I have some problems when using Stitcher class.
First, I use ORB Feature Finder because it's faster than SURF.
but it's still slow.
Second, Stitcher class accuracy is too low.
Third, How can I get more performance by using Stitcher class?
Additional, How can I catch directions between two images?
This is my code.
Thank you.
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/stitching.hpp"
#include "opencv2/features2d.hpp"
using namespace cv;
using namespace std;
void overlayImage(const cv::Mat &background, const cv::Mat &foreground, cv::Mat &output, cv::Point2i location);
int main(int argc, char* argv[])
{
Mat first;
Mat second;
Mat m_first;
Mat m_second;
vector<Mat> images;
// vector<Mat> re_images;
Mat panorama;
Mat result;
unsigned long t;
t = getTickCount();
first = imread(argv[1], CV_LOAD_IMAGE_COLOR);
second = imread(argv[2], CV_LOAD_IMAGE_COLOR);
//Mat m_first = Mat::zeros( first.size(), first.type() );
//Mat m_second = Mat::zeros( second.size(), second.type() );
/*
for( int y = 0; y < first.rows; y++ ) {
for( int x = 0; x < first.cols; x++ ) {
for( int c = 0; c < 3; c++ ) {
m_first.at<Vec3b>(y,x)[c] = saturate_cast<uchar>( 1.2*( first.at<Vec3b>(y,x)[c] ) + 20 );
}
}
}
for( int y = 0; y < second.rows; y++ ){
for( int x = 0; x < second.cols; x++ ) {
for( int c = 0; c < 3; c++ ) {
m_second.at<Vec3b>(y,x)[c] =
saturate_cast<uchar>( 1.2*( second.at<Vec3b>(y,x)[c] ) + 20 );
}
}
}
*/
//imwrite("first.png", m_first);
//imwrite("second.png", m_second);
resize(first, m_first, Size(640, 480));
resize(second, m_second, Size(640, 480));
images.push_back(m_first);
images.push_back(m_second);
Stitcher stitcher = Stitcher::createDefault(false);
//Stitcher::Status status = stitcher.stitch(imgs, pano);
//stitcher.setWarper(new PlaneWarper());
stitcher.setWarper(new SphericalWarper());
// stitcher.setWarper(new CylindricalWarper());
stitcher.setFeaturesFinder(new detail::OrbFeaturesFinder(Size(3,1),1500));
// stitcher.setRegistrationResol(0.6);
// stitcher.setSeamEstimationResol(0.1);
// stitcher.setCompositingResol(0.5);
//stitcher.setPanoConfidenceThresh(1);
stitcher.setWaveCorrection(true);
stitcher.setWaveCorrectKind(detail::WAVE_CORRECT_HORIZ);
stitcher.setFeaturesMatcher(new detail::BestOf2NearestMatcher(false,0.3));
stitcher.setBundleAdjuster(new detail::BundleAdjusterRay());
stitcher.setBlender(new detail::MultiBandBlender());
stitcher.stitch(images, panorama);
printf("%.2lf sec \n", (getTickCount() - t) / getTickFrequency() );
Rect rect(panorama.cols / 2 - 320, panorama.rows / 2 - 240, 640, 480);
Mat subimage = panorama(rect);
Mat car = imread("car.png");
overlayImage(subimage, car, result, cv::Point(320 - (car.cols / 2), 240 - (car.rows / 2 )));
imshow("panorama", result);
// resize(panorama, result, Size(640, 480));
imwrite("result.jpg", result);
waitKey(0);
return 0;
}
void overlayImage(const cv::Mat &background, const cv::Mat &foreground, cv::Mat &output, cv::Point2i location)
{
background.copyTo(output);
// start at the row indicated by location, or at row 0 if location.y is negative.
for(int y = std::max(location.y , 0); y < background.rows; ++y)
{
int fY = y - location.y; // because of the translation
// we are done of we have processed all rows of the foreground image.
if(fY >= foreground.rows)
break;
// start at the column indicated by location,
// or at column 0 if location.x is negative.
for(int x = std::max(location.x, 0); x < background.cols; ++x)
{
int fX = x - location.x; // because of the translation.
