Knapsack displaying all sub sets - c++

I am having difficulty implementing a particular variation of the knapsack problem. the prompt wants every possible subset of items to be displayed like so.
set 1: {} => capacity: 0, value: $0
set 2: {1} => capacity: 3, value: $12
set 3: {2} => capacity: 4, value: $10
set 4: {1,2} => capacity: 7 – over capacity, value: N/A
Solution: {1} => capacity: 3, value: $12
I have implemented an algorithm to just give me the max value (which would be 12 in the example above) and that works fine. But I think I would have to change my approach completely in order to achieve the wanted output. Any Ideas would be greatly appreciated.
int knapSack(int W, int wt[], int val[], int n)
{
int i, w;
int K[n + 1][W + 1];
// Build table K[][] in bottom up manner
for (i = 0; i <= n; i++)
{
for (w = 0; w <= W; w++)
{
if (i == 0 || w == 0)
K[i][w] = 0;
else if (wt[i - 1] <= w)
K[i][w]
= max(val[i - 1] + K[i - 1][w - wt[i - 1]], K[i - 1][w]);
else
K[i][w] = K[i - 1][w];
}
}
return K[n][W];
}

Related

Initializing std::memset

I'm using std::memset to solve a LeetCode problem copied here. Currently, map_cherries has been initialized as:
map_cherries[70][70][70] = {}
...
std::memset(map_cherries, -1, sizeof(map_cherries));
Is there a way to set up dimensions and values of map_cherries at the same time, or maybe any better/alternative way to do that? Thank you!
Problem
Given a rows x cols matrix grid representing a field of cherries.
Each cell in grid represents the number of cherries that you can
collect.
You have two robots that can collect cherries for you, Robot #1 is
located at the top-left corner (0,0), and Robot #2 is located at the
top-right corner (0, cols-1) of the grid.
Return the maximum number of cherries collection using both robots by
following the rules below:
From a cell (i,j), robots can move to cell (i+1, j-1) , (i+1, j) or (i+1, j+1).
When any robot is passing through a cell, It picks it up all cherries, and the cell becomes an empty cell (0).
When both robots stay on the same cell, only one of them takes the cherries.
Both robots cannot move outside of the grid at any moment.
Both robots should reach the bottom row in the grid.
Example 1:
Input: grid = [[3,1,1],[2,5,1],[1,5,5],[2,1,1]]
Output: 24
Explanation: Path of robot #1 and #2 are described in color green and
blue respectively.
Cherries taken by Robot #1, (3 + 2 + 5 + 2) = 12.
Cherries taken by Robot #2, (1 + 5 + 5 + 1) = 12.
Total of cherries: 12 + 12 = 24.
Example 2:
Input: grid = [[1,0,0,0,0,0,1],[2,0,0,0,0,3,0],[2,0,9,0,0,0,0],[0,3,0,5,4,0,0],[1,0,2,3,0,0,6]]
Output: 28
Explanation: Path of robot #1 and #2 are described in
color green and blue respectively.
Cherries taken by Robot #1, (1 + 9 + 5 + 2) = 17.
Cherries taken by Robot #2, (1 + 3 + 4 + 3) = 11.
Total of cherries: 17 + 11 = 28.
