I make some calculations and the result is
0.000137*0.000137= 0.000000018769
I save the answer in float y
but it seems to be saved as 1.88788682e-008
I want it to be saved as 0.000000018769
I tried the type double but got same answer
int main()
{
float y= 0.000137*0.000137;
return 0;
}
y appears in the watch while debugging as 0.000137*0.000137
You don't really have control over how floating point numbers are stored (which is mostly irrelevant anyway). You do have control over how they're printed though. If you want to print them out without the scientific notation, you can use std::fixed to get that:
int main() {
float y = 0.000137*0.000137;
std::cout << std::fixed << std::setprecision(12) << y << "\n";
}
Result:
0.000000018769
It is always saved equal and those numbers are equivalent
If you are printing with cout, check this reference about cout formating page
http://www.cplusplus.com/reference/ios/fixed/
Related
I am new to C++ and have the following simple code snippet exploring C++ limitations:
int main() {
float x = 2147483000;
int y = static_cast<int>(x);
cout << "x: " << x << ", y: " << y;
}
Why is the output showing me different values for x & y even though the float value is within int limit which is 2147483647
Code Results
x: 2.14748e+09, y: 2147483008
Why is it showing different values for x & y?
I have read your question carefully. There is a misconception, not mistake.
That is happening because the float have a certain capacity to store its precision up to 7 decimal places if the digits exceeds than the 7th digit, It would loss its precision after the 7th digit for beyond to it. Due to this reason the output is not accurate or same.
Why is it showing different values for x & y?
The default conversion for displaying float that are in the range for which an exponent is used for display is to show six significant digits.
In the format commonly used for float, IEEE-754 binary32, the two representable values nearest 2,147,483,000 are 2,147,482,880 and 2,147,483,008. So, for float x = 2147483000;, a good C++ implementation will convert 2,147,483,000 to the closest float value, 2,147,483,008.
Then int y = static_cast<int>(x); sets y to this same value, 2,147,483,008.
When the float x is inserted into the cout stream with default formatting, six significant digits are used, producing 2.14748•109.
When the int y is inserted into the stream, its full value is shown, 2,147,483,008.
You can see the full value by requesting more precision. std::cout << std::setprecision(99) << "x: " << x << ", y: " << y << '\n'; produces “x: 2147483008, y: 2147483008”.
my goal is to turn a double's fraction part into an integer, for example: turn 0.854 into 854 or turn 0.9321 into 9321 (the whole part of the double is always 0)
i was doing it like this, but i dont know how to fill the while's parameters to make it stop when variable x becomes a whole number without a fraction:
double x;
cin >> x;
while(WHAT DO I TYPE HERE TO MAKE IT STOP WHEN X BECOMES A WHOLE NUMBER){
x *= 10;
}
it would be best if i could do it with a loop, but if it is not possible, i am open to other suggestions :)
That question has no answer in a mathematical/logical sense. You have to read how floating point numbers in computers work, see e.g.
https://en.wikipedia.org/wiki/Floating-point_arithmetic
and understand that they are not decimal point numbers in memory. A floating point number in memory consists of three actual numbers: significant * base^{exponent} and according to IEEE the base used is "2" in basically any modern floating point data, but in even more generality, the base can be anything. Thus, whatever you have in your mind, or even see on your screen as output, is a misleading representation of the data in memory. Your question is, thus, mainly a misconception of how floating point numbers in computers work...
Thus, what you specifically ask for does in general not exist and cannot be done.
However, there may be special application for output formatting or whatever where something like this may make sense -- but then the specific goal must be clearly stated in the question here. And in some of such cases, using a "string-based" approach, as you suggested, will work. But this is not an answer to your generic question and has the high potential to also mislead others in the future.
Actually, one way to make your question obvious and clear is to also specify a fixed desired precision, thus, numbers after the decimal point. Then the answer is quite trivially and correctly:
long int value = fraction * pow(10, precision);
In this scenario you know 100% what your are doing. And if you really like you could subsequently remove zeros from the right side...
int nTrailingZeros = 0;
while (value%10 == 0) {
value /= 10;
++nTrailingZeros;
}
However there is another principle problem on a numerical level: there is no mathematical difference between, e.g., 000003 and just 3, thus in any such application the input 0.000003 will give the same results as 0.0003 or 0.3 etc. This cannot be a desired functionality... it is pretty useless to ask about the *value of the fractional part of a floating point number. But, since we have a known precision`, we can do:
cout << setw(precision-ntrailing) << setfill('0') << value << endl;
which will fill in the eventually missing leading zeros.