// we are done with this row if the column is outside of the foreground image.
if(fX >= foreground.cols)
break;
// determine the opacity of the foregrond pixel, using its fourth (alpha) channel.
double opacity =
((double)foreground.data[fY * foreground.step + fX * foreground.channels() + 3])
/ 255.;
// and now combine the background and foreground pixel, using the opacity,
// but only if opacity > 0.
for(int c = 0; opacity > 0 && c < output.channels(); ++c)
{
unsigned char foregroundPx =
foreground.data[fY * foreground.step + fX * foreground.channels() + c];
unsigned char backgroundPx =
background.data[y * background.step + x * background.channels() + c];
output.data[y*output.step + output.channels()*x + c] =
backgroundPx * (1.-opacity) + foregroundPx * opacity;
}
}
}
}
FAST feature detector is faster than SURF and ORB.
Moreover, finding 1500 features in a 640*480 picture takes too much time. 300 features is ok. So you can use this code instead:
detail::OrbFeaturesFinder(Size(3,1),300));
Stitcher Class is so slow. I suggest you try to implement stitcher class yourself. Try using feature detectors, descriptors, then matching and after that find homography then making mask and then warping.
I don't understand your third question, "How can I catch directions between two images?". What do you mean exactly?
Related
I'm trying to Shear an image along the X-axis using OpenCV to load the image, and the following algorithm to shear the image: x′=x+y·Bx, but for some reason, I end up with the following shear:
My source code looks like this:
#include "stdafx.h"
#include "opencv2\opencv.hpp"
using namespace std;
using namespace cv;
int main()
{
Mat src = imread("B2DBy.jpg", 1);
if (src.empty())
cout << "Error: Loading image" << endl;
int r1, c1; // tranformed point
int rows, cols; // original image rows and columns
rows = src.rows;
cols = src.cols;
float Bx = 2; // amount of shearing in x-axis
float By = 0; // amount of shearing in y-axis
int maxXOffset = abs(cols * Bx);
int maxYOffset = abs(rows * By);
Mat out = Mat::ones(src.rows + maxYOffset, src.cols + maxXOffset, src.type()); // create output image to be the same as the source
for (int r = 0; r < out.rows; r++) // loop through the image
{
for (int c = 0; c < out.cols; c++)
{
r1 = r + c * By - maxYOffset; // map old point to new
c1 = r * Bx + c - maxXOffset;
if (r1 >= 0 && r1 <= out.rows && c1 >= 0 && c1 <= out.cols) // check if the point is within the boundaries
{
out.at<uchar>(r, c) = src.at<uchar>(r1, c1); // set value
}
}
}
namedWindow("Source image", CV_WINDOW_AUTOSIZE);
namedWindow("Rotated image", CV_WINDOW_AUTOSIZE);
imshow("Source image", src);
imshow("Rotated image", out);
waitKey(0);
return 0;
}
EDIT
Fixed it myself.
Didn't need to substract the offset. Heres the updated source code:
Mat forward(Mat img) {
Mat umg = img;
int y1, x1; // tranformed point
int rows, cols; // original image rows and columns
rows = umg.rows;
cols = umg.cols;
float Bx = 0.7; // amount of shearing in x-axis
float By = 0; // amount of shearing in y-axis
int maxXOffset = abs(rows * Bx);
int maxYOffset = abs(cols * By);
Mat out = Mat::ones(rows + maxYOffset, cols + maxXOffset, umg.type()); // create output image to be the same as the source
for (int y = 0; y < rows; y++) // loop through the image
{
for (int x = 0; x < cols; x++)
{
y1 = y + x * By; // map old point to new
x1 = y * Bx + x;
out.at<uchar>(y1, x1) = umg.at<uchar>(y, x); // set value
}
}
return out;
}
Mat backwards(Mat img) {
Mat umg = img;
int y1, x1; // tranformed point
int rows, cols; // original image rows and columns
rows = umg.rows;
cols = umg.cols;
float Bx = 0.7; // amount of shearing in x-axis
float By = 0; // amount of shearing in y-axis
int maxXOffset = abs(rows * Bx);
int maxYOffset = abs(cols * By);
Mat out = Mat::ones(rows + maxYOffset, cols + maxXOffset, umg.type()); // create output image to be the same as the source
for (int y = 0; y < rows; y++) // loop through the image
{
for (int x = 0; x < cols; x++)
{
//y1 = y + x * By; // map old point to new
//x1 = y * Bx + x;
y1 = (1 / (1 - Bx*By)) * (y + x * By);
x1 = (1 / (1 - Bx*By)) * (y * Bx + x);
out.at<uchar>(y1, x1) = umg.at<uchar>(y, x); // set value
}
}
return out;
}
int main()
{
Mat src = imread("B2DBy.jpg", 0);
if (src.empty())
cout << "Error: Loading image" << endl;
Mat forwards = forward(src);
Mat back = backwards(src);
namedWindow("Source image", CV_WINDOW_NORMAL);
imshow("Source image", src);
imshow("back", back);
imshow("forward image", forwards);
waitKey(0);
return 0;
}
I found some time to work on this.
