How can I display only prime numbers in this code? - c++

I'm trying to get all prime numbers in the range of 2 and the entered value using this c++ code :
#include<iostream>
using namespace std;
int main() {
int num = 0;
int result = 0;
cin >> num;
for (int i = 2; i <= num; i++) {
for (int b = 2; b <= num; b++) {
result = i % b;
if (result == 0) {
result = b;
break;
}
}
cout << result<< endl <<;
}
}
the problem is that I think am getting close to the logic, but those threes and twos keep showing up between the prime numbers. What am I doing wrong?

I've fixed your code and added comments where I did the changes
The key here is to understand that you need to check all the numbers smaller then "i" if one of them dividing "i", if so mark the number as not prime and break (the break is only optimization)
Then print only those who passed the "test" (originally you printed everything)
#include <iostream>
using namespace std;
#include<iostream>
using namespace std;
int main()
{
int num = 0;
int result = 0;
cin >> num;
for (int i = 2; i <= num; i++) {
bool isPrime = true; // Assume the number is prime
for (int b = 2; b < i; b++) { // Run only till "i-1" not "num"
result = i % b;
if (result == 0) {
isPrime = false; // if found some dividor, number nut prime
break;
}
}
if (isPrime) // print only primes
cout << i << endl;
}
}

Many answers have been given which explains how to do it. None have answered the question:
What am I doing wrong?
So I'll give that a try.
#include<iostream>
using namespace std;
int main() {
int num = 0;
int result = 0;
cin >> num;
for (int i = 2; i <= num; i++) {
for (int b = 2; b <= num; b++) { // wrong: use b < i instead of b <= num
result = i % b;
if (result == 0) {
result = b; // wrong: why assign result the value of b?
// just remove this line
break;
}
}
cout << result<< endl <<; // wrong: you need a if-condtion before you print
// if (result != 0) cout << i << endl;
}
}

You have multiple errors in your code.
Simplest algorithm (not the most optimal though) is for checking whether N is prim is just to check whether it doesn't have any dividers in range [2; N-1].
Here is working version:
int main() {
int num = 0;
cin >> num;
for (int i = 2; i <= num; i++) {
bool bIsPrime = true;
for (int b = 2; bIsPrime && b < i; b++) {
if (i % b == 0) {
bIsPrime = false;
}
}
if (bIsPrime) {
cout << i << endl;
}
}
}

I would suggest pulling out the logic of determining whether a number is a prime to a separate function, call the function from main and then create output accordingly.
// Declare the function
bool is_prime(int num);
Then, simplify the for loop to:
for (int i = 2; i <= num; i++) {
if ( is_prime(i) )
{
cout << i << " is a prime.\n";
}
}
And then implement is_prime:
bool is_prime(int num)
{
// If the number is even, return true if the number is 2 else false.
if ( num % 2 == 0 )
{
return (num == 2);
}
int stopAt = (int)sqrt(num);
// Start the number to divide by with 3 and increment it by 2.
for (int b = 3; b <= stopAt; b += 2)
{
// If the given number is divisible by b, it is not a prime
if ( num % b == 0 )
{
return false;
}
}
// The given number is not divisible by any of the numbers up to
// sqrt(num). It is a prime
return true;
}

I can pretty much guess its academic task :)
So here the think for prime numbers there are many methods to "get primes bf number" some are better some worse.
Erosthenes Sieve - is one of them, its pretty simple concept, but quite a bit more efficient in case of big numbers (like few milions), since OopsUser version is correct you can try and see for yourself what version is better
void main() {
int upperBound;
cin >> upperBound;
int upperBoundSquareRoot = (int)sqrt((double)upperBound);
bool *isComposite = new bool[upperBound + 1]; // create table
memset(isComposite, 0, sizeof(bool) * (upperBound + 1)); // set all to 0
for (int m = 2; m <= upperBoundSquareRoot; m++) {
if (!isComposite[m]) { // if not prime
cout << m << " ";
for (int k = m * m; k <= upperBound; k += m) // set all multiplies
isComposite[k] = true;
}
}
for (int m = upperBoundSquareRoot; m <= upperBound; m++) // print results
if (!isComposite[m])
cout << m << " ";
delete [] isComposite; // clean table
}
Small note, tho i took simple implementation code for Sive from here (writing this note so its not illegal, truth be told wanted to show its easy to find)

Related

Breaking out of loop from function after printing the last prime number of a given range