Constraints:
rows == grid.length
cols == grid[i].length
2 <= rows, cols <= 70
0 <= grid[i][j] <= 100
Attempt
#include <cstdint>
#include <vector>
#include <cstring>
struct Solution {
int map_cherries[70][70][70] = {};
int cherryPickup(std::vector<std::vector<int>>& grid) {
std::memset(map_cherries, -1, sizeof(map_cherries));
const std::size_t row_length = grid.size();
const std::size_t col_length = grid[0].size();
return depth_first_search(grid, row_length, col_length, 0, 0, col_length - 1);
}
private:
int depth_first_search(
std::vector<std::vector<int>>& grid,
const std::size_t row_length,
const std::size_t col_length,
int row,
int left_robot,
int right_robot
) {
if (row == row_length) {
return 0;
}
if (map_cherries[row][left_robot][right_robot] != -1) {
return map_cherries[row][left_robot][right_robot];
}
int max_cherries = 0;
for (int left = -1; left < 2; left++) {
for (int right = -1; right < 2; right++) {
const int curr_left_robot = left_robot + left;
const int curr_right_robot = right_robot + right;
if (curr_left_robot > -1 and curr_left_robot < col_length and curr_right_robot > -1 and curr_right_robot < col_length) {
max_cherries = std::max(max_cherries, depth_first_search(
grid,
row_length,
col_length,
row + 1,
curr_left_robot,
curr_right_robot
));
}
}
}
int total_cherries = grid[row][left_robot];
if (left_robot != right_robot) {
total_cherries += grid[row][right_robot];
}
total_cherries += max_cherries;
return map_cherries[row][left_robot][right_robot] = total_cherries;
}
};
Inputs
[[3,1,1],[2,5,1],[1,5,5],[2,1,1]]
[[1,0,0,3],[0,0,0,3],[0,0,3,3],[9,0,3,3]]
[[1,10,0,3,86,40],[0,0,0,3,86,40],[0,0,3,3,86,40],[9,0,3,3,86,40], [1,0,40,3,86,40],[0,22,0,3,86,40],[99,0,3,3,86,40],[9,0,3,3,86,40]]
Outputs
24
22
819
References
Problem
Discuss
Solution
One way would be like this:
auto map_cherries = std::vector(70, std::vector(70, std::vector(70, -1)));
Only works starting from c++17.

Largest Area Axis-Aligned Rectangle Inside Convex Polygon [duplicate]

Given an NxN binary matrix (containing only 0's or 1's), how can we go about finding largest rectangle containing all 0's?
Example:
I
0 0 0 0 1 0
0 0 1 0 0 1
II->0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1 <--IV
0 0 1 0 0 0
IV
For the above example, it is a 6×6 binary matrix. the return value in this case will be Cell 1:(2, 1) and Cell 2:(4, 4). The resulting sub-matrix can be square or rectangular. The return value can also be the size of the largest sub-matrix of all 0's, in this example 3 × 4.
Here's a solution based on the "Largest Rectangle in a Histogram" problem suggested by #j_random_hacker in the comments:
[Algorithm] works by iterating through
rows from top to bottom, for each row
solving this problem, where the
"bars" in the "histogram" consist of
all unbroken upward trails of zeros
that start at the current row (a
column has height 0 if it has a 1 in
the current row).
The input matrix mat may be an arbitrary iterable e.g., a file or a network stream. Only one row is required to be available at a time.
#!/usr/bin/env python
from collections import namedtuple
from operator import mul
Info = namedtuple('Info', 'start height')
def max_size(mat, value=0):
"""Find height, width of the largest rectangle containing all `value`'s."""
it = iter(mat)
hist = [(el==value) for el in next(it, [])]
max_size = max_rectangle_size(hist)
for row in it:
hist = [(1+h) if el == value else 0 for h, el in zip(hist, row)]
max_size = max(max_size, max_rectangle_size(hist), key=area)
return max_size
def max_rectangle_size(histogram):
"""Find height, width of the largest rectangle that fits entirely under
the histogram.
"""
stack = []
top = lambda: stack[-1]
max_size = (0, 0) # height, width of the largest rectangle
pos = 0 # current position in the histogram
for pos, height in enumerate(histogram):
start = pos # position where rectangle starts
while True:
if not stack or height > top().height:
stack.append(Info(start, height)) # push
elif stack and height < top().height:
max_size = max(max_size, (top().height, (pos - top().start)),
key=area)
start, _ = stack.pop()
continue
break # height == top().height goes here
pos += 1
for start, height in stack:
max_size = max(max_size, (height, (pos - start)), key=area)
return max_size
def area(size):
return reduce(mul, size)
The solution is O(N), where N is the number of elements in a matrix. It requires O(ncols) additional memory, where ncols is the number of columns in a matrix.
Latest version with tests is at https://gist.github.com/776423
Please take a look at Maximize the rectangular area under Histogram and then continue reading the solution below.