Now I understand what you tried to achieve with the offset computation, but I'm not sure whether yours is correct.
Just change all the cv::Vec3b to unsigned char or uchar and load as grayscale, if wanted.
Please try this code and maybe you'll find your error:
// no interpolation yet
// cv::Vec3b only
cv::Mat shear(const cv::Mat & input, float Bx, float By)
{
if (Bx*By == 1)
{
throw("Shearing: Bx*By==1 is forbidden");
}
if (input.type() != CV_8UC3) return cv::Mat();
// shearing:
// x'=x+y·Bx
// y'=y+x*By
// shear the extreme positions to find out new image size:
std::vector<cv::Point2f> extremePoints;
extremePoints.push_back(cv::Point2f(0, 0));
extremePoints.push_back(cv::Point2f(input.cols, 0));
extremePoints.push_back(cv::Point2f(input.cols, input.rows));
extremePoints.push_back(cv::Point2f(0, input.rows));
for (unsigned int i = 0; i < extremePoints.size(); ++i)
{
cv::Point2f & pt = extremePoints[i];
pt = cv::Point2f(pt.x + pt.y*Bx, pt.y + pt.x*By);
}
cv::Rect offsets = cv::boundingRect(extremePoints);
cv::Point2f offset = -offsets.tl();
cv::Size resultSize = offsets.size();
cv::Mat shearedImage = cv::Mat::zeros(resultSize, input.type()); // every pixel here is implicitely shifted by "offset"
// perform the shearing by back-transformation
for (int j = 0; j < shearedImage.rows; ++j)
{
for (int i = 0; i < shearedImage.cols; ++i)
{
cv::Point2f pp(i, j);
pp = pp - offset; // go back to original coordinate system
// go back to original pixel:
// x'=x+y·Bx
// y'=y+x*By
// y = y'-x*By
// x = x' -(y'-x*By)*Bx
// x = +x*By*Bx - y'*Bx +x'
// x*(1-By*Bx) = -y'*Bx +x'
// x = (-y'*Bx +x')/(1-By*Bx)
cv::Point2f p;
p.x = (-pp.y*Bx + pp.x) / (1 - By*Bx);
p.y = pp.y - p.x*By;
if ((p.x >= 0 && p.x < input.cols) && (p.y >= 0 && p.y < input.rows))
{
// TODO: interpolate, if wanted (p is floating point precision and can be placed between two pixels)!
shearedImage.at<cv::Vec3b>(j, i) = input.at<cv::Vec3b>(p);
}
}
}
return shearedImage;
}
int main(int argc, char* argv[])
{
cv::Mat input = cv::imread("C:/StackOverflow/Input/Lenna.png");
cv::Mat output = shear(input, 0.7, 0);
//cv::Mat output = shear(input, -0.7, 0);
//cv::Mat output = shear(input, 0, 0.7);
cv::imshow("input", input);
cv::imshow("output", output);
cv::waitKey(0);
return 0;
}
Giving me these outputs for the 3 sample lines:
I have an image 800x800 which is broken down to 16 blocks of 200x200.
(you can see previous post here)
These blocks are : vector<Mat> subImages;
I want to use float pointers on them , so I am doing :
float *pdata = (float*)( subImages[ idxSubImage ].data );
1) Now, I want to be able to get again the same images/blocks, going from float array to Mat data.
int Idx = 0;
pdata = (float*)( subImages[ Idx ].data );
namedWindow( "Display window", WINDOW_AUTOSIZE );
for( int i = 0; i < OriginalImgSize.height - 4; i+= 200 )
{
for( int j = 0; j < OriginalImgSize.width - 4; j+= 200, Idx++ )
{
Mat mf( i,j, CV_32F, pdata + 200 );
imshow( "Display window", mf );
waitKey(0);
}
}
So , the problem is that I am receiving an
OpenCV Error: Assertion failed
in imshow.
2) How can I recombine all the blocks to obtain the original 800x800 image?
I tried something like:
int Idx = 0;
pdata = (float*)( subImages[ Idx ].data );
Mat big( 800,800,CV_32F );
for( int i = 0; i < OriginalImgSize.height - 4; i+= 200 )
{
for( int j = 0; j < OriginalImgSize.width - 4; j+= 200, Idx++ )
{
Mat mf( i,j, CV_32F, pdata + 200 );
Rect roi(j,i,200,200);
mf.copyTo( big(roi) );
}
}
imwrite( "testing" , big );
This gives me :
OpenCV Error: Assertion failed (!fixedSize()) in release
in mf.copyTo( big(roi) );.
