm-linux-musleabihf" CACHE INTERNAL STRING)
set(CMAKE_SYSROOT ${x_tools}/arm-linux-musleabihf)
set(CMAKE_FIND_ROOT_PATH ${x_tools}/arm-linux-musleabihf)
set(CMAKE_INSTALL_PREFIX ${x_tools}/arm-linux-musleabihf)
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY BOTH)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE BOTH)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE NEVER)
set(triple arm-linux-musleabihf)
set(CMAKE_LIBRARY_ARCHITECTURE ${triple})
set(CMAKE_C_COMPILER_TARGET ${triple})
set(CMAKE_CXX_COMPILER_TARGET ${triple})
set(lib_path_arm ${x_tools}/arm-linux-musleabihf/lib)
## Bootstrap library stuff:
set(Scrt1_o ${lib_path_arm}/Scrt1.o)
set(crti_o ${lib_path_arm}/crti.o)
set(crtn_o ${lib_path_arm}/crtn.o)
set(lib_path_gcc ${x_tools}/lib/gcc/${triple}/${gcc_version})
set(crtbeginS_o ${lib_path_gcc}/crtbeginS.o)
set(crtendS_o ${lib_path_gcc}/crtendS.o)
# Clang as linker
# --no-pie disable position independent executable, which is required when building
# statically linked executables.
set(CMAKE_CXX_LINK_EXECUTABLE "clang++ --target=${triple} -Wl,--no-pie --sysroot=${CMAKE_SYSROOT} ${CMAKE_CXX_FLAGS} -fuse-ld=${cmake_linker_with_dir} <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <LINK_LIBRARIES> <OBJECTS> -o <TARGET> ")
set(CMAKE_CXX_CREATE_SHARED_LIBRARY "clang++ -Wl, --target=${triple} --sysroot=${CMAKE_SYSROOT} ${CMAKE_CXX_FLAGS} -fuse-ld=${cmake_linker_with_dir} -shared <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <LINK_LIBRARIES> <OBJECTS> -o <TARGET> ")
#
# Do not use CMAKE_CXX_CREATE_STATIC_LIBRARY -- it is created automatically
# by cmake using ar and ranlib
#
#set(CMAKE_CXX_CREATE_STATIC_LIBRARY "clang++ -Wl,--no-pie,--no-export-dynamic,-v -v --target=${triple} --sysroot=${CMAKE_SYSROOT} ${CMAKE_CXX_FLAGS} -fuse-ld=ld.lld <CMAKE_CXX_LINK_FLAGS> <LINK_FLAGS> <LINK_LIBRARIES> <OBJECTS> -o <TARGET> ")
## Linker as linker
set(CMAKE_LINKER_ARM_COMPAT_STATIC "-pie -EL -z relro -X --hash-style=gnu --eh-frame-hdr -m armelf_linux_eabi -dynamic-linker /lib/ld-musl-armhf.so.1 ${Scrt1_o} ${crti_o} ${crtbeginS_o} -lstdc++ -lm -lgcc_s -lgcc -lc ${crtendS_o} ${crtn_o}")
set(CMAKE_C_LINK_EXECUTABLE "${CMAKE_LINKER} ${CMAKE_LINKER_ARM_COMPAT_STATIC} <CMAKE_C_LINK_FLAGS> <LINK_FLAGS> <LINK_LIBRARIES> <OBJECTS> -o <TARGET>")