I'm writing a code to find the last prime number of a given range. Suppose the range is 1 to 50. Then the last prime no. I want to print must be 47. My idea was to maybe reverse the order of prime numbers in the range and then try printing only the first value. Again kinda like if my order was 1 to 50 then I would start printing from 47, 43 and so on and only print 47. But I'm stuck and not getting ideas on how I could do this. here's my code
int prime_bef(int n)
{
int check = 0;
for (int i = 1; i <= n; i++)
{
if (n % i == 0)
{
check++;
}
}
if (check == 2)
{
cout << n << " ";
}
return 0;
}
int main ()
{
int l;
int u;
cin >> l >> u;
for (int i = u; i >= l; i--)
{
prime_bef(i);
}
return 0;
}
You can just use exit() in the place you want to end the program, and it works fine in your case. But by far the best approach is returning a value to test for continuation, it is the most readable.
#include<iostream>
#include <stdlib.h>
using namespace std;
int prime_bef(int n)
{
int check = 0;
for (int i = 1; i <= n; i++)
{
if (n % i == 0)
{
check++;
}
}
if (check == 2)
{
cout << n << " ";
exit(0);
}
return 0;
}
int main ()
{
int l;
int u;
cin >> l >> u;
for (int i = u; i >= l; i--)
{
prime_bef(i);
}
return 0;
}
Same code using bool return type:
#include<iostream>
using namespace std;
bool prime_bef(int n)
{
int check = 0;
for (int i = 1; i <= n; i++)
{
if (n % i == 0)
{
check++;
}
}
if (check == 2)
{
cout << n << " ";
return true;
}
return false;
}
int main ()
{
int l;
int u;
cin >> l >> u;
for (int i = u; i >= l; i--)
{
if(prime_bef(i))
break;
}
return 0;
}
Here is a simple and efficient way to check if the number is prime. I am checking if the number is prime and when it is true I am printing the number and breaking the loop so that only 1 number is printed. You can always remove the break statement and print all prime numbers in range.
#include<iostream>
using namespace std;
bool isPrime(int n){
if(n==2)return true;
if(n%2==0 || n==1)return false;
for(int i=3; i*i<=n; ++i){
if(n%i==0){
return false;
}
}
return true;
}
int main (){
int l, u;
cin>>l>>u;
for (int i = u; i >= l; i--){
if(isPrime(i)){
cout<<i<<"\n";
break;
}
}
return 0;
}
I'll give you a hint... while you are iteratively checking for the prime nature of the number, also check whether the last prime number calculated in the loop is greater than the max term of the range and break the loop when the condition becomes false.
Here a C++17 approach :
#include <cmath>
#include <iostream>
#include <vector>
// type to use for storing primes
using prime_t = unsigned long;
// there is a way to determine an upper bound to the number of primes smaller then a maximum number.
// See : https://primes.utm.edu/howmany.html
// this can be used to estimate the size of the output buffer (vector)
prime_t pi_n(const prime_t max)
{
prime_t pi_n{ max };
if (max > 10)
{
auto ln_n = std::log(static_cast<double>(max));
auto value = static_cast<double>(max) / (ln_n - 1.0);
pi_n = static_cast<prime_t>(value + 0.5);
}
return pi_n;
}
// Calculate prime numbers smaller then max
// https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
auto calculate_primes(const prime_t max)
{
std::vector<bool> is_primes(max, true);
// 0, 1 are not primes
is_primes[0] = false;
is_primes[1] = false;
// sieve
for (prime_t n = prime_t{ 2 }; n < prime_t{ max }; ++n)
{
if (is_primes[n])
{
auto n2 = n * n;
for (prime_t m = n2; m < max; m += n)
{
is_primes[m] = false;
}
}
}
// avoid unnecessary resizes of vector by pre-allocating enough entries to hold result
prime_t n{ 0 };
std::vector<prime_t> primes;
primes.reserve(pi_n(max));
// add all prime numbers found by the sieve
for (const auto is_prime : is_primes)
{
if (is_prime) primes.push_back(n);
n++;
}
return primes;
}
int main()
{
const prime_t max{ 50 };
auto primes = calculate_primes(max);
// max prime is last one in container
auto max_prime = primes.back();
std::cout << "maximum prime number smaller then " << max << ", is " << max_prime << std::endl;
}