First, you need to know where are your subimages into the big image. To do this, you can save the rect of each subimage into the vector<Rect> smallImageRois;
Then you can use pointers (keep in mind that subimages are not continuous), or simply use copyTo to the correct place:
Have a look:
#include <opencv2\opencv.hpp>
#include <vector>
using namespace std;
using namespace cv;
int main()
{
Mat3b img = imread("path_to_image");
resize(img, img, Size(800, 800));
Mat grayImg;
cvtColor(img, grayImg, COLOR_BGR2GRAY);
grayImg.convertTo(grayImg, CV_32F);
int N = 4;
if (((grayImg.rows % N) != 0) || ((grayImg.cols % N) != 0))
{
// Error
return -1;
}
Size graySize = grayImg.size();
Size smallSize(grayImg.cols / N, grayImg.rows / N);
vector<Mat> smallImages;
vector<Rect> smallImageRois;
for (int i = 0; i < graySize.height; i += smallSize.height)
{
for (int j = 0; j < graySize.width; j += smallSize.width)
{
Rect rect = Rect(j, i, smallSize.width, smallSize.height);
smallImages.push_back(grayImg(rect));
smallImageRois.push_back(rect);
}
}
// Option 1. Using pointer to subimage data.
Mat big1(800, 800, CV_32F);
int big1step = big1.step1();
float* pbig1 = big1.ptr<float>(0);
for (int idx = 0; idx < smallImages.size(); ++idx)
{
float* pdata = (float*)smallImages[idx].data;
int step = smallImages[idx].step1();
Rect roi = smallImageRois[idx];
for (int i = 0; i < smallSize.height; ++i)
{
for (int j = 0; j < smallSize.width; ++j)
{
pbig1[(roi.y + i) * big1step + (roi.x + j)] = pdata[i * step + j];
}
}
}
// Option 2. USing copyTo
Mat big2(800, 800, CV_32F);
for (int idx = 0; idx < smallImages.size(); ++idx)
{
smallImages[idx].copyTo(big2(smallImageRois[idx]));
}
return 0;
}
For concatenating the sub-images into a single squared image, you can use the following function:
// Important: all patches should have exactly the same size
Mat concatPatches(vector<Mat> &patches) {
assert(patches.size() > 0);
// make it square
const int patch_width = patches[0].cols;
const int patch_height = patches[0].rows;
const int patch_stride = ceil(sqrt(patches.size()));
Mat image = Mat::zeros(patch_stride * patch_height, patch_stride * patch_width, patches[0].type());
for (size_t i = 0, iend = patches.size(); i < iend; i++) {
Mat &patch = patches[i];
const int offset_x = (i % patch_stride) * patch_width;
const int offset_y = (i / patch_stride) * patch_height;
// copy the patch to the output image
patch.copyTo(image(Rect(offset_x, offset_y, patch_width, patch_height)));
}
return image;
}
It takes a vector of sub-images (or patches as I refer them to) and concatenates them into a squared image. Example usage:
vector<Mat> patches;
vector<Scalar> colours = {Scalar(255, 0, 0), Scalar(0, 255, 0), Scalar(0, 0, 255)};
// fill vector with circles of different colours
for(int i = 0; i < 16; i++) {
Mat patch = Mat::zeros(100,100, CV_32FC3);
circle(patch, Point(50,50), 40, colours[i % 3], -1);
patches.push_back(patch);
}
Mat img = concatPatches(patches);
imshow("img", img);
waitKey();
Will produce the following image
print the values of i and j before creating Mat mf and I believe you will soon be able to find the error.
Hint 1: i and j will be 0 the first time
Hint 2: Use the copyTo() with a ROI like:
cv::Rect roi(0,0,200,200);
src.copyTo(dst(roi))
Edit:
Hint 3: Try not to do such pointer fiddling, you will get in trouble. Especially if you're ignoring the step (like you seem to do).