# Debian bug 708744(?)
#include_directories("${CMAKE_SYSROOT}/usr/include/")
#include_directories("${CMAKE_SYSROOT}/usr/include/c++/${gcc_version}")
#include_directories("${CMAKE_SYSROOT}/usr/include/c++/${gcc_version}/${triple}")
## Clang workarounds:
set(toolchain_lib_dir_0 "${CMAKE_SYSROOT}/lib")
set(toolchain_lib_dir_1 "${CMAKE_SYSROOT}/../lib")
set(toolchain_lib_dir_2 "${CMAKE_SYSROOT}/../lib/gcc/${triple}/${gcc_version}")
set(CMAKE_TOOLCHAIN_LINK_FLAGS "-L${toolchain_lib_dir_0} -L${toolchain_lib_dir_1} -L${toolchain_lib_dir_2}")
## CMake workarounds
set(CMAKE_EXE_LINKER_FLAGS ${CMAKE_TOOLCHAIN_LINK_FLAGS} CACHE INTERNAL "exe link flags")
set(CMAKE_MODULE_LINKER_FLAGS ${CMAKE_TOOLCHAIN_LINK_FLAGS} CACHE INTERNAL "module link flags")
set(CMAKE_SHARED_LINKER_FLAGS ${CMAKE_TOOLCHAIN_LINK_FLAGS} CACHE INTERNAL "shared link flags")
unset(cmake_linker_with_dir)
unset(cmake_linker_dir)
Maybe not exactly what you're looking for but I'm using this in CMakeLists.txt:
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
add_custom_target(lint
COMMAND sh -c "run-clang-tidy -header-filter=.* -checks=`tr '\\n' , <${CMAKE_SOURCE_DIR}/checks.txt` >lint.out 2>lint.err"
COMMAND sh -c "grep warning: lint.out || true"
COMMAND ls -lh ${CMAKE_BINARY_DIR}/lint.out
VERBATIM
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
)
This creates a separate build target (make lint) for the clang-tidy check. clang-tidy takes a long time for my project so I don't want to run it during every build; make lint can be run manually if required, and it's also executed in a CI job after every push to the repo (in a way that makes the CI pipeline fail, blocking the merge, if there are any findings).
The output of make lint is the list of clang-tidy findings with as little context as possible. The full output, including context for findings, is in lint.out, and error messages are in lint.err, both of which I'm saving as CI artefacts.
checks.txt is a text file in the project root that defines which clang-tidy checks to activate, like so:
*
-altera-id-dependent-backward-branch
-altera-struct-pack-align
-altera-unroll-loops
-android-*
The first line enables all available checks, the other lines disable checks that I don't want.
Will only work in a Unix-like system of course.

How can I link to thread sanitizer with a newer version of clang than the system provides?

I download normally the latest clang version from their website. This helps me use the latest version of C++ as doing this with gcc is not really possible. I just get the binaries for my Ubuntu/Debian and I'm good to go.
For me, linking with tsan library (thread-sanitizer library) has never been something simple. I use insane measures in cmake to make it work. Previously, when I used gcc from the system, this is what I did in cmake to make the link work correctly:
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=thread -ltsan")
set(CMAKE_LINK_LIBRARY_FLAG "-ltsan -l")
which basically modifies the linking flags to link every little thing with tsan. This has worked fine for a while, but to make it work, I should use gcc, the system's compiler. If I try to link like this with clang 7, I get a segfault when I run my program.
So I searched for the available tsan libraries that come with clang, and here's what I found:
user#machine:/opt/clang7$ find -iname "*tsan*"
./lib/clang/7.0.0/lib/linux/libclang_rt.tsan_cxx-x86_64.a
./lib/clang/7.0.0/lib/linux/libclang_rt.tsan-x86_64.a
./lib/clang/7.0.0/lib/linux/libclang_rt.tsan_cxx-x86_64.a.syms
./lib/clang/7.0.0/lib/linux/libclang_rt.tsan-x86_64.a.syms
./lib/clang/7.0.0/include/sanitizer/tsan_interface_atomic.h
./lib/clang/7.0.0/include/sanitizer/tsan_interface.h
There seems to be tsan libraries there. I guess I gotta link to them. How do I do that?
This, doesn't seem to work:
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=thread -L/opt/clang7/lib/clang/7.0.0/lib/linux/ -lclang_rt.tsan_cxx-x86_64")
set(CMAKE_LINK_LIBRARY_FLAG "-L/opt/clang7/lib/clang/7.0.0/lib/linux/ -lclang_rt.tsan_cxx-x86_64 -l")
This doesn't work either:
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=thread -l:/opt/clang7/lib/clang/7.0.0/lib/linux/libclang_rt.tsan_cxx-x86_64.a")
set(CMAKE_LINK_LIBRARY_FLAG "-l:/opt/clang7/lib/clang/7.0.0/lib/linux/libclang_rt.tsan_cxx-x86_64.a -l")
I've tried a few other combinations. But None of them seem to work. The errors I get are either linking errors or undefined references to some tsan components.
How can I link to tsan from the newest clang's prebuilt binaries?
Setting the link flag for the compilation is a big no-no:
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsanitize=thread")
Then you need to do the same for the link flags as well:
SET(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -fsanitize=thread")
SET(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -fsanitize=thread")
You can also change the target properties only:
set_target_properties(${TARGET} PROPERTIES
LINK_FLAGS -fsanitizer=thread
COMPILE_FLAGS -fsanitizer=thread)
Be aware that this overrides all flags (I don't remember if CMAKE_CXX_FLAGS are also there, maybe not), you may want to retrieve the current ones and append these instead of removing everything.
clang knows where its support libraries for sanitation are (as you said, these are tagged with a triple-like information and are not in the usual library folders, to avoid any contamination from other installs), and the full fsanitize=tsan flag will make it pick up these versions. Note that it's not -ltsan, but a full option that will make clang pick up the proper backend in the path where its own sanitizers are.

