Haskell All possible partitions of a list [duplicate] - list

This question already has answers here:
List partitioning implemented recursively
(2 answers)
Closed 7 years ago.
I need to write a function that produces all of the possible partitions of a list, including non-contiguous partitions. It should look something like this:
*Main> ps [1,2,3,4]
[[21, 3, 4],[31, 2, 4],[41, 2, 3],[431, 2],[21, 43],[4321],[31, 42],[421, 3],[41, 32],[321, 4],[1, 32, 4],[1, 42, 3],[1, 432],[1, 2, 43],[1, 2, 3, 4]]
So far I have only been able to produce a recursive function using list comprehension to produce the contiguous partitions.
ps [] = [[]]
ps (x:xs) = [[x]:qs | qs <- ps xs] ++ [(x:gs):gss | (gs):gss <- ps xs]
I have an idea of moving the tail of each partition and prepending it to the first element of each partition, but I am not sure how I would do this in Haskell. I'm still a newbie to this language. Any help would be greatly appreciated!

Here is the function you need:
bloat :: a -> [[a]] -> [[[a]]]
bloat x [] = [[[x]]]
bloat x (xs:xss) = ((x:xs):xss) : map (xs:) (bloat x xss)
E.g. bloat 'a' ["b", "c", "de"] equals
[["ab","c","de"],["b","ac","de"],["b","c","ade"],["b","c","de","a"]]
i.e. prepend a to each sublist (and at the end of the list) and duplicate the remaining sublists.
Then partitionSet is simply
partitionSet :: [a] -> [[[a]]]
partitionSet [] = [[]]
partitionSet (x:xs) = [ys | yss <- partitionSet xs, ys <- bloat x yss]
Or in more idiomatic Haskell
partitionSet :: [a] -> [[[a]]]
partitionSet = foldr (\x r -> r >>= bloat x) [[]]

Related

Concatenating 2 inputted lists in Haskell

I'm trying to combine 2 lists from input but I am getting an error every time.
Here is my code:
myAppend :: [a] -> [a] -> [a]
myAppend a b = zipWith (+) a b
Getting this error:
"No instance for (Num a) arising from a use of ‘+’"
I was given this solution but it doesn't really make sense to me
myAppend :: [a] -> [a] -> [a]
myAppend [] xs = xs
myAppend (y:ys) xs = y:(myAppend ys xs)
I don't really understand the second and third line.
Can anyone help?
Thanks
Your myAppend does not concatenate two lists, it aims to sum elementwise the two lists, so myAppend [1,4,2,5] [1,3,0,2] will produce [2,7,2,7]. It will require a Num a constraint, since it can only work if the elements of the lists are Numbers:
myAppend :: Num a => [a] -> [a] -> [a]
myAppend a b = zipWith (+) a b
As for the solution here it uses recursion. Lists in Haskell are like linked lists: you have a an empty list ("nil") which is represented by the [] data constructor, and a node ("cons") which is represented with (x:xs) where x points to the first item, and xs points to the list of remaining elements. So [1,4,2,5] is short for (1:(4:(2:(5:[])))).
If we want to append [1,4] and [2,5] we thus want to produce a list (1:(4:(2:(5:[])))) out of (1:(4:[])) and (2:(5:[])). This means we create a linked list with all the elements of the first list, but instead of pointing to the empty list [], we let it point to the second list for the remaining elements. We do this through recursion:
myAppend (y:ys) xs = y : myAppend ys xs
will match if the first list unifies with the (y:ys) pattern. In that case we thus produce a list with y as first element, and the result of myAppend ys xs as as list of remaining elements ("tail"). Eventually we will thus call myAppend ys xs with the empty list [] as first item. In that case, we thus return the second list instead of the empty list, to append the second list to it.
We thus make calls that look like:
myAppend [1, 4] [2, 5]
= myAppend (1:(4:[])) (2:(5:[]))
-> 1 : (myAppend (4:[]) (2:(5:[])))
-> 1 : (4 : (myAppend [] (2:(5:[]))))
-> 1 : (4 : (2:(5:[]))
= [1, 4, 2, 5]