Hi everyone i tried using kmeans clustering to group the objects. So that i can use this clustering method to detect objects. I get output but the problem is its too slow{How can i solve this?? } and i get the output window is as shown in the below link. Three output images are displayed instead of one how can i solve this. I don't know where exactly the error lies.
http://tinypic.com/view.php?pic=30bd7dc&s=8#.VgkSIPmqqko
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
using namespace cv;
using namespace std;
int main( )
{
Mat src = imread( "Light.jpg", 0 );
// imshow("fff",src);
// cvtColor(src,src,COLOR_BGR2GRAY);
Mat dst;
// pyrDown(src,src,Size( src.cols/2, src.rows/2 ),4);
// src=dst;
resize(src,src,Size(128,128),0,0,1);
Mat samples(src.rows * src.cols, 3, CV_32F);
for( int y = 0; y < src.rows; y++ )
for( int x = 0; x < src.cols; x++ )
// for( int z = 0; z < 3; z++)
samples.at<float>(y + x*src.rows) = src.at<uchar>(y,x);
cout<<"aaa"<<endl;
int clusterCount = 15;
Mat labels;
int attempts = 2;
Mat centers;
cout<<"aaa"<<endl;
kmeans(samples, clusterCount, labels, TermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 10000, 0.0001), attempts, KMEANS_PP_CENTERS, centers );
Mat new_image( src.size(), src.type() );
cout<<"aaa"<<endl;
for( int y = 0; y < src.rows; y++ )
for( int x = 0; x < src.cols; x++ )
{
int cluster_idx = labels.at<int>(y + x*src.rows,0);
new_image.at<uchar>(y,x) = centers.at<float>(cluster_idx,0);
//new_image.at<Vec3b>(y,x)[1] = centers.at<float>(cluster_idx, 1);
// new_image.at<Vec3b>(y,x)[2] = centers.at<float>(cluster_idx, 2);
}
imshow( "clustered image", new_image );
waitKey( 0 );
}
In your initial code you have to change the intermedia Mat sample from 3 channels to 1 channel if you use grayscale images.
In addition, if you change the memory ordering, it might be faster (changed to (y*src.cols + x, 0) in both places):
int main( )
{
clock_t start = clock();
Mat src = imread( "Light.jpg", 0 );
Mat dst;
resize(src,src,Size(128,128),0,0,1);
Mat samples(src.rows * src.cols, 1, CV_32F);
for( int y = 0; y < src.rows; y++ )
for( int x = 0; x < src.cols; x++ )
samples.at<float>(y*src.cols + x, 0) = src.at<uchar>(y,x);
int clusterCount = 15;
Mat labels;
int attempts = 2;
Mat centers;
kmeans(samples, clusterCount, labels, TermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 10000, 0.0001), attempts, KMEANS_PP_CENTERS, centers );
Mat new_image( src.size(), src.type() );
for( int y = 0; y < src.rows; y++ )
for( int x = 0; x < src.cols; x++ )
{
int cluster_idx = labels.at<int>(y*src.cols + x,0);
new_image.at<uchar>(y,x) = centers.at<float>(cluster_idx,0);
}
imshow( "clustered image", new_image );
clock_t end = clock();
std::cout << "time: " << (end - start)/(float)CLOCKS_PER_SEC << std::endl;
waitKey( 0 );
}
I'm having problems with the DFT function in OpenCV 2.4.8 for c++.
I used an image of a 10 phases sinus curve to compare the old cvDFT() with the newer c++ function DFT() (one dimensional DFT row-wise).
The old version gives me logical results: very high peak at pixel 0 and 10, the rest being almost 0.
The new version gives me strange results with peaks all over the spectrum.