Linking error when compiling Crypto++ for ARMHF

I'm trying to compile the crypto++ library to run for the armhf architecture. I'm following the method provided in this answer. I tweaked the setenv-embed.sh to match my system's configuration. The output of running . ./setenv-embed.sh is
CPP: /usr/bin/arm-linux-gnueabihf-cpp
CXX: /usr/bin/arm-linux-gnueabihf-g++
AR: /usr/bin/arm-linux-gnueabihf-ar
LD: /usr/bin/arm-linux-gnueabihf-ld
RANLIB: /usr/bin/arm-linux-gnueabihf-gcc-ranlib-4.8
ARM_EMBEDDED_TOOLCHAIN: /usr/bin
ARM_EMBEDDED_CXX_HEADERS: /usr/arm-linux-gnueabihf/include/c++/4.8.2
ARM_EMBEDDED_FLAGS: -march=armv7-a mfloat-abi=hard -mfpu=neon -I/usr/arm-linux-gnueabihf/include/c++/4.8.2 -I/usr/arm-linux-gnueabihf/include/c++/4.8.2/arm-linux-gnueabihf
ARM_EMBEDDED_SYSROOT: /usr/arm-linux-gnueabihf
which indicates that the correct compilers have been found. However, when I build the library using make I run into the following error
/usr/lib/gcc-cross/arm-linux-gnueabihf/4.8/../../../../arm-linux-gnueabihf/bin/‌​ld: cannot find /usr/arm-linux-gnueabihf/lib/libc.so.6 inside /usr/arm-linux-gnueabihf
/usr/lib/gcc-cross/arm-linux-gnueabihf/4.8/../../../../arm-linux-gnueabihf/bin/‌​ld: cannot find /usr/arm-linux-gnueabihf/lib/libc_nonshared.a inside /usr/arm-linux-gnueabihf
/usr/lib/gcc-cross/arm-linux-gnueabihf/4.8/../../../../arm-linux-gnueabihf/bin/‌​ld: cannot find /usr/arm-linux-gnueabihf/lib/ld-linux-armhf.so.3 inside /usr/arm-linux-gnueabihf
But when I open the location /usr/arm-linux-gnueabihf/lib I can find all the three error files mentioned above ie libc.so.6, libc_nonshared.a and ld-linux-armhf.so.3
I'm trying to compile the library for Beaglebone, if that helps.
Update 1:
The results of running make -f GNUmakefile-cross system after doing a fresh git pull
hassan#hassan-Inspiron-7537:~/cryptopp-armhf$ make -f GNUmakefile-cross system
CXX: /usr/bin/arm-linux-gnueabihf-g++
CXXFLAGS: -DNDEBUG -g2 -Os -Wall -Wextra -DCRYPTOPP_DISABLE_ASM -march=armv7-a -mfloat-abi=hard -mfpu=neon -mthumb -I/usr/arm-linux-gnueabihf/include/c++/4.8.2 -I/usr/arm-linux-gnueabihf/include/c++/4.8.2/arm-linux-gnueabihf --sysroot=/usr/arm-linux-gnueabihf -Wno-type-limits -Wno-unknown-pragmas
LDLIBS:
GCC_COMPILER: 1
CLANG_COMPILER: 0
INTEL_COMPILER: 0
UNALIGNED_ACCESS:
UNAME: Linux hassan-Inspiron-7537 3.13.0-35-generic #62-Ubuntu SMP Fri Aug 15 01:58:42 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux
MACHINE:
SYSTEM:
RELEASE:
make: Nothing to be done for `system'.
The problem is simple. It is in the --sysroot option. The value of this option is /usr/arm-linux-gnueabihf/ and it is used by the linker and the resulting library folder becomes
/usr/arm-linux-gnueabihf/usr/arm-linux-gnueabihf/lib/
I removed the --sysroot option from line 68 in the file GNUmakefile-cross and everything compiled and linked OK.
However, I couldn't run the example on my BeagleBone Black because of mismatch of some shared libraries versions. But this wasn't a real problem for me, because in my application I link crypto++ statically, not dynamically.