Haskell method that creates infinite list with all combinations of a given list

My Problem is that I want to create a infinite list of all combinations of a given list. So for example:
infiniteListComb [1,2] = [[],[1],[2], [1,1],[1,2],[2,1],[2,2], [1,1,1], ...].
other example:
infiniteListComb [1,2,3] = [[], [1], [2], [3], [1,1], [1,2], [1,3], [2,1],[2,2],[2,3],[3,1],[3,2],[3,3],[1,1,1], ...].
Reminds me of power sets, but with lists with same elements in it.
What I tried:
I am new in Haskell. I tried the following:
infiniteListComb: [x] -> [[x]]
infiniteListComb [] = []
infiniteListComb [(x:xs), ys] = x : infiniteListComb [xs,ys]
But that did not work because it only sumed up my list again. Has anyone another idea?
Others already provided a few basic solutions. I'll add one exploiting the Omega monad.
The Omega monad automatically handles all the interleaving among infinitely many choices. That is, it makes it so that infiniteListComb "ab" does not return ["", "a", "aa", "aaa", ...] without ever using b. Roughly, each choice is scheduled in a fair way.
import Control.Applicative
import Control.Monad.Omega
infiniteListComb :: [a] -> [[a]]
infiniteListComb xs = runOmega go
where
go = -- a combination is
pure [] -- either empty
<|> -- or
(:) <$> -- a non empty list whose head is
each xs -- an element of xs
<*> -- and whose tail is
go -- a combination
Test:
> take 10 $ infiniteListComb [1,2]
[[],[1],[1,1],[2],[1,1,1],[2,1],[1,2],[2,1,1],[1,1,1,1],[2,2]]
The main downside of Omega is that we have no real control about the order in which we get the answers. We only know that all the possible combinations are there.
We iteratively add the input list xs to a list, starting with the empty list, to get the ever growing lists of repeated xs lists, and we put each such list of 0, 1, 2, ... xs lists through sequence, concatting the resulting lists:
infiniteListComb :: [a] -> [[a]]
infiniteListComb xs = sequence =<< iterate (xs :) []
-- = concatMap sequence (iterate (xs :) [])
e.g.
> take 4 (iterate ([1,2,3] :) [])
[[],[[1,2,3]],[[1,2,3],[1,2,3]],[[1,2,3],[1,2,3],[1,2,3]]]
> sequence [[1,2,3],[1,2,3]]
[[1,1],[1,2],[1,3],[2,1],[2,2],[2,3],[3,1],[3,2],[3,3]]
> take 14 $ sequence =<< iterate ([1,2,3] :) []
[[],[1],[2],[3],[1,1],[1,2],[1,3],[2,1],[2,2],[2,3],[3,1],[3,2],[3,3],[1,1,1]]
The essence of Monad is flatMap (splicing map).
sequence is the real magician here. It is equivalent to
sequence [xs, ys, ..., zs] =
[ [x,y,...,z] | x <- xs, y <- ys, ..., z <- zs ]
or in our case
sequence [xs, xs, ..., xs] =
[ [x,y,...,z] | x <- xs, y <- xs, ..., z <- xs ]
Coincidentally, sequence . replicate n is also known as replicateM n. But we spare the repeated counting from 0 to the growing n, growing them by 1 at a time instead.
We can inline and fuse together all the definitions used here, including
concat [a,b,c...] = a ++ concat [b,c...]
to arrive at a recursive solution.
Another approach, drawing on answer by chi,
combs xs = ys where
ys = [[]] ++ weave [ map (x:) ys | x <- xs ]
weave ((x:xs):r) = x : weave (r ++ [xs])
There are many ways to implement weave.
Since list Applicative/Monad works via a cartesian-product like system, there's a short solution with replicateM:
import Control.Monad
infiniteListComb :: [x] -> [[x]]
infiniteListComb l = [0..] >>= \n -> replicateM n l