See this complete tested test code
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
int main() {
double v = 0.0454243252;
int precision = 14;
long int value = v*pow(10,precision);
cout << value << endl;
// 4542432520000
int nTrailingZeros = 0;
while (value%10 == 0) {
value /= 10;
++nTrailingZeros;
}
cout << value << endl;
// 454243252
cout << setw(precision-ntrailing) << setfill('0') << value << endl;
// 0454243252
}
Here is a possible approach:
#include <iostream>
#include <string>
#include <sstream>
#include <iomanip>
using namespace std;
int main()
{
cout << "Enter Number: ";
double user_input;
cin >> user_input;
int user_input_to_int = int(user_input);
double decimal_value = user_input - user_input_to_int;
ostringstream oss;
oss << std::noshowpoint << decimal_value;
string num_str = oss.str();
int str_length = num_str.size()-2;
int multiplier = 1;
for (int x = 0; x < str_length; x++)
{
multiplier *= 10;
}
cout << "\n";
cout << "Whole number: " << user_input_to_int << endl;
cout << "Decimal value: " << decimal_value*multiplier << endl;
}
Compare the difference between double and integer part. It is working only if x is less than 2^63.
while (x - long long(x) > 0)
find 2 real numbers find the fractional part smaller than these numbers
I need help on keeping the precision of a double. If I assign a literal to a double, the actual value was truncated.
int main() {
double x = 7.40200133400;
std::cout << x << "\n";
}
For the above code snippet, the output was 7.402
Is there a way to prevent this type of truncation? Or is there a way to calculate exactly how many floating points for a double? For example, number_of_decimal(x) would give 11, since the input is unknown at run-time so I can't use setprecision().
I think I should change my question to:
How to convert a double to a string without truncating the floating points. i.e.
#include <iostream>
#include <string>
#include <sstream>
template<typename T>
std::string type_to_string( T data ) {
std::ostringstream o;
o << data;
return o.str();
}
int main() {
double x = 7.40200;
std::cout << type_to_string( x ) << "\n";
}
The expected output should be 7.40200 but the actual result was 7.402. So how can I work around this problem? Any idea?
Due to the fact the float and double are internally stored in binary, the literal 7.40200133400 actually stands for the number 7.40200133400000037653398976544849574565887451171875
...so how much precision do you really want? :-)
#include <iomanip>
int main()
{
double x = 7.40200133400;
std::cout << std::setprecision(51) << x << "\n";
}
And yes, this program really prints 7.40200133400000037653398976544849574565887451171875!
You must use setiosflags(ios::fixed) and setprecision(x).
For example, cout << setiosflags(ios::fixed) << setprecision(4) << myNumber << endl;
Also, don't forget to #include <iomanip.h>.
std::cout << std::setprecision(8) << x;
Note that setprecision is persistent and all next floats you print will be printed with that precision, until you change it to a different value. If that's a problem and you want to work around that, you can use a proxy stringstream object:
std::stringstream s;
s << std::setprecision(8) << x;
std::cout << s.str();
For more info on iostream formatting, check out the Input/output manipulators section in cppreference.
Solution using Boost.Format:
#include <boost/format.hpp>
#include <iostream>
int main() {
double x = 7.40200133400;
std::cout << boost::format("%1$.16f") % x << "\n";
}
This outputs 7.4020013340000004.
Hope this helps!
The only answer to this that I've come up with is that there is no way to do this (as in calculate the decimal places) correctly! THE primary reason for this being that the representation of a number may not be what you expect, for example, 128.82, seems innocuous enough, however it's actual representation is 128.8199999999... how do you calculate the number of decimal places there??
Responding to your answer-edit: There is no way to do that. As soon as you assign a value to a double, any trailing zeroes are lost (to the compiler/computer, 0.402, 0.4020, and 0.40200 are the SAME NUMBER). The only way to retain trailing zeroes as you indicated is to store the values as strings (or do trickery where you keep track of the number of digits you care about and format it to exactly that length).
Let s make an analogous request: after initialising an integer with 001, you would want to print it with the leading zeroes. That formatting info was simply never stored.
For further understanding the double precision floating point storage, look at the IEEE 754 standard.
Doubles don't have decimal places. They have binary places. And binary places and decimal places are incommensurable (because log2(10) isn't an integer).
What you are asking for doesn't exist.
The second part of the question, about how to preserve trailing zeroes in a floating point value from value specification to output result, has no solution. A floating point value doesn't retain the original value specification. It seems this nonsensical part was added by an SO moderator.
Regarding the first and original part of the question, which I interpret as how to present all significant digits of 7.40200133400, i.e. with output like 7.402001334, you can just remove trailing zeroes from an output result that includes only trustworthy digits in the double value:
#include <assert.h> // assert
#include <limits> // std::(numeric_limits)
#include <string> // std::(string)
#include <sstream> // std::(ostringstream)
namespace my{
// Visual C++2017 doesn't support comma-separated list for `using`:
using std::fixed; using std::numeric_limits; using std::string;
using std::ostringstream;
auto max_fractional_digits_for_positive( double value )
-> int
{
int result = numeric_limits<double>::digits10 - 1;
while( value < 1 ) { ++result; value *= 10; }
return result;
}
auto string_from_positive( double const value )
-> string
{
ostringstream stream;
stream << fixed;
stream.precision( max_fractional_digits_for_positive( value ) );
stream << value;
string result = stream.str();
while( result.back() == '0' )
{
result.resize( result.size() - 1 );
}
return result;
}
auto string_from( double const value )
-> string
{
return (0?""