Traverse the matrix once and store the following;
For x=1 to N and y=1 to N
F[x][y] = 1 + F[x][y-1] if A[x][y] is 0 , else 0
Then for each row for x=N to 1
We have F[x] -> array with heights of the histograms with base at x.
Use O(N) algorithm to find the largest area of rectangle in this histogram = H[x]
From all areas computed, report the largest.
Time complexity is O(N*N) = O(N²) (for an NxN binary matrix)
Example:
Initial array F[x][y] array
0 0 0 0 1 0 1 1 1 1 0 1
0 0 1 0 0 1 2 2 0 2 1 0
0 0 0 0 0 0 3 3 1 3 2 1
1 0 0 0 0 0 0 4 2 4 3 2
0 0 0 0 0 1 1 5 3 5 4 0
0 0 1 0 0 0 2 6 0 6 5 1
For x = N to 1
H[6] = 2 6 0 6 5 1 -> 10 (5*2)
H[5] = 1 5 3 5 4 0 -> 12 (3*4)
H[4] = 0 4 2 4 3 2 -> 10 (2*5)
H[3] = 3 3 1 3 2 1 -> 6 (3*2)
H[2] = 2 2 0 2 1 0 -> 4 (2*2)
H[1] = 1 1 1 1 0 1 -> 4 (1*4)
The largest area is thus H[5] = 12
Here is a Python3 solution, which returns the position in addition to the area of the largest rectangle:
#!/usr/bin/env python3
import numpy
s = '''0 0 0 0 1 0
0 0 1 0 0 1
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0'''
nrows = 6
ncols = 6
skip = 1
area_max = (0, [])
a = numpy.fromstring(s, dtype=int, sep=' ').reshape(nrows, ncols)
w = numpy.zeros(dtype=int, shape=a.shape)
h = numpy.zeros(dtype=int, shape=a.shape)
for r in range(nrows):
for c in range(ncols):
if a[r][c] == skip:
continue
if r == 0:
h[r][c] = 1
else:
h[r][c] = h[r-1][c]+1
if c == 0:
w[r][c] = 1
else:
w[r][c] = w[r][c-1]+1
minw = w[r][c]
for dh in range(h[r][c]):
minw = min(minw, w[r-dh][c])
area = (dh+1)*minw
if area > area_max[0]:
area_max = (area, [(r-dh, c-minw+1, r, c)])
print('area', area_max[0])
for t in area_max[1]:
print('Cell 1:({}, {}) and Cell 2:({}, {})'.format(*t))
Output:
area 12
Cell 1:(2, 1) and Cell 2:(4, 4)
Here is J.F. Sebastians method translated into C#:
private Vector2 MaxRectSize(int[] histogram) {
Vector2 maxSize = Vector2.zero;
int maxArea = 0;
Stack<Vector2> stack = new Stack<Vector2>();
int x = 0;
for (x = 0; x < histogram.Length; x++) {
int start = x;
int height = histogram[x];
while (true) {
if (stack.Count == 0 || height > stack.Peek().y) {
stack.Push(new Vector2(start, height));
} else if(height < stack.Peek().y) {
int tempArea = (int)(stack.Peek().y * (x - stack.Peek().x));
if(tempArea > maxArea) {
maxSize = new Vector2(stack.Peek().y, (x - stack.Peek().x));
maxArea = tempArea;
}
Vector2 popped = stack.Pop();
start = (int)popped.x;
continue;
}
break;
}
}
foreach (Vector2 data in stack) {
int tempArea = (int)(data.y * (x - data.x));
if(tempArea > maxArea) {
maxSize = new Vector2(data.y, (x - data.x));
maxArea = tempArea;
}
}
return maxSize;
}
public Vector2 GetMaximumFreeSpace() {
// STEP 1:
// build a seed histogram using the first row of grid points
// example: [true, true, false, true] = [1,1,0,1]
int[] hist = new int[gridSizeY];
for (int y = 0; y < gridSizeY; y++) {
if(!invalidPoints[0, y]) {
hist[y] = 1;
}
}
// STEP 2:
// get a starting max area from the seed histogram we created above.
// using the example from above, this value would be [1, 1], as the only valid area is a single point.