Triangularizing a list in Haskell

I'm interested in writing an efficient Haskell function triangularize :: [a] -> [[a]] that takes a (perhaps infinite) list and "triangularizes" it into a list of lists. For example, triangularize [1..19] should return
[[1, 3, 6, 10, 15]
,[2, 5, 9, 14]
,[4, 8, 13, 19]
,[7, 12, 18]
,[11, 17]
,[16]]
By efficient, I mean that I want it to run in O(n) time where n is the length of the list.
Note that this is quite easy to do in a language like Python, because appending to the end of a list (array) is a constant time operation. A very imperative Python function which accomplishes this is:
def triangularize(elements):
row_index = 0
column_index = 0
diagonal_array = []
for a in elements:
if row_index == len(diagonal_array):
diagonal_array.append([a])
else:
diagonal_array[row_index].append(a)
if row_index == 0:
(row_index, column_index) = (column_index + 1, 0)
else:
row_index -= 1
column_index += 1
return diagonal_array
This came up because I have been using Haskell to write some "tabl" sequences in the On-Line Encyclopedia of Integer Sequences (OEIS), and I want to be able to transform an ordinary (1-dimensional) sequence into a (2-dimensional) sequence of sequences in exactly this way.
Perhaps there's some clever (or not-so-clever) way to foldr over the input list, but I haven't been able to sort it out.
Make increasing size chunks:
chunks :: [a] -> [[a]]
chunks = go 0 where
go n [] = []
go n as = b : go (n+1) e where (b,e) = splitAt n as
Then just transpose twice:
diagonalize :: [a] -> [[a]]
diagonalize = transpose . transpose . chunks
Try it in ghci:
> diagonalize [1..19]
[[1,3,6,10,15],[2,5,9,14],[4,8,13,19],[7,12,18],[11,17],[16]]
This appears to be directly related to the set theory argument proving that the set of integer pairs are in one-to-one correspondence with the set of integers (denumerable). The argument involves a so-called Cantor pairing function.
So, out of curiosity, let's see if we can get a diagonalize function that way.
Define the infinite list of Cantor pairs recursively in Haskell:
auxCantorPairList :: (Integer, Integer) -> [(Integer, Integer)]
auxCantorPairList (x,y) =
let nextPair = if (x > 0) then (x-1,y+1) else (x+y+1, 0)
in (x,y) : auxCantorPairList nextPair
cantorPairList :: [(Integer, Integer)]
cantorPairList = auxCantorPairList (0,0)
And try that inside ghci:
λ> take 15 cantorPairList
[(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),(3,0),(2,1),(1,2),(0,3),(4,0),(3,1),(2,2),(1,3),(0,4)]
λ>
We can number the pairs, and for example extract the numbers for those pairs which have a zero x coordinate:
λ>
λ> xs = [1..]
λ> take 5 $ map fst $ filter (\(n,(x,y)) -> (x==0)) $ zip xs cantorPairList
[1,3,6,10,15]
λ>
We recognize this is the top row from the OP's result in the text of the question.
Similarly for the next two rows:
λ>
λ> makeRow xs row = map fst $ filter (\(n,(x,y)) -> (x==row)) $ zip xs cantorPairList
λ> take 5 $ makeRow xs 1
[2,5,9,14,20]
λ>
λ> take 5 $ makeRow xs 2
[4,8,13,19,26]
λ>
From there, we can write our first draft of a diagonalize function:
λ>
λ> printAsLines xs = mapM_ (putStrLn . show) xs
λ> diagonalize xs = takeWhile (not . null) $ map (makeRow xs) [0..]
λ>
λ> printAsLines $ diagonalize [1..19]
[1,3,6,10,15]
[2,5,9,14]
[4,8,13,19]
[7,12,18]
[11,17]
[16]
λ>
EDIT: performance update
For a list of 1 million items, the runtime is 18 sec, and 145 seconds for 4 millions items. As mentioned by Redu, this seems like O(n√n) complexity.
Distributing the pairs among the various target sublists is inefficient, as most filter operations fail.
To improve performance, we can use a Data.Map structure for the target sublists.
{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE ScopedTypeVariables #-}
import qualified Data.List as L
import qualified Data.Map as M
type MIL a = M.Map Integer [a]
buildCantorMap :: forall a. [a] -> MIL a
buildCantorMap xs =
let ts = zip xs cantorPairList -- triplets (a,(x,y))
m0 = (M.fromList [])::MIL a
redOp m (n,(x,y)) = let afn as = case as of
Nothing -> Just [n]
Just jas -> Just (n:jas)
in M.alter afn x m
m1r = L.foldl' redOp m0 ts
in
fmap reverse m1r
diagonalize :: [a] -> [[a]]
diagonalize xs = let cm = buildCantorMap xs
in map snd $ M.toAscList cm
With that second version, performance appears to be much better: 568 msec for the 1 million items list, 2669 msec for the 4 millions item list. So it is close to the O(n*Log(n)) complexity we could have hoped for.
It might be a good idea to craete a comb filter.
So what does comb filter do..? It's like splitAt but instead of splitting at a single index it sort of zips the given infinite list with the given comb to separate the items coressponding to True and False in the comb. Such that;
comb :: [Bool] -- yields [True,False,True,False,False,True,False,False,False,True...]
comb = iterate (False:) [True] >>= id
combWith :: [Bool] -> [a] -> ([a],[a])
combWith _ [] = ([],[])
combWith (c:cs) (x:xs) = let (f,s) = combWith cs xs
in if c then (x:f,s) else (f,x:s)
λ> combWith comb [1..19]
([1,3,6,10,15],[2,4,5,7,8,9,11,12,13,14,16,17,18,19])
Now all we need to do is to comb our infinite list and take the fst as the first row and carry on combing the snd with the same comb.
Lets do it;
diags :: [a] -> [[a]]
diags [] = []
diags xs = let (h,t) = combWith comb xs
in h : diags t
λ> diags [1..19]
[ [1,3,6,10,15]
, [2,5,9,14]
, [4,8,13,19]
, [7,12,18]
, [11,17]
, [16]
]
also seems to be lazy too :)
λ> take 5 . map (take 5) $ diags [1..]
[ [1,3,6,10,15]
, [2,5,9,14,20]
, [4,8,13,19,26]
, [7,12,18,25,33]
, [11,17,24,32,41]
]
I think the complexity could be like O(n√n) but i can not make sure. Any ideas..?