Here is my code:
#include "stdafx.h"
#include <opencv2\core\core_c.h>
#include <opencv2\core\core.hpp>
#include <opencv2\imgproc\imgproc_c.h>
#include <opencv2\imgproc\imgproc.hpp>
#include <opencv2\highgui\highgui_c.h>
#include <opencv2\highgui\highgui.hpp>
#include <opencv2\legacy\compat.hpp>
using namespace cv;
void OldMakeDFT(Mat original, double* result)
{
const int width = original.cols;
const int height = 1;
IplImage* fftBlock = cvCreateImage(cvSize(width, height), IPL_DEPTH_8U, 1);
IplImage* imgReal = cvCreateImage(cvSize(width, height), IPL_DEPTH_32F, 1);
IplImage* imgImag = cvCreateImage(cvSize(width, height), IPL_DEPTH_32F, 1);
IplImage* imgDFT = cvCreateImage(cvSize(width, height), IPL_DEPTH_32F, 2);
Rect roi(0, 0, width, 1);
Mat image_roi = original(roi);
fftBlock->imageData = (char*)image_roi.data;
//cvSaveImage("C:/fftBlock1.png", fftBlock);
cvConvert(fftBlock, imgReal);
cvMerge(imgReal, imgImag, NULL, NULL, imgDFT);
cvDFT(imgDFT, imgDFT, (CV_DXT_FORWARD | CV_DXT_ROWS));
cvSplit(imgDFT, imgReal, imgImag, NULL, NULL);
double re,imag;
for (int i = 0; i < width; i++)
{
re = ((float*)imgReal->imageData)[i];
imag = ((float*)imgImag->imageData)[i];
result[i] = re * re + imag * imag;
}
cvReleaseImage(&imgReal);
cvReleaseImage(&imgImag);
cvReleaseImage(&imgDFT);
cvReleaseImage(&fftBlock);
}
void MakeDFT(Mat original, double* result)
{
const int width = original.cols;
const int height = 1;
Mat fftBlock(1,width, CV_8UC1);
Rect roi(0, 0, width, height);
Mat image_roi = original(roi);
image_roi.copyTo(fftBlock);
//imwrite("C:/fftBlock2.png", fftBlock);
Mat planes[] = {Mat_<float>(fftBlock), Mat::zeros(fftBlock.size(), CV_32F)};
Mat complexI;
merge(planes, 2, complexI);
dft(complexI, complexI, DFT_ROWS); //also tried with DFT_COMPLEX_OUTPUT | DFT_ROWS
split(complexI, planes);
double re, imag;
for (int i = 0; i < width; i++)
{
re = (float)planes[0].data[i];
imag = (float)planes[1].data[i];
result[i] = re * re + imag * imag;
}
}
bool SinusFFTTest()
{
const int size = 1024;
Mat sinTest(size,size,CV_8UC1, Scalar(0));
const int n_sin_curves = 10;
double deg_step = (double)n_sin_curves*360/size;
for (int j = 0; j < size; j++)
{
for (int i = 0; i <size; i++)
{
sinTest.data[j*size+i] = 127.5 * sin(i*deg_step*CV_PI/180) + 127.5;
}
}
double* result1 = new double[size];
double* result2 = new double[size];
OldMakeDFT(sinTest,result1);
MakeDFT(sinTest,result2);
bool identical = true;
for (int i = 0; i < size; i++)
{
if (abs(result1[i] - result2[i]) > 1000)
{
identical = false;
break;
}
}
delete[] result1;
delete[] result2;
return identical;
}
int _tmain(int argc, _TCHAR* argv[])
{
if (SinusFFTTest())
{
printf("identical");
}
else
{
printf("different");
}
getchar();
return 0;
}
Could someone explain the difference?
imgReal - is not filled with zeroes by default.
The bug in in the MakeDFT() function:
re = (float)planes[0].data[i];
imag = (float)planes[1].data[i];
data[i]'s type is uchar, and its conversion to float is not right.
The fix:
re = planes[0].at<float>(0,i);
imag = planes[1].at<float>(0,i);
After this change, the old and the new DFT versions gives the same results. Or, you can use cv::magnitude() instead of calculating the sum of squares of re and imag:
Mat magn;
magnitude(planes[0], planes[1], magn);
for (int i = 0; i < width; i++)
result[i] = pow(magn.at<float>(0,i),2);
This gives also the same result as the old cvDFT.
#robot_sherrick answered me this question, this is a follow-up question for his answer.
cv::SimpleBlobDetector in Opencv 2.4 looks very exciting but I am not sure I can make it work for more detailed data extraction.
I have the following concerns:
if this only returns center of the blob, I can't have an entire, labelled Mat, can I?
how can I access the features of the detected blobs like area, convexity, color and so on?
can I display an exact segmentation with this? (like with say, waterfall)
So the code should look something like this:
cv::Mat inputImg = imread(image_file_name, CV_LOAD_IMAGE_COLOR); // Read a file
cv::SimpleBlobDetector::Params params;
params.minDistBetweenBlobs = 10.0; // minimum 10 pixels between blobs
params.filterByArea = true; // filter my blobs by area of blob
params.minArea = 20.0; // min 20 pixels squared
params.maxArea = 500.0; // max 500 pixels squared
SimpleBlobDetector myBlobDetector(params);
std::vector<cv::KeyPoint> myBlobs;
myBlobDetector.detect(inputImg, myBlobs);
If you then want to have these keypoints highlighted on your image:
cv::Mat blobImg;
cv::drawKeypoints(inputImg, myBlobs, blobImg);
cv::imshow("Blobs", blobImg);
To access the info in the keypoints, you then just access each element like so:
for(std::vector<cv::KeyPoint>::iterator blobIterator = myBlobs.begin(); blobIterator != myBlobs.end(); blobIterator++){
std::cout << "size of blob is: " << blobIterator->size << std::endl;
std::cout << "point is at: " << blobIterator->pt.x << " " << blobIterator->pt.y << std::endl;
}
Note: this has not been compiled and may have typos.