// another example for [0,0,0,1,0,0] would be [1, 3], because the largest area of contiguous free space is 3.
// Note that at this step, the heigh fo the found rectangle will always be 1 because we are operating on
// a single row of data.
Vector2 maxSize = MaxRectSize(hist);
int maxArea = (int)(maxSize.x * maxSize.y);
// STEP 3:
// build histograms for each additional row, re-testing for new possible max rectangluar areas
for (int x = 1; x < gridSizeX; x++) {
// build a new histogram for this row. the values of this row are
// 0 if the current grid point is occupied; otherwise, it is 1 + the value
// of the previously found historgram value for the previous position.
// What this does is effectly keep track of the height of continous avilable spaces.
// EXAMPLE:
// Given the following grid data (where 1 means occupied, and 0 means free; for clairty):
// INPUT: OUTPUT:
// 1.) [0,0,1,0] = [1,1,0,1]
// 2.) [0,0,1,0] = [2,2,0,2]
// 3.) [1,1,0,1] = [0,0,1,0]
//
// As such, you'll notice position 1,0 (row 1, column 0) is 2, because this is the height of contiguous
// free space.
for (int y = 0; y < gridSizeY; y++) {
if(!invalidPoints[x, y]) {
hist[y] = 1 + hist[y];
} else {
hist[y] = 0;
}
}
// find the maximum size of the current histogram. If it happens to be larger
// that the currently recorded max size, then it is the new max size.
Vector2 maxSizeTemp = MaxRectSize(hist);
int tempArea = (int)(maxSizeTemp.x * maxSizeTemp.y);
if (tempArea > maxArea) {
maxSize = maxSizeTemp;
maxArea = tempArea;
}
}
// at this point, we know the max size
return maxSize;
}
A few things to note about this:
This version is meant for use with the Unity API. You can easily make this more generic by replacing instances of Vector2 with KeyValuePair. Vector2 is only used for a convenient way to store two values.
invalidPoints[] is an array of bool, where true means the grid point is "in use", and false means it is not.
Solution with space complexity O(columns) [Can be modified to O(rows) also] and time complexity O(rows*columns)
public int maximalRectangle(char[][] matrix) {
int m = matrix.length;
if (m == 0)
return 0;
int n = matrix[0].length;
int maxArea = 0;
int[] aux = new int[n];
for (int i = 0; i < n; i++) {
aux[i] = 0;
}
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
aux[j] = matrix[i][j] - '0' + aux[j];
maxArea = Math.max(maxArea, maxAreaHist(aux));
}
}
return maxArea;
}
public int maxAreaHist(int[] heights) {
int n = heights.length;
Stack<Integer> stack = new Stack<Integer>();
stack.push(0);
int maxRect = heights[0];
int top = 0;
int leftSideArea = 0;
int rightSideArea = heights[0];
for (int i = 1; i < n; i++) {
if (stack.isEmpty() || heights[i] >= heights[stack.peek()]) {
stack.push(i);
} else {
while (!stack.isEmpty() && heights[stack.peek()] > heights[i]) {
top = stack.pop();
rightSideArea = heights[top] * (i - top);
leftSideArea = 0;
if (!stack.isEmpty()) {
leftSideArea = heights[top] * (top - stack.peek() - 1);
} else {
leftSideArea = heights[top] * top;
}
maxRect = Math.max(maxRect, leftSideArea + rightSideArea);
}
stack.push(i);
}
}
while (!stack.isEmpty()) {
top = stack.pop();
rightSideArea = heights[top] * (n - top);
leftSideArea = 0;
if (!stack.isEmpty()) {
leftSideArea = heights[top] * (top - stack.peek() - 1);
} else {
leftSideArea = heights[top] * top;
}
maxRect = Math.max(maxRect, leftSideArea + rightSideArea);
}
return maxRect;
}
But I get Time Limite exceeded excpetion when I try this on LeetCode. Is there any less complex solution?
I propose a O(nxn) method.
First, you can list all the maximum empty rectangles. Empty means that it covers only 0s. A maximum empty rectangle is such that it cannot be extended in a direction without covering (at least) one 1.