Based on Crosswalking's research I think I can explain what is going on. I don't think I agree with the assessment "The problem is simple. It is in the --sysroot option" since the Crypto++ environment script and makefile are doing things as expected.
I think Crosswalking's answer could be how to work around it; but see open questions below. The following is from Crypto++ Issue 134: setenv-embedded.sh and GNUmakefile-cross:
I think this another distro problem, similar to g++-arm-linux-gnueabi
cannot compile a C++ program with
--sysroot.
It might be a Ubuntu problem or a Debian problem if it is coming from
upstream.
When cross-compiling, we expect the following (using ARMHF):
SYSROOT is /usr/arm-linux-gnueabihf
INCLUDEDIR is /usr/arm-linux-gnueabihf/include
LIBDIR is /usr/arm-linux-gnueabihf/lib
BINDIR is /usr/arm-linux-gnueabihf/bin
How LIBDIR morphed into into
/usr/arm-linux-gnueabihf/usr/arm-linux-gnueabihf/lib/ (i.e.,
$SYSROOT/$SYSROOT/lib) is a mystery. But in all fairness, building
GCC is not a trivial task.
You should probably file a bug report with Debian or Ubuntu (or
whomever provides the toolchain).
The open question for me is, since $SYSROOT/lib is messed up, then is $SYSROOT/include messed up, too?
If the include directory is also messed up, then the cross compile is using the host's include files, and not the target include files. That will create hard to diagnose problems later.
If both $SYSROOT/include and $SYSROOT/lib are messed up, then its not enough to simply remove --sysroot. Effectively, this is what has to be done:
# Exported by setenv-embedded
export=ARM_EMBEDDED_SYSROOT=/usr/arm-linux-gnueabihf
# Used by the makefile
-I $ARM_EMBEDDED_SYSROOT/$ARM_EMBEDDED_SYSROOT/include
-L $ARM_EMBEDDED_SYSROOT/$ARM_EMBEDDED_SYSROOT/lib
Which means we should be able to do the following:
# Exported by setenv-embedded
export=ARM_EMBEDDED_SYSROOT=/usr/arm-linux-gnueabihf/usr/arm-linux-gnueabihf
# Used by the makefile
--sysroot="$ARM_EMBEDDED_SYSROOT"
Finally, this looks a lot like Ubuntu's Bug 1375071: g++-arm-linux-gnueabi cannot compile a C++ program with --sysroot. The bug report specifically calls out ... the built-in paths use an extra "/usr/arm-linux-gnueabi".
We need the paths:
A) /usr/arm-linux-gnueabi/include/c++/4.7.3 B)
/usr/arm-linux-gnueabi/include/c++/4.7.3/arm-linux-gnueabi
But the built-in paths tries to use:
C) /usr/arm-linux-gnueabi/usr/arm-linux-gnueabi/include/c++/4.7.3
D)
/usr/arm-linux-gnueabi/usr/arm-linux-gnueabi/include/c++/4.7.3/arm-linux-gnueabi/sf
E)
/usr/arm-linux-gnueabi/usr/arm-linux-gnueabi/include/c++/4.7.3/backward
Notice the built-in paths use an extra "/usr/arm-linux-gnueabi"

CMake / g++, library not being linked in OpenFOAM application

I am trying to compile a custom OpenFOAM application. My build procedure is with CMake (though I'm not sure this has anything to do with my current problem).
For those familiar with OpenFOAM, this is the pisoFoam application, and the problem library is the incompressibleLESModels.so library.
The project builds without any problems. And runs until it needs to make use of the IncompressibleLESModels library. At this point, the app claims not to know anything about that library and stops.
I have included the incompressibleLESModels library in my TARGET_LINK_LIBRARIES within the CMake script (along with all the other necessary libraries).
OpenFOAM allows the user to link in libraries at run-time via an input file. This method works fine (i.e., I can get the app to dynamically load in the incompressibleLESModels lib and run). But I would rather not rely on this method. And the standard OpenFOAM apps don't do this.
When I run ldd on my executable, the incompressibleLESModels library is clearly not in the list of libraries.
So it is as if the linker detects that the library is not needed during the link phase and chooses not to link it in. From what I understand, this may be due to definitions passed to gcc, particularly add-needed, or as-needed and no-as-needed.