Check whether all the pairs in an array are divisible by k

Given an array of integers and a number k, write a function that returns true if given array can be divided into pairs such that sum of every pair is divisible by k.
This code is producing correct results for all test cases except one I cannot find the glitch in it.
#include <bits/stdc++.h>
using namespace std;
int main() {
int t;
cin >> t;
while (t--) {
int n;
cin >> n;
int arr[n];
for (int i = 0; i < n; i++) {
cin >> arr[i];
}
int k;
cin >> k;
int flag[n] = {0};
int p = 0;
int q = 0;
if (n % 2 != 0) {
cout << "False" << endl;
} else {
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if ((arr[i] + arr[j]) % k == 0 && flag[j] == 0) {
p = 1;
flag[j] = 1;
}
}
if (p == 0) {
q = 1;
cout << "False" << endl;
break;
}
}
if (q == 0) {
cout << "True" << endl;
}
}
}
return 0;
}
One of the big sources of bugs in code is messy code. So how do we clean up code? We modularize it. This means breaking up the code so that each portion of the code does one job well. Let's see what that looks like.
Function to check if something is divisible by k:
bool isDivisible(int number, int divisor) {
return number % divisor == 0;
}
Function to check all pairs:
The logic is as follows:
Take the first number in the list; call in n0.
For every remaining number n1, check if that plus the first number is divisible by k
When we find n1 such that n0 + n1 is divisible by k,
a. If the remaining numbers left over can also be split into divisible pairs, return true
b. Otherwise, continue searching
4.If we've searched through all the numbers, return false.
bool pairsDivisible(int* nums, int count, int k) {
if(count == 0) return true;
if(count % 2 != 0) return false; // count must be even
// 1.
int n0 = nums[0];
// 2.
for(int i = 1; i < count; i++) {
int n1 = nums[i];
// 3.
if(isDivisible(n0 + n1, k)) {
// Move the ith number so it's now nums[1]
std::swap(nums[1], nums[i]);
if(pairsDivisible(nums + 2, count - 2, k)) {
return true; // 3.a
} else {
// Reset the array
std::swap(nums[1], nums[i]);
}
}
}
return false;
}

How to print common multiples of two number?

I'm trying to print all common multiples of two integers smaller than a certain limit(100 in my case). However, when I call my function, it does nothing. This is my code:
void com_mul(int a, int b)
{
int original = b;
for(int i = 1; a <= 100; i++)
{
a *= i;
b = original;
for(int j = 1; b <= a; j++)
{
b *= j;
if(a == b)
cout << b << ", ";
}
}
}
You can solve this problem much simpler, using a single loop.
In a for loop iterate over potential divisors d from 1 to 100. If d divides both a and b, print d.
You can tell if a number divides another number by applying the % operator, and checking the result for zero:
if (a%d == 0 && b%d == 0) {
cout << d << endl;
}
Tested with a = 4, b = 2, max = 100 on my machine. And it outputs 4.
This is because of the line for (int j = 1; b <= a; j++). j can only go upto 'a'
I think this would do.
#include <iostream>
#include <string>
int main()
{
int a, b, max;
std::cin >> a >> b >> max;
for (int i = a; i <= max; i++)
{
if (i%a == 0 && i%b == 0)
std::cout << i << std::endl;
}
return 0;
}