A paper presenting a O(nxn) algorithm to create such a list can be found at www.ulg.ac.be/telecom/rectangles as well as source code (not optimized). There is no need to store the list, it is sufficient to call a callback function each time a rectangle is found by the algorithm, and to store only the largest one (or choose another criterion if you want).
Note that a proof exists (see the paper) that the number of largest empty rectangles is bounded by the number of pixels of the image (nxn in this case).
Therefore, selecting the optimal rectangle can be done in O(nxn), and the overall method is also O(nxn).
In practice, this method is very fast, and is used for realtime video stream analysis.
Here is a version of jfs' solution, which also delivers the position of the largest rectangle:
from collections import namedtuple
from operator import mul
Info = namedtuple('Info', 'start height')
def max_rect(mat, value=0):
"""returns (height, width, left_column, bottom_row) of the largest rectangle
containing all `value`'s.
Example:
[[0, 0, 0, 0, 0, 0, 0, 0, 3, 2],
[0, 4, 0, 2, 4, 0, 0, 1, 0, 0],
[1, 0, 1, 0, 0, 0, 3, 0, 0, 4],
[0, 0, 0, 0, 4, 2, 0, 0, 0, 0],
[0, 0, 0, 2, 0, 0, 0, 0, 0, 0],
[4, 3, 0, 0, 1, 2, 0, 0, 0, 0],
[3, 0, 0, 0, 2, 0, 0, 0, 0, 4],
[0, 0, 0, 1, 0, 3, 2, 4, 3, 2],
[0, 3, 0, 0, 0, 2, 0, 1, 0, 0]]
gives: (3, 4, 6, 5)
"""
it = iter(mat)
hist = [(el==value) for el in next(it, [])]
max_rect = max_rectangle_size(hist) + (0,)
for irow,row in enumerate(it):
hist = [(1+h) if el == value else 0 for h, el in zip(hist, row)]
max_rect = max(max_rect, max_rectangle_size(hist) + (irow+1,), key=area)
# irow+1, because we already used one row for initializing max_rect
return max_rect
def max_rectangle_size(histogram):
stack = []
top = lambda: stack[-1]
max_size = (0, 0, 0) # height, width and start position of the largest rectangle
pos = 0 # current position in the histogram
for pos, height in enumerate(histogram):
start = pos # position where rectangle starts
while True:
if not stack or height > top().height:
stack.append(Info(start, height)) # push
elif stack and height < top().height:
max_size = max(max_size, (top().height, (pos - top().start), top().start), key=area)
start, _ = stack.pop()
continue
break # height == top().height goes here
pos += 1
for start, height in stack:
max_size = max(max_size, (height, (pos - start), start), key=area)
return max_size
def area(size):
return size[0] * size[1]
To be complete, here's the C# version which outputs the rectangle coordinates.
It's based on dmarra's answer but without any other dependencies.
There's only the function bool GetPixel(int x, int y), which returns true when a pixel is set at the coordinates x,y.
public struct INTRECT
{
public int Left, Right, Top, Bottom;
public INTRECT(int aLeft, int aTop, int aRight, int aBottom)
{
Left = aLeft;
Top = aTop;
Right = aRight;
Bottom = aBottom;
}
public int Width { get { return (Right - Left + 1); } }
public int Height { get { return (Bottom - Top + 1); } }
public bool IsEmpty { get { return Left == 0 && Right == 0 && Top == 0 && Bottom == 0; } }
public static bool operator ==(INTRECT lhs, INTRECT rhs)
{
return lhs.Left == rhs.Left && lhs.Top == rhs.Top && lhs.Right == rhs.Right && lhs.Bottom == rhs.Bottom;
}
public static bool operator !=(INTRECT lhs, INTRECT rhs)
{
return !(lhs == rhs);
}
public override bool Equals(Object obj)
{
return obj is INTRECT && this == (INTRECT)obj;
}
public bool Equals(INTRECT obj)
{
return this == obj;
}
public override int GetHashCode()
{
return Left.GetHashCode() ^ Right.GetHashCode() ^ Top.GetHashCode() ^ Bottom.GetHashCode();
}
}
public INTRECT GetMaximumFreeRectangle()
{
int XEnd = 0;
int YStart = 0;
int MaxRectTop = 0;
INTRECT MaxRect = new INTRECT();
// STEP 1:
// build a seed histogram using the first row of grid points
// example: [true, true, false, true] = [1,1,0,1]
int[] hist = new int[Height];
for (int y = 0; y < Height; y++)
{
if (!GetPixel(0, y))
{
hist[y] = 1;
}
}
// STEP 2:
// get a starting max area from the seed histogram we created above.