: value == 0? "0"
: value < 0? "-" + string_from_positive( -value )
: string_from_positive( value )
);
}
}
#include<iostream>
auto main()
-> int
{
using std::cout;
cout << my::string_from( 7.40200133400 ) << "\n";
cout << my::string_from( 0.00000000000740200133400 ) << "\n";
cout << my::string_from( 128.82 ) << "\n";
}
Output:
7.402001334
0.000000000007402001334
128.81999999999999
You might consider adding logic for rounding to avoid long sequences of 9's, like in the last result.
I am trying to write a calculator in C++ that does the basic functions of /, *, -, or + and shows the answer to two decimal places (with 0.01 precision).
For example 100.1 * 100.1 should print the result as 10020.01 but instead I get -4e-171. From my understanding this is from overflow, but that's why I chose long double in the first place!
#include <iostream>
#include <iomanip>
using namespace std;
long double getUserInput()
{
cout << "Please enter a number: \n";
long double x;
cin >> x;
return x;
}
char getMathematicalOperation()
{
cout << "Please enter which operator you want "
"(add +, subtract -, multiply *, or divide /): \n";
char o;
cin >> o;
return o;
}
long double calculateResult(long double nX, char o, long double nY)
{
// note: we use the == operator to compare two values to see if they are equal
// we need to use if statements here because there's no direct way
// to convert chOperation into the appropriate operator
if (o == '+') // if user chose addition
return nX + nY; // execute this line
if (o == '-') // if user chose subtraction
return nX - nY; // execute this line
if (o == '*') // if user chose multiplication
return nX * nY; // execute this line
if (o == '/') // if user chose division
return nX / nY; // execute this line
return -1; // default "error" value in case user passed in an invalid chOperation
}
void printResult(long double x)
{
cout << "The answer is: " << setprecision(0.01) << x << "\n";
}
long double calc()
{
// Get first number from user
long double nInput1 = getUserInput();
// Get mathematical operations from user
char o = getMathematicalOperation();
// Get second number from user
long double nInput2 = getUserInput();
// Calculate result and store in temporary variable (for readability/debug-ability)
long double nResult = calculateResult(nInput1, o, nInput2);
// Print result
printResult(nResult);
return 0;
}
setprecision tells it how many decimal places you want as an int so you're actually setting it to setprecision(0) since 0.01 get truncated. In your case you want it set to 2. You should also use std::fixed or you'll get scientific numbers.
void printResult(long double x)
{
cout << "The answer is: " << std::fixed << setprecision(2) << x << "\n";
}
working example
It is not due to overflow you get the strange result. Doubles can easily hold numbers in the range you are showing.
Try to print the result without setprecision.
EDIT:
After trying
long double x = 100.1;
cout << x << endl;
I see that it doesn't work on my Windows system.
So I searched a little and found:
print long double on windows
maybe that is the explanation.
So I tried
long double x = 100.1;
cout << (double)x << endl;
which worked fine.
2nd EDIT:
Also see this link provided by Raphael
http://oldwiki.mingw.org/index.php/long%20double
The default floating point presentation switches automatically between presentation like 314.15 and 3.1e2, depending on the size of the number and the maximum number of digits it can use. With this presentation the precision is the maximum number of digits. By default it's 6.
You can either increase the maximum number of digits so that your result can be presented like 314.15, or you can force such fixed point notation by using the std::fixed manipulator. With std::fixed the precision is the number of decimals.
However, with std::fixed very large and very small numbers may be pretty unreadable.
The setprecision() manipulator specifies the number of digits after the decimal point. So, if you want 100.01 to be printed, use setprecision(2).
When you use setprecision(0.01), the value 0.01 is being converted to int, which will have a value of 0.
It wouldn't have hurt if you had actually read the documentation for setprecision() - that clearly specifies an int argument, not a floating point one.
What would be the best variable type for storing GPS coordinates in a C++ program? I wrote the code below just to try it out and regardless of what variable types I chose the problem persisted.
#include<iostream>
#include<algorithm>
#include<math.h>
using namespace std;
class Coordinate {
public:
float xcoor, ycoor;
int radius;
void set_values (float, float, int);
};
void Coordinate::set_values (float x, float y, int r){
xcoor = x;
ycoor = y;
radius = r;
}
int main (){
Coordinate test;
test.set_values (32.682633, -117.181554, 50);
cout << "coordinates: (" << test.xcoor << "," << test.ycoor << ")\n";
return 0;
}
This code outputs the values:
(32.6826,-117.182)
So obviously I am losing huge amounts of precision, but is there anyway I could maintain it? I haven't done GPS coordinates before and couldn't find anyone with a similar problem.
Thank you for your help.
using floating point variables in arithmetic can lead in a loss of precision, but as far as I see you do not do any calculation with your coordinates.
I suspect that you are assuming that std::cout does output floating point variables with full precision, which is not the case by default.
double test = 1.23456789;
std::cout.precision(10);
std::cout << "test: " << test << std::endl; // prints "test: 1.23456789"
See that question, as well as the documentation of ostreams for further information.
As far as I can see it only prints 6 digits. Try either setw or setprecision. With the former you can set a constant with to print out numbers or characters (this comes handy at aligning), the latter sets how many digits your program prints.
With floats you shouldn't lose any data from those numbers.