Here is a version that will allow you to get the last contours back, via the getContours() method. They will match up by index to the keypoints.
class BetterBlobDetector : public cv::SimpleBlobDetector
{
public:
BetterBlobDetector(const cv::SimpleBlobDetector::Params ¶meters = cv::SimpleBlobDetector::Params());
const std::vector < std::vector<cv::Point> > getContours();
protected:
virtual void detectImpl( const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask=cv::Mat()) const;
virtual void findBlobs(const cv::Mat &image, const cv::Mat &binaryImage,
std::vector<Center> ¢ers, std::vector < std::vector<cv::Point> >&contours) const;
};
Then cpp
using namespace cv;
BetterBlobDetector::BetterBlobDetector(const SimpleBlobDetector::Params ¶meters)
{
}
void BetterBlobDetector::findBlobs(const cv::Mat &image, const cv::Mat &binaryImage,
vector<Center> ¢ers, std::vector < std::vector<cv::Point> >&curContours) const
{
(void)image;
centers.clear();
curContours.clear();
std::vector < std::vector<cv::Point> >contours;
Mat tmpBinaryImage = binaryImage.clone();
findContours(tmpBinaryImage, contours, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
for (size_t contourIdx = 0; contourIdx < contours.size(); contourIdx++)
{
Center center;
center.confidence = 1;
Moments moms = moments(Mat(contours[contourIdx]));
if (params.filterByArea)
{
double area = moms.m00;
if (area < params.minArea || area >= params.maxArea)
continue;
}
if (params.filterByCircularity)
{
double area = moms.m00;
double perimeter = arcLength(Mat(contours[contourIdx]), true);
double ratio = 4 * CV_PI * area / (perimeter * perimeter);
if (ratio < params.minCircularity || ratio >= params.maxCircularity)
continue;
}
if (params.filterByInertia)
{
double denominator = sqrt(pow(2 * moms.mu11, 2) + pow(moms.mu20 - moms.mu02, 2));
const double eps = 1e-2;
double ratio;
if (denominator > eps)
{
double cosmin = (moms.mu20 - moms.mu02) / denominator;
double sinmin = 2 * moms.mu11 / denominator;
double cosmax = -cosmin;
double sinmax = -sinmin;
double imin = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmin - moms.mu11 * sinmin;
double imax = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmax - moms.mu11 * sinmax;
ratio = imin / imax;
}
else
{
ratio = 1;
}
if (ratio < params.minInertiaRatio || ratio >= params.maxInertiaRatio)
continue;
center.confidence = ratio * ratio;
}
if (params.filterByConvexity)
{
vector < Point > hull;
convexHull(Mat(contours[contourIdx]), hull);
double area = contourArea(Mat(contours[contourIdx]));
double hullArea = contourArea(Mat(hull));
double ratio = area / hullArea;
if (ratio < params.minConvexity || ratio >= params.maxConvexity)
continue;
}
center.location = Point2d(moms.m10 / moms.m00, moms.m01 / moms.m00);
if (params.filterByColor)
{
if (binaryImage.at<uchar> (cvRound(center.location.y), cvRound(center.location.x)) != params.blobColor)
continue;
}
//compute blob radius
{
vector<double> dists;
for (size_t pointIdx = 0; pointIdx < contours[contourIdx].size(); pointIdx++)
{
Point2d pt = contours[contourIdx][pointIdx];
dists.push_back(norm(center.location - pt));
}
std::sort(dists.begin(), dists.end());
center.radius = (dists[(dists.size() - 1) / 2] + dists[dists.size() / 2]) / 2.;
}
centers.push_back(center);
curContours.push_back(contours[contourIdx]);
}
static std::vector < std::vector<cv::Point> > _contours;
const std::vector < std::vector<cv::Point> > BetterBlobDetector::getContours() {
return _contours;
}
void BetterBlobDetector::detectImpl(const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, const cv::Mat&) const
{
//TODO: support mask
_contours.clear();
keypoints.clear();
Mat grayscaleImage;
if (image.channels() == 3)
cvtColor(image, grayscaleImage, CV_BGR2GRAY);
else
grayscaleImage = image;
vector < vector<Center> > centers;
