Keeping the sun in the same position - opengl

I am drawing a circle in OpenGL using a simple circle drawing shader that draws a circle around a point passed in. The point needs to be in screen space coordinates i,e, 1 to -1 in the x and y.
The problem is that the circle drawn doesn't stay in the same position like a real sun would, it seems to over rotate compared to other objects in the scene. This is due to it moving out of sync to the SkyBox.
The matrix passed into the SkyBox is:
m_activeCamera.m_projectionMatrix *
m_activeCamera.m_viewMatrix *
glm::translate(mat4(1.0), m_activeCamera.m_position));
The calculation for the light sun position so far:
vec4 returnPos = pos;
returnPos.w = 1.0f;
returnPos = projection * (view * returnPos);
return vec2(returnPos.x / returnPos.w, returnPos.y / returnPos.w);
The position passed in to this function (pos) is:
SUN.position + m_activeCamera.position
The view and projection matrix belong to the m_activeCamera.
Pictures to help explain the issue:
Starting position
If I move the camera from left to the right the sun stays in place, relative to the sky box.
If I rotate the camera the sun moves out of place with the skybox.

The problem was that the "GetNDCCoords" function was returning a point between -1 and 1 in the X and Y if the sun was on screen of course. The function that draws the circle needs a position in screen space 0 to 1. This was solved with a simple formula:
screenPos.x = NDC.x * 0.5 + 0.5;
screenPos.y = NDC.y * 0.5 + 0.5;
Now the sun stays fixed in place.

Related

Drawing a sprite on the circumference of a circle based on the position of other objects

I'm making a sniper shooter arcade style game in Gamemaker Studio 2 and I want the position of targets outside of the viewport to be pointed to by chevrons that move along the circumference of the scope when it moves. I am using trig techniques to determine the coordinates but the chevron is jumping around and doesn't seem to be pointing to the target. I have the code broken into two: the code to determine the coordinates in the step event of the enemies class (the objects that will be pointed to) and a draw event in the same class. Additionally, when I try to rotate the chevron so it also points to the enemy, it doesn't draw at all.
Here's the coordinate algorithm and the code to draw the chevrons, respectively
//determine the angle the target makes with the player
delta_x = abs(ObjectPlayer.x - x); //x axis displacement
delta_y = abs(ObjectPlayer.y - y); //y axis displacement
angle = arctan2(delta_y,delta_x); //angle in radians
angle *= 180/pi //angle in radians
//Determine the direction based on the larger dimension and
largest_distance = max(x,y);
plusOrMinus = (largest_distance == x)?
sign(ObjectPlayer.x-x) : sign(ObjectPlayer.y-y);
//define the chevron coordinates
chevron_x = ObjectPlayer.x + plusOrMinus*(cos(angle) + 20);
chevron_y = ObjectPlayer.y + plusOrMinus*(sign(angle) + 20);
The drawing code
if(object_exists(ObjectEnemy)){
draw_text(ObjectPlayer.x, ObjectPlayer.y-10,string(angle));
draw_sprite(Spr_Chevron,-1,chevron_x,chevron_y);
//sSpr_Chevron.image_angle = angle;
}
Your current code is slightly more complex that it needs to be for this, if you want to draw chevrons pointing towards all enemies, you might as well do that on spot in Draw. And use degree-based functions if you're going to need degrees for drawing anyway
var px = ObjectPlayer.x;
var py = ObjectPlayer.y;
with (ObjectEnemy) {
var angle = point_direction(px, py, x, y);
var chevron_x = px + lengthdir_x(20, angle);
var chevron_y = py + lengthdir_y(20, angle);
draw_sprite_ext(Spr_Chevron, -1, chevron_x, chevron_y, 1, 1, angle, c_white, 1);
}
(also see: an almost-decade old blog post of mine about doing this while clamping to screen edges instead)
Specific problems with your existing code are:
Using a single-axis plusOrMinus with two axes
Adding 20 to sine/cosine instead of multiplying them by it
Trying to apply an angle to sSpr_Chevron (?) instead of using draw_sprite_ext to draw a rotated sprite.
Calculating largest_distance based on executing instance's X/Y instead of delta X/Y.

How to rotate a cube by its center

I am trying to rotate a "cube" full of little cubes using keyboard which works but not so great.
I am struggling with setting the pivot point of rotation to the very center of the big "cube" / world. As you can see on this video, center of front (initial) face of the big cube is the pivot point for my rotation right now, which is a bit confusing when I rotate the world a little bit.
To explain it better, it looks like I am moving initial face of the cube when using keys to rotate the cube. So the pivot point might be okay from this point of view, but what is wrong in my code? I don't understand why it is moving by front face, not the entire cube by its very center?
In case of generating all little cubes, I call a function in 3 for loops (x, y, z) and the function returns cubeMat so I have all cubes generated as you can see on the video.
cubeMat = scale(cubeMat, {0.1f, 0.1f, 0.1f});
cubeMat = translate(cubeMat, {positioning...);
For rotation itself, a short example of rotation to left looks like this:
mat4 total_rotation; //global variable - never resets
mat4 rotation; //local variable
if(keysPressed[GLFW_KEY_LEFT]){
timer -= delta;
rotation = rotate(mat4{}, -delta, {0, 1, 0});
}
... //rest of key controls
total_rotation *= rotation;
And inside of those 3 for cycles is also this:
program.setUniform("ModelMatrix", total_rotation * cubeMat);
cube.render();
I have read that I should use transformation to set the pivot point to the middle but in this case, how can I set the pivot point inside of little cube which is in center of world? That cube is obviously x=2, y=2, z=2 since in for cycles, I generate cubes starting at x=0.
You are accumulating the rotation matrices by right-multiplication. This way, all rotations are performed in the local coordinate systems that result from all previous transformations. And this is why your right-rotation results in a turn after an up-rotation (because it is a right-rotation in the local coordinate system).
But you want your rotations to be in the global coordinate system. Thus, simply revert the multiplication order:
total_rotation = rotation * total_rotation;