groupBy with multiple test functions

Is there a better and more concise way to write the following code in Haskell? I've tried using if..else but that is getting less readable than the following. I want to avoid traversing the xs list (which is huge!) 8 times to just separate the elements into 8 groups. groupBy from Data.List takes only one test condition function: (a -> a -> Bool) -> [a] -> [[a]].
x1 = filter (check condition1) xs
x2 = filter (check condition2) xs
x3 = filter (check condition3) xs
x4 = filter (check condition4) xs
x5 = filter (check condition5) xs
x6 = filter (check condition6) xs
x7 = filter (check condition7) xs
x8 = filter (check condition8) xs
results = [x1,x2,x3,x4,x5,x6,x7,x8]
This only traverses the list once:
import Data.Functor
import Control.Monad
filterN :: [a -> Bool] -> [a] -> [[a]]
filterN ps =
map catMaybes . transpose .
map (\x -> map (\p -> x <$ guard (p x)) ps)
For each element of the list, the map produces a list of Maybes, each Maybe corresponding to one of the predicates; it is Nothing if the element does not satisfy the predicate, or Just x if it does satisfy the predicate. Then, the transpose shuffles all these lists so that the list is organised by predicate, rather than by element, and the map catMaybes discards the entries for elements that did not satisfy a predicate.
Some explanation: x <$ m is fmap (const x) m, and for Maybe, guard b is if b then Just () else Nothing, so x <$ guard b is if b then Just x else Nothing.
The map could also be written as map (\x -> [x <$ guard (p x) | p <- ps]).
If you insist on one traversing the list only once, you can write
filterMulti :: [a -> Bool] -> [a] -> [[a]]
filterMulti fs xs = go (reverse xs) (repeat []) where
go [] acc = acc
go (y:ys) acc = go ys $ zipWith (\f a -> if f y then y:a else a) fs acc
map (\ cond -> filter (check cond) xs) [condition1, condition2, ..., condition8]
I think you could use groupWith from GHC.Exts.
If you write the a -> b function to assign every element in xs its 'class', I belive groupWith would split xs just the way you want it to, traversing the list just once.
groupBy doesn't really do what you're wanting; even if it did accept multiple predicate functions, it doesn't do any filtering on the list. It just groups together contiguous runs of list elements that satisfy some condition. Even if your filter conditions, when combined, cover all of the elements in the supplied list, this is still a different operation. For instance, groupBy won't modify the order of the list elements, nor will it have the possibility of including a given element more than once in the result, while your operation can do both of those things.
This function will do what you're looking for:
import Control.Applicative
filterMulti :: [a -> Bool] -> [a] -> [[a]]
filterMulti ps as = filter <$> ps <*> pure as
As an example:
> filterMulti [(<2), (>=5)] [2, 5, 1, -2, 5, 1, 7, 3, -20, 76, 8]
[[1, -2, 1, -20], [5, 5, 7, 76, 8]]
As an addendum to nietaki's answer (this should be a comment but it's too long, so if his answer is correct, accept his!), the function a -> b could be written as a series of nested if ... then .. else, but that is not very idiomatic Haskell and not very extensible. This might be slightly better:
import Data.List (elemIndex)
import GHC.Exts (groupWith)
f xs = groupWith test xs
where test x = elemIndex . map ($ x) $ [condition1, ..., condition8]
It categorises each element by the first condition_ it satisfies (and puts those that don't satisfy any into their own category).
(The documentation for elemIndex is here.)
The first function will return a list of "uppdated" lists and the second function will go through the whole list and for each value uppdate the list
myfilter :: a -> [a -> Bool] -> [[a]] -> [[a]]
myfilter _ [] [] = []
myfilter x f:fs l:ls | f x = (x:l): Myfilter x fs ls
| otherwise = l:Myfilter x fs ls
filterall :: [a] -> [a -> Bool] -> [[a]] -> [[a]]
filterall [] _ l = l
filterall x:xs fl l:ls = filterall xs fl (myfilter x fl l)
This should be called with filterall xs [condition1,condition2...] [[],[]...]