the biggest common divisor of 2 numbers using arrays

How could I find the biggest common divisor of 2 numbers using array? I tried to solve it using 2 arrays and I couldn't finish it. How could I improve this program?
#include <iostream>
using namespace std;
int main()
{
unsigned int A[2][10], B[2][10], a, b, c_exp, d, i1, P, x;
bool apartine = false;
cout << "a="; cin >> a;
cout << "b="; cin >> b;
P = 1;
c_exp = 0;
i1 = 0;
while (a % 2 == 0)
{
c_exp++;
a = a/2;
}
if (c_exp != 0)
{
A[i1][0] = 2;
A[i1][1] = c_exp;
i1++;
}
d = 3;
while (a != 1 && d <= a)
{
c_exp=0;
while (a % d == 0)
{
c_exp++;
a = a/d;
}
if (c_exp!=0)
{
A[i1][0] = d;
A[i1][1] = c_exp;
i1++;
}
d = d+2;
}
cout << "\nMatricea A contine:";
for (int i = 0; i < i1; i++)
{
cout << "\n";
for (int j = 0; j < 2; j++)
cout << A[i][j] << ",";
}
c_exp = 0;
i1 = 0;
while (b % 2 == 0)
{
c_exp++;
b = b/2;
}
if (c_exp != 0)
{
B[i1][0] = 2;
B[i1][1] = c_exp;
i1++;
}
d = 3;
while (b != 1 && d <= b)
{
c_exp = 0;
while (b % d == 0)
{
c_exp++;
b = b/d;
}
if (c_exp != 0)
{
B[i1][0] = d;
B[i1][1] = c_exp;
i1++;
}
d = d+2;
}
cout << "\nMatricea B contine:";
for (int i = 0; i < i1; i++)
{
cout << "\n";
for (int j = 0; j < 2; j++)
cout << B[i][j] << ",";
}
return 0;
}
From now on I have to find if the first number of first array exist in the second array and after this I have to compare the exponents of the same number of both array and the lowest one I have to add it to product. After this I have to repeat the same proccess with the second number to the last one of the first array. The problem is that I don't know how to write this.I have to mention that this program isn't complete.
Any ideas?
If you need better solution then you can avoid array and use the below logic.
int main()
{
int a =12 ,b = 20;
int min = a>b ? a:b; // finding minimum
if(min > 1)
{
for (int i=min/2; i>1; i--)//Reverse loop from min/2 to 1
{
if(a%i==0 && b%i==0)
{
cout<<i;
break;
}
}
}
else if(min == 1)
{
cout<<"GCD is 1";
}
else
cout<<"NO GCD";
return 0;
}
You can also check the working example Greatest Common Divisor
I am not quite sure what you are trying to achieve with your code. It looks over complicated. If I were to find the biggest common divisor of two numbers I would do something like the following:
## This is not a correct implementation in C++ (but close to it) ##
Read the two integers **a** and **b**
int max_div(int a, int b){
int div = a > b ? a : b;
while (div != 1 && (a%div != 0 && b%div != 0)){
div--;
}
return div;
}
This function starts with the minimum of a and b as the highest possible common divisor and then works its way backwards until one of two possible outcomes:
It finds a common divisor (a%div == 0 and b%div == 0)
It reaches one (always a common divisor)
EDIT : Now returns one if no higher divisor is found. (Was returning zero which made no sense)