// using the example from above, this value would be [1, 1], as the only valid area is a single point.
// another example for [0,0,0,1,0,0] would be [1, 3], because the largest area of contiguous free space is 3.
// Note that at this step, the heigh fo the found rectangle will always be 1 because we are operating on
// a single row of data.
Tuple<int, int> maxSize = MaxRectSize(hist, out YStart);
int maxArea = (int)(maxSize.Item1 * maxSize.Item2);
MaxRectTop = YStart;
// STEP 3:
// build histograms for each additional row, re-testing for new possible max rectangluar areas
for (int x = 1; x < Width; x++)
{
// build a new histogram for this row. the values of this row are
// 0 if the current grid point is occupied; otherwise, it is 1 + the value
// of the previously found historgram value for the previous position.
// What this does is effectly keep track of the height of continous avilable spaces.
// EXAMPLE:
// Given the following grid data (where 1 means occupied, and 0 means free; for clairty):
// INPUT: OUTPUT:
// 1.) [0,0,1,0] = [1,1,0,1]
// 2.) [0,0,1,0] = [2,2,0,2]
// 3.) [1,1,0,1] = [0,0,1,0]
//
// As such, you'll notice position 1,0 (row 1, column 0) is 2, because this is the height of contiguous
// free space.
for (int y = 0; y < Height; y++)
{
if (!GetPixel(x, y))
{
hist[y]++;
}
else
{
hist[y] = 0;
}
}
// find the maximum size of the current histogram. If it happens to be larger
// that the currently recorded max size, then it is the new max size.
Tuple<int, int> maxSizeTemp = MaxRectSize(hist, out YStart);
int tempArea = (int)(maxSizeTemp.Item1 * maxSizeTemp.Item2);
if (tempArea > maxArea)
{
maxSize = maxSizeTemp;
maxArea = tempArea;
MaxRectTop = YStart;
XEnd = x;
}
}
MaxRect.Left = XEnd - maxSize.Item1 + 1;
MaxRect.Top = MaxRectTop;
MaxRect.Right = XEnd;
MaxRect.Bottom = MaxRectTop + maxSize.Item2 - 1;
// at this point, we know the max size
return MaxRect;
}
private Tuple<int, int> MaxRectSize(int[] histogram, out int YStart)
{
Tuple<int, int> maxSize = new Tuple<int, int>(0, 0);
int maxArea = 0;
Stack<Tuple<int, int>> stack = new Stack<Tuple<int, int>>();
int x = 0;
YStart = 0;
for (x = 0; x < histogram.Length; x++)
{
int start = x;
int height = histogram[x];
while (true)
{
if (stack.Count == 0 || height > stack.Peek().Item2)
{
stack.Push(new Tuple<int, int>(start, height));
}
else if (height < stack.Peek().Item2)
{
int tempArea = (int)(stack.Peek().Item2 * (x - stack.Peek().Item1));
if (tempArea > maxArea)
{
YStart = stack.Peek().Item1;
maxSize = new Tuple<int, int>(stack.Peek().Item2, (x - stack.Peek().Item1));
maxArea = tempArea;
}
Tuple<int, int> popped = stack.Pop();
start = (int)popped.Item1;
continue;
}
break;
}
}
foreach (Tuple<int, int> data in stack)
{
int tempArea = (int)(data.Item2 * (x - data.Item1));
if (tempArea > maxArea)
{
YStart = data.Item1;
maxSize = new Tuple<int, int>(data.Item2, (x - data.Item1));
maxArea = tempArea;
}
}
return maxSize;
}
An appropriate algorithm can be found within Algorithm for finding the largest inscribed rectangle in polygon (2019).