OpenGL: glReadPixels inaccurate for unprojection

I have my own unproject function for performing reverse projection of a screen point. The code is as follows (written in OpenTK):
public static Vector3 UnProject(Point screenLocation, float depth)
{
int[] viewport = GetViewport();
Vector4 pos = new Vector4();
// Map x and y from window coordinates, map to range -1 to 1
pos.X = (screenLocation.X - viewport[0]) / (float)viewport[2] * 2.0f - 1.0f;
pos.Y = 1 - (screenLocation.Y - viewport[1]) / (float)viewport[3] * 2.0f;
pos.Z = depth * 2.0f - 1.0f;
pos.W = 1.0f;
Vector4 pos2 = Vector4.Transform(pos, Matrix4.Invert(GetModelViewMatrix() * GetProjectionMatrix()));
Vector3 pos_out = new Vector3(pos2.X, pos2.Y, pos2.Z);
return pos_out / pos2.W;
}
Basically, you'd provide the desired unprojection depth to my function, and it will give you the corresponding world coordinate of the screen point. Assuming that this works correctly (which I am 99% sure think it does), I'm having problems converting screen points to world coordinates. This unprojection works fine for picking: I'd call my unproject function twice (once with depth = 0 and another time with depth = 1) to convert the screen point to ray. I perform ray/triangle intersection to determine which object intersects with the ray and based on that I perform picking (which works very accurately).
For another operation (let's call it operation X), I only need to know the world coordinate of the screen point (assuming that the mouse cursor is over an object on the screen). For that, I am obtaining the depth under the cursor by using the glReadPixel function. The problem is that I feel the Z value obtained by reading the depth buffer is a little bit off. If I calculate the intersection with ray casting, I get accurate results, but that is not viable for operation X as operation X needs to be performed every time MouseMoved is triggered.
To demonstrate the lack of accuracy, here are the two numbers I obtained:
glReadPixel + Unprojection yields (0.886105343709181, 0.12422376198582, 0.998496665566841) as the world coordinate under the cursor.
Ray casting + intersection yields  (0.885407337013061, 0.124174778008613, 1) as the world coordinate under the cursor.
This 0.0015 error in the Z value is too much for operation X (as it is very sensitive to small numbers).
Is there something wrong with glReadPixels that I should know about? Is this happening because glReadPixels is only capable of reading float values?
I don't think that glReadPixels is to blame here. I think that the Z buffer precision is the issue. By default, you typically have a 24 bit fixed-point depth buffer. Maybe it helps if you use a 32 bit floating point depth buffer, but you probably need an FBO for that.

First Person Camera movement issues

I'm implementing a first person camera using the GLM library that provides me with some useful functions that calculate perspective and 'lookAt' matrices. I'm also using OpenGL but that shouldn't make a difference in this code.
Basically, what I'm experiencing is that I can look around, much like in a regular FPS, and move around. But the movement is constrained to the three axes in a way that if I rotate the camera, I would still move in the same direction as if I had not rotated it... Let me illustrate (in 2D, to simplify things).
In this image, you can see four camera positions.
Those marked with a one are before movement, those marked with a two are after movement.
The red triangles represent a camera that is oriented straight forward along the z axis. The blue triangles represent a camera that hasbeen rotated to look backward along the x axis (to the left).
When I press the 'forward movement key', the camera moves forward along the z axis in both cases, disregarding the camera orientation.
What I want is a more FPS-like behaviour, where pressing forward moves me in the direction the camera is facing. I thought that with the arguments I pass to glm::lookAt, this would be achieved. Apparently not.
What is wrong with my calculations?
// Calculate the camera's orientation
float angleHori = -mMouseSpeed * Mouse::x; // Note that (0, 0) is the center of the screen
float angleVert = -mMouseSpeed * Mouse::y;
glm::vec3 dir(
cos(angleVert) * sin(angleHori),
sin(angleVert),
cos(angleVert) * cos(angleHori)
);
glm::vec3 right(
sin(angleHori - M_PI / 2.0f),
0.0f,
cos(angleHori - M_PI / 2.0f)
);
glm::vec3 up = glm::cross(right, dir);
// Calculate projection and view matrix
glm::mat4 projMatrix = glm::perspective(mFOV, mViewPortSizeX / (float)mViewPortSizeY, mZNear, mZFar);
glm::mat4 viewMatrix = glm::lookAt(mPosition, mPosition + dir, up);
gluLookAt takes 3 parameters: eye, centre and up. The first two are positions while the last is a vector. If you're planning on using this function it's better that you maintain only these three parameters consistently.
Coming to the issue with the calculation. I see that the position variable is unchanged