Efficiently getting all divisors of a given number

According to this post, we can get all divisors of a number through the following codes.
for (int i = 1; i <= num; ++i){
if (num % i == 0)
cout << i << endl;
}
For example, the divisors of number 24 are 1 2 3 4 6 8 12 24.
After searching some related posts, I did not find any good solutions. Is there any efficient way to accomplish this?
My solution:
Find all prime factors of the given number through this solution.
Get all possible combinations of those prime factors.
However, it doesn't seem to be a good one.
Factors are paired. 1 and 24, 2 and 12, 3 and 8, 4 and 6.
An improvement of your algorithm could be to iterate to the square root of num instead of all the way to num, and then calculate the paired factors using num / i.
You should really check till square root of num as sqrt(num) * sqrt(num) = num:
Something on these lines:
int square_root = (int) sqrt(num) + 1;
for (int i = 1; i < square_root; i++) {
if (num % i == 0&&i*i!=num)
cout << i << num/i << endl;
if (num % i == 0&&i*i==num)
cout << i << '\n';
}
There is no efficient way in the sense of algorithmic complexity (an algorithm with polynomial complexity) known in science by now. So iterating until the square root as already suggested is mostly as good as you can be.
Mainly because of this, a large part of the currently used cryptography is based on the assumption that it is very time consuming to compute a prime factorization of any given integer.
Here's my code:
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
#define pii pair<int, int>
#define MAX 46656
#define LMT 216
#define LEN 4830
#define RNG 100032
unsigned base[MAX / 64], segment[RNG / 64], primes[LEN];
#define sq(x) ((x)*(x))
#define mset(x,v) memset(x,v,sizeof(x))
#define chkC(x,n) (x[n>>6]&(1<<((n>>1)&31)))
#define setC(x,n) (x[n>>6]|=(1<<((n>>1)&31)))
// http://zobayer.blogspot.com/2009/09/segmented-sieve.html
void sieve()
{
unsigned i, j, k;
for (i = 3; i<LMT; i += 2)
if (!chkC(base, i))
for (j = i*i, k = i << 1; j<MAX; j += k)
setC(base, j);
primes[0] = 2;
for (i = 3, j = 1; i<MAX; i += 2)
if (!chkC(base, i))
primes[j++] = i;
}
//http://www.geeksforgeeks.org/print-all-prime-factors-of-a-given-number/
vector <pii> factors;
void primeFactors(int num)
{
int expo = 0;
for (int i = 0; primes[i] <= sqrt(num); i++)
{
expo = 0;
int prime = primes[i];
while (num % prime == 0){
expo++;
num = num / prime;
}
if (expo>0)
factors.push_back(make_pair(prime, expo));
}
if ( num >= 2)
factors.push_back(make_pair(num, 1));
}
vector <int> divisors;
void setDivisors(int n, int i) {
int j, x, k;
for (j = i; j<factors.size(); j++) {
x = factors[j].first * n;
for (k = 0; k<factors[j].second; k++) {
divisors.push_back(x);
setDivisors(x, j + 1);
x *= factors[j].first;
}
}
}
int main() {
sieve();
int n, x, i;
cin >> n;
for (int i = 0; i < n; i++) {
cin >> x;
primeFactors(x);
setDivisors(1, 0);
divisors.push_back(1);
sort(divisors.begin(), divisors.end());
cout << divisors.size() << "\n";
for (int j = 0; j < divisors.size(); j++) {
cout << divisors[j] << " ";
}
cout << "\n";
divisors.clear();
factors.clear();
}
}
The first part, sieve() is used to find the prime numbers and put them in primes[] array. Follow the link to find more about that code (bitwise sieve).
The second part primeFactors(x) takes an integer (x) as input and finds out its prime factors and corresponding exponent, and puts them in vector factors[]. For example, primeFactors(12) will populate factors[] in this way:
factors[0].first=2, factors[0].second=2
factors[1].first=3, factors[1].second=1
as 12 = 2^2 * 3^1
The third part setDivisors() recursively calls itself to calculate all the divisors of x, using the vector factors[] and puts them in vector divisors[].
It can calculate divisors of any number which fits in int. Also it is quite fast.
Plenty of good solutions exist for finding all the prime factors of not too large numbers. I just wanted to point out, that once you have them, no computation is required to get all the factors.
if N = p_1^{a}*p_{2}^{b}*p_{3}^{c}.....
Then the number of factors is clearly (a+1)(b+1)(c+1).... since every factor can occur zero up to a times.
e.g. 12 = 2^2*3^1 so it has 3*2 = 6 factors. 1,2,3,4,6,12
======
I originally thought that you just wanted the number of distinct factors. But the same logic applies. You just iterate over the set of numbers corresponding to the possible combinations of exponents.
so int he example above:
00
01
10
11
20
21
gives you the 6 factors.
If you want all divisors to be printed in sorted order
int i;
for(i=1;i*i<n;i++){ /*print all the divisors from 1(inclusive) to
if(n%i==0){ √n (exclusive) */
cout<<i<<" ";
}
}
for( ;i>=1;i--){ /*print all the divisors from √n(inclusive) to
if(n%i==0){ n (inclusive)*/
cout<<(n/i)<<" ";
}
}
If divisors can be printed in any order
for(int j=1;j*j<=n;j++){