I implemented it in python:
import largestinteriorrectangle as lir
import numpy as np
grid = np.array([[0, 0, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1],
[0, 0, 1, 0, 0, 0]],
"bool")
grid = ~grid
lir.lir(grid) # [1, 2, 4, 3]
the result comes as x, y, width, height

split a number n as sum of k distinct numbers

I have a number n and I have to split it into k numbers such that all k numbers are distinct, the sum of the k numbers is equal to n and k is maximum. Example if n is 9 then the answer should be 1,2,6. If n is 15 then answer should be 1,2,3,4,5.
This is what I've tried -
void findNum(int l, int k, vector<int>& s)
{
if (k <= 2 * l) {
s.push_back(k);
return;
}
else if (l == 1) {
s.push_back(l);
findNum(l + 1, k - 1, s);
}
else if(l == 2) {
s.push_back(l);
findNum(l + 2, k - 2, s);
}
else{
s.push_back(l);
findNum(l + 1, k - l, s);
}
}
Initially k = n and l = 1. Resulting numbers are stored in s. This solution even though returns the number n as a sum of k distinct numbers but it is the not the optimal solution(k is not maximal). Example output for n = 15 is 1,2,4,8. What changes should be made to get the correct result?
Greedy algorithm works for this problem. Just start summing up from 1 to m such that sum(1...m) <= n. As soon as it exceeds, add the excess to m-1. Numbers from 1 upto m|m-1 will be the answer.
eg.
18
1+2+3+4+5 < 18
+6 = 21 > 18
So, answer: 1+2+3+4+(5+6-(21-18))
28
1+2+3+4+5+6+7 = 28
So, answer: 1+2+3+4+5+6+7
Pseudocode (in constant time, complexity O(1))
Find k such that, m * (m+1) > 2 * n
Number of terms = m-1
Terms: 1,2,3...m-2,(m-1 + m - (sum(1...m) - n))
sum can be partitionned into k terms in {1, ... , m} if min(k) <= sum <= max(k,m), with
min(k) = 1 + 2 + .. + k = (k*(k+1))/2
max(k,m) = m + (m-1) + .. + (m-k+1) = k*m - (k*(k-1))/2
So, you can use the following pseudo-code:
fn solve(n, k, sum) -> set or error
s = new_set()
for m from n down to 1:
# will the problem be solvable if we add m to s?
if min(k-1) <= sum-m <= max(k-1, m-1) then
s.add(m), sum-=m, k-=1
if s=0 and k=0 then s else error()

All possible combinations of coins

I need to write a program which displays all possible change combinations given an array of denominations [1 , 2, 5, 10, 20, 50, 100, 200] // 1 = 1 cent
Value to make the change from = 300
I'm basing my code on the solution from this site http://www.geeksforgeeks.org/dynamic-programming-set-7-coin-change/
#include<stdio.h>
int count( int S[], int m, int n )
{
int i, j, x, y;
// We need n+1 rows as the table is consturcted in bottom up manner using
// the base case 0 value case (n = 0)
int table[n+1][m];
// Fill the enteries for 0 value case (n = 0)
for (i=0; i<m; i++)
table[0][i] = 1;
// Fill rest of the table enteries in bottom up manner
for (i = 1; i < n+1; i++)
{
for (j = 0; j < m; j++)
{
// Count of solutions including S[j]
x = (i-S[j] >= 0)? table[i - S[j]][j]: 0;
// Count of solutions excluding S[j]
y = (j >= 1)? table[i][j-1]: 0;
// total count
table[i][j] = x + y;
}
}
return table[n][m-1];
}
// Driver program to test above function
int main()
{
int arr[] = {1, 2, 5, 10, 20, 50, 100, 200}; //coins array
int m = sizeof(arr)/sizeof(arr[0]);
int n = 300; //value to make change from
printf(" %d ", count(arr, m, n));
return 0;
}
The program runs fine. It displays the number of all possible combinations, but I need it to be more advanced. The way I need it to work is to display the result in following fashion:
1 cent: n number of possible combinations.