vector < vector<cv::Point> >contours;
for (double thresh = params.minThreshold; thresh < params.maxThreshold; thresh += params.thresholdStep)
{
Mat binarizedImage;
threshold(grayscaleImage, binarizedImage, thresh, 255, THRESH_BINARY);
vector < Center > curCenters;
vector < vector<cv::Point> >curContours, newContours;
findBlobs(grayscaleImage, binarizedImage, curCenters, curContours);
vector < vector<Center> > newCenters;
for (size_t i = 0; i < curCenters.size(); i++)
{
bool isNew = true;
for (size_t j = 0; j < centers.size(); j++)
{
double dist = norm(centers[j][ centers[j].size() / 2 ].location - curCenters[i].location);
isNew = dist >= params.minDistBetweenBlobs && dist >= centers[j][ centers[j].size() / 2 ].radius && dist >= curCenters[i].radius;
if (!isNew)
{
centers[j].push_back(curCenters[i]);
size_t k = centers[j].size() - 1;
while( k > 0 && centers[j][k].radius < centers[j][k-1].radius )
{
centers[j][k] = centers[j][k-1];
k--;
}
centers[j][k] = curCenters[i];
break;
}
}
if (isNew)
{
newCenters.push_back(vector<Center> (1, curCenters[i]));
newContours.push_back(curContours[i]);
//centers.push_back(vector<Center> (1, curCenters[i]));
}
}
std::copy(newCenters.begin(), newCenters.end(), std::back_inserter(centers));
std::copy(newContours.begin(), newContours.end(), std::back_inserter(contours));
}
for (size_t i = 0; i < centers.size(); i++)
{
if (centers[i].size() < params.minRepeatability)
continue;
Point2d sumPoint(0, 0);
double normalizer = 0;
for (size_t j = 0; j < centers[i].size(); j++)
{
sumPoint += centers[i][j].confidence * centers[i][j].location;
normalizer += centers[i][j].confidence;
}
sumPoint *= (1. / normalizer);
KeyPoint kpt(sumPoint, (float)(centers[i][centers[i].size() / 2].radius));
keypoints.push_back(kpt);
_contours.push_back(contours[i]);
}
}
//Access SimpleBlobDetector datas for video
#include "opencv2/imgproc/imgproc.hpp" //
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <math.h>
#include <vector>
#include <fstream>
#include <string>
#include <sstream>
#include <algorithm>
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/features2d/features2d.hpp"
using namespace cv;
using namespace std;
int main(int argc, char *argv[])
{
const char* fileName ="C:/Users/DAGLI/Desktop/videos/new/m3.avi";
VideoCapture cap(fileName); //
if(!cap.isOpened()) //
{
cout << "Couldn't open Video " << fileName << "\n";
return -1;
}
for(;;) // videonun frameleri icin sonsuz dongu
{
Mat frame,labelImg;
cap >> frame;
if(frame.empty()) break;
//imshow("main",frame);
Mat frame_gray;
cvtColor(frame,frame_gray,CV_RGB2GRAY);
//////////////////////////////////////////////////////////////////////////
// convert binary_image
Mat binaryx;
threshold(frame_gray,binaryx,120,255,CV_THRESH_BINARY);
Mat src, gray, thresh, binary;
Mat out;
vector<KeyPoint> keyPoints;
SimpleBlobDetector::Params params;
params.minThreshold = 120;
params.maxThreshold = 255;
params.thresholdStep = 100;
params.minArea = 20;
params.minConvexity = 0.3;
params.minInertiaRatio = 0.01;
params.maxArea = 1000;
params.maxConvexity = 10;
params.filterByColor = false;
params.filterByCircularity = false;
src = binaryx.clone();
SimpleBlobDetector blobDetector( params );
blobDetector.create("SimpleBlob");
blobDetector.detect( src, keyPoints );
drawKeypoints( src, keyPoints, out, CV_RGB(255,0,0), DrawMatchesFlags::DEFAULT);
cv::Mat blobImg;
cv::drawKeypoints(frame, keyPoints, blobImg);
cv::imshow("Blobs", blobImg);
for(int i=0; i<keyPoints.size(); i++){
//circle(out, keyPoints[i].pt, 20, cvScalar(255,0,0), 10);
//cout<<keyPoints[i].response<<endl;
//cout<<keyPoints[i].angle<<endl;
//cout<<keyPoints[i].size()<<endl;
cout<<keyPoints[i].pt.x<<endl;
cout<<keyPoints[i].pt.y<<endl;
}
imshow( "out", out );
if ((cvWaitKey(40)&0xff)==27) break; // esc 'ye basilinca break
}
system("pause");
}