if(n%j==0){
cout<<j<<" ";
if(j!=(n/j))
cout<<(n/j)<<" ";
}
}
Both approaches have complexity O(√n)
Here is the Java Implementation of this approach:
public static int countAllFactors(int num)
{
TreeSet<Integer> tree_set = new TreeSet<Integer>();
for (int i = 1; i * i <= num; i+=1)
{
if (num % i == 0)
{
tree_set.add(i);
tree_set.add(num / i);
}
}
System.out.print(tree_set);
return tree_set.size();
}
//Try this,it can find divisors of verrrrrrrrrry big numbers (pretty efficiently :-))
#include<iostream>
#include<cstdio>
#include<cmath>
#include<vector>
#include<conio.h>
using namespace std;
vector<double> D;
void divs(double N);
double mod(double &n1, double &n2);
void push(double N);
void show();
int main()
{
double N;
cout << "\n Enter number: "; cin >> N;
divs(N); // find and push divisors to D
cout << "\n Divisors of "<<N<<": "; show(); // show contents of D (all divisors of N)
_getch(); // used visual studio, if it isn't supported replace it by "getch();"
return(0);
}
void divs(double N)
{
for (double i = 1; i <= sqrt(N); ++i)
{
if (!mod(N, i)) { push(i); if(i*i!=N) push(N / i); }
}
}
double mod(double &n1, double &n2)
{
return(((n1/n2)-floor(n1/n2))*n2);
}
void push(double N)
{
double s = 1, e = D.size(), m = floor((s + e) / 2);
while (s <= e)
{
if (N==D[m-1]) { return; }
else if (N > D[m-1]) { s = m + 1; }
else { e = m - 1; }
m = floor((s + e) / 2);
}
D.insert(D.begin() + m, N);
}
void show()
{
for (double i = 0; i < D.size(); ++i) cout << D[i] << " ";
}
int result_num;
bool flag;
cout << "Number Divisors\n";
for (int number = 1; number <= 35; number++)
{
flag = false;
cout << setw(3) << number << setw(14);
for (int i = 1; i <= number; i++)
{
result_num = number % i;
if (result_num == 0 && flag == true)
{
cout << "," << i;
}
if (result_num == 0 && flag == false)
{
cout << i;
}
flag = true;
}
cout << endl;
}
cout << "Press enter to continue.....";
cin.ignore();
return 0;
}
for (int i = 1; i*i <= num; ++i)
{
if (num % i == 0)
cout << i << endl;
if (num/i!=i)
cout << num/i << endl;
}
for( int i = 1; i * i <= num; i++ )
{
/* upto sqrt is because every divisor after sqrt
is also found when the number is divided by i.
EXAMPLE like if number is 90 when it is divided by 5
then you can also see that 90/5 = 18
where 18 also divides the number.
But when number is a perfect square
then num / i == i therefore only i is the factor
*/
//DIVISORS IN TIME COMPLEXITY sqrt(n)
#include<bits/stdc++.h>
using namespace std;
#define ll long long
int main()
{
ll int n;
cin >> n;
for(ll i = 2; i <= sqrt(n); i++)
{
if (n%i==0)
{
if (n/i!=i)
cout << i << endl << n/i<< endl;
else
cout << i << endl;
}
}
}
#include<bits/stdc++.h>
using namespace std;
typedef long long int ll;
#define MOD 1000000007
#define fo(i,k,n) for(int i=k;i<=n;++i)
#define endl '\n'
ll etf[1000001];
ll spf[1000001];
void sieve(){
ll i,j;
for(i=0;i<=1000000;i++) {etf[i]=i;spf[i]=i;}
for(i=2;i<=1000000;i++){
if(etf[i]==i){
for(j=i;j<=1000000;j+=i){
etf[j]/=i;
etf[j]*=(i-1);
if(spf[j]==j)spf[j]=i;
}
}
}
}
void primefacto(ll n,vector<pair<ll,ll>>& vec){
ll lastprime = 1,k=0;
while(n>1){
if(lastprime!=spf[n])vec.push_back(make_pair(spf[n],0));
vec[vec.size()-1].second++;
lastprime=spf[n];
n/=spf[n];
}
}
void divisors(vector<pair<ll,ll>>& vec,ll idx,vector<ll>& divs,ll num){
if(idx==vec.size()){
divs.push_back(num);
return;
}
for(ll i=0;i<=vec[idx].second;i++){
divisors(vec,idx+1,divs,num*pow(vec[idx].first,i));
}
}
void solve(){
ll n;
cin>>n;
vector<pair<ll,ll>> vec;
primefacto(n,vec);
vector<ll> divs;
divisors(vec,0,divs,1);
for(auto it=divs.begin();it!=divs.end();it++){
cout<<*it<<endl;
}
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
sieve();
ll t;cin>>t;
while(t--) solve();
return 0;
}
We can use modified sieve for getting all the factors for all numbers in range [1, N-1].
for (int i = 1; i < N; i++) {
for (int j = i; j < N; j += i) {
ans[j].push_back(i);
}
}
The time complexity is O(N * log(N)) as the sum of harmonic series 1 + 1/2 + 1/3 + ... + 1/N can be approximated to log(N).
More info about time complexity : https://math.stackexchange.com/a/3367064
P.S : Usually in programming problems, the task will include several queries where each query represents a different number and hence precalculating the divisors for all numbers in a range at once would be beneficial as the lookup takes O(1) time in that case.
java 8 recursive (works on HackerRank). This method includes option to sum and return the factors as an integer.
static class Calculator implements AdvancedArithmetic {
public int divisorSum(int n) {
if (n == 1)
return 1;
Set<Integer> set = new HashSet<>();
return divisorSum( n, set, 1);
}
private int divisorSum(int n, Set<Integer> sum, int start){
if ( start > n/2 )
return 0;
if (n%start == 0)
sum.add(start);
start++;
divisorSum(n, sum, start);
int total = 0;
for(int number: sum)
total+=number;
return total +n;
}
}