2 cents:
5 cents:
and so on...
How can I modify the code to achieve that ?
Greedy Algorithm Approach
Have this denominations in an int array say, int den[] = [1 , 2, 5, 10, 20, 50, 100, 200]
Iterate over this array
For each iteration do the following
Take the element in the denominations array
Divide the change to be allotted number by the element in denominations array number
If the change allotted number is perfectly divisible by the number in denomination array then you are done with the change for that number.
If the number is not perfectly divisible then check for the remainder and do the same iteration with other number
Exit the inner iteration once you get the value equal to the change number
Do the same for the next denomination available in our denomination array.
Explained with example
den = [1 , 2, 5, 10, 20, 50, 100, 200]
Change to be alloted : 270, let take this as x
and y be the temporary variable
Change map z[coin denomination, count of coins]
int y, z[];
First iteration :
den = 1
x = 270
y = 270/1;
if x is equal to y*den
then z[den, y] // z[1, 270]
Iteration completed
Second Iteration:
den = 2
x = 270
y = 270/2;
if x is equal to y*den
then z[den , y] // [2, 135]
Iteration completed
Lets take a odd number
x = 217 and den = 20
y= 217/20;
now x is not equal to y*den
then update z[den, y] // [20, 10]
find new x = x - den*y = 17
x=17 and identify the next change value by greedy it would be 10
den = 10
y = 17/10
now x is not equal to y*den
then update z[den, y] // [10, 1]
find new x = x - den*y = 7
then do the same and your map would be having following entries
[20, 10]
[10, 1]
[5, 1]
[2, 1]

shell sort sequence implementation in C++

I am reading about shell sort in Algorithms in C++ by Robert Sedwick.
Here outer loop to change the increments leads to this compact shellsort implementation, which uses the increment sequence 1 4 13 40 121 364 1093 3280 9841 . . . .
template <class Item>
void shellsort(Item a[], int l, int r)
{
int h;
for (h = 1; h <= (r - l) / 9; h = 3 * h + 1);
for (; h > 0; h = h / 3)
{
for (int i = l + h; i <= r; i++)
{
int j = i; Item v = a[i];
while (j >= l + h && v < a[j - h])
{
a[j] = a[j - h]; j -= h;
}
a[j] = v;
}
}
}
My question under what basis author is checking for condition h <= (r-l)/9, and why author is dividing by 9.
The loop:
for (h = 1; h <= (r - l) / 9; h = 3 * h + 1);
calculates the initial value of h. This value must be smaller than the range it will be used in:
h <= (r - l)
Everytime this condition passes, h gets updated to 3 * h + 1, which means that even though h is smaller than (r-l), the updated value might be larger. To prevent this, we could check if the next value of h would surpass the largest index:
(h * 3) + 1 <= (r - l)
This will make sure h is smaller than range of the array.
For example: say we have an array of size 42, which means indices go from 0 to 41. Using the condition as described above:
h = 1, is (3 * 1 + 1) <= (41 - 0) ? yes! -> update h to 4
h = 4, is (3 * 4 + 1) <= (41 - 0) ? yes! -> update h to 13
h = 13, is (3 * 13 + 1) <= (41 - 0) ? yes! -> update h to 40
h = 40, is (3 * 40 + 1) <= (41 - 0) ? no! => h will begin at 40
This means our initial h is 40, because h is only marginally smaller than the range of the array, very little work will be done, the algorithm will only check the following:
Does array[40] needs to be swapped with array[0] ?
Does array[41] needs to be swapped with array[1] ?
This is a bit useless, the first iteration only performs two checks. A smaller initial value of h means more work will get done in the first iteration.
Using:
h <= (r - l) / 9
ensures the initial value of h to be sufficiently small to allow the first iteration to do useful work. As an extra advantage, it also looks cleaner than the previous condition.
You could replace 9 by any value greater than 3. Why greater than 3? To ensure (h * 3) + 1 <= (r - l) is still true!
But do remember to not make the initial h too small: Shell Sort is based on Insertion Sort, which only performs well on small or nearly sorted arrays. Personally, I would not exceed h <= (r - l) / 15.