I am adding the following definitions via the ADD_DEFINITIONS command in CMake:
-DWM_DP -m64 -Dlinux64 -Wall -Wextra -Wno-unused-parameter -Wold-style-cast
-Wnon-virtual-dtor -O3 -DNoRepository -ftemplate-depth-100 -fPIC -Xlinker
--add-needed -Xlinker --no-as-needed
Any ideas are greatly appreciated.
Kind regards, Madeleine
Since you are using cmake, for linking directives instead of using add_definitions, use target_link_libraries
target_link_libraries(<targetname> "-Wl,--no-as-needed")
target_link_libraries(<targetname> <libraries that you want to link even if apparently not necessary>)
target_link_libraries(<targetname> "-Wl,--add-needed")
target_link_libraries(<targetname> <libraries that you want to link according to the "default" criteria>)
Reference: http://www.cmake.org/cmake/help/v2.8.11/cmake.html#command:target_link_libraries
Also, for -fPIC and the like it's advisable that you use variables like CMAKE_CXX_FLAGS, and that you append flags to it.
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fPIC")
Note: using list and append will not work with this, as normally lists elements are separated with semicolons. You can have flags depending on the type of build, for example CMAKE_CXX_FLAGS_DEBUG and CMAKE_CXX_FLAGS_RELEASE.
http://www.cmake.org/cmake/help/v2.8.11/cmake.html#variable:CMAKE_LANG_FLAGS_DEBUG
http://www.cmake.org/cmake/help/v2.8.11/cmake.html#variable:CMAKE_LANG_FLAGS_RELEASE

Regex Boost library linking in release mode warns "duplicate section has different size" when using mingw-w64 toolchain

When linking my project in the release mode I am getting the following warning:
myProject-libs/release/libboost_regex-mt-s-1.50.0.a(cpp_regex_traits.o): duplicate section `.data$_ZZN5boost16cpp_regex_traitsIcE21get_catalog_name_instEvE6s_name[boost::cpp_regex_traits<char>::get_catalog_name_inst()::s_name]' has different size
I suspect that the cause could be that the boost library is compiled with different options than I use for my project, but I don't know how to find the difference (boost didn't output these options during the build).
In order to compile the boost for win32 on Ubuntu 12.04 I used this procedure:
tar jxf boost_1_50_0.tar.bz2
cd boost_1_50_0
./bootstrap.sh
echo "using gcc : 4.6 : i686-w64-mingw32-g++ : <rc>i686-w64-mingw32-windres <archiver>i686-w64-mingw32-ar ;" > user-config.jam
./bjam toolset=gcc target-os=windows --address-model=32 variant=release threading=multi threadapi=win32 link=static runtime-link=static --prefix=/opt/boost_1_50_0-release-static-windows-32 --user-config=user-config.jam -j 10 --without-mpi --without-python -sNO_BZIP2=1 -sNO_ZLIB=1 --layout=tagged install
In order to compile files in my project I use something like
i686-w64-mingw32-g++ -march=corei7 -mfpmath=sse -m32 -Wall -fmessage-length=0 -I"/opt/boost_1_50_0-release-static-windows-32/include" -std=c++0x -O3 -g0 -DNDEBUG -I"myProject/src/cpp" -c -o myProject/build/release/src/cpp/myproject.o myproject/src/cpp/myproject.cpp
The tests I have indicate that the regexps run fine but still I would like to resolve the warning.
EDIT
I found that additional options to the boost compiler can be added using a cxxflags= argument of bjam.
Example:
bjam cxxflags='-fPIC' ....
Maybe making sure to pass the same arguments as I do to the project could resolve the problem (particularly the arguments related to optimizations as suggested in the linked question).
Your compilers were compiled with different options :) Compiling the library on Linux and the program on Windows result in a situation where there is an identically named .data segment, but they aren't the same size. That could theoretically be interesting, inasmuch as a data segment is writable, but in practice, it shouldn't matter. Unless there is evidence to suggest this causes a problem of which I'm not aware, you can safely suppress that warning; I don't know how you'd make it go away, though.
I recently encountered this problem (i.e. linker warning "duplicate section has different size") when trying to compile boost for Windows using mingw.
The issue I had was that I compiled my application with -std=c++14 but when compiling boost I didn't specifically provide a dialect flag (which defaulted to -std=c++98 for g++ 5.3.0). Adding the dialect flag -std=c++14 when compiling boost solved the problem for me. See this answer for an explaination on how to set cxxflags when compiling boost.
I believe my solution might have worked for you (your application was compiled with -std=c++0x but boost was not provided any dialect flag). Although I am 6 years too late, I'll leave my answer here for others who happen to stumble-upon this issue.