Help on a list manipulating list

Hi I am a newbie in Haskell.
I am trying to do a simple task.
test :: (RealFloat a) => a -> a -> [a]
test xs ys= [ w : h: [] | w <- xs, h <- ys]
I am getting an error here. (with out a doubt)
In this task, I am simply trying to bind two lists (ex: test [12.12] [14.14])
and hopefully return a new combined list (ex: [12.12,14.14])
thanks for your help
Your signature is wrong. Try:
test xs ys = ...
then in ghci:
> :t test
test :: [t] -> [t] -> [[t]]
You need two arguments, both are lists, not two arguments of single elements.
Drakosha is correct. List concatenation already has an operator in Haskell.
test :: (RealFloat a) => [a] -> [a] -> [a]
test xs ys= xs ++ ys
You probably don't want to use a list comprehension here, unless you want to extract every element in your first and second list and do something with them. For example, a Cartesian Product:
list1 = [1.0,1.1,1.2] :: [Double]
list2 = [2.0,2.1,2.2] :: [Double]
testComps xs ys = [(x,y) | x <- xs, y <- ys]
Or addition:
testComps2 xs ys = [ x + y | x <- xs, y <- ys]
Or even creating lists:
testComps3 xs ys = [x : y : [] | x <- xs, y <- ys]
In GHCi, this will yield the following:
*Main> testComps list1 list2
[(1.0,2.0),(1.0,2.1),(1.0,2.2),(1.1,2.0),(1.1,2.1),(1.1,2.2),(1.2,2.0),(1.2,2.1)
,(1.2,2.2)]
*Main> testComps2 list1 list2
[3.0,3.1,3.2,3.1,3.2,3.3000000000000003,3.2,3.3,3.4000000000000004]
*Main> testComps3 list1 list2
[[1.0,2.0],[1.0,2.1],[1.0,2.2],[1.1,2.0],[1.1,2.1],[1.1,2.2],[1.2,2.0],[1.2,2.1]
,[1.2,2.2]]
The weird results in testComps2 is, of course, normal cruft when you're dealing with floating-point numbers. In the real world you'd compensate for this by rounding.
Another problem you'll run into is the difference between (++) and (:). Simply put, (:) tacks individual items onto a list, whereas (++) concatenates two lists.
You need list concatenation:
[12.12] ++ [14.14]
=> [12.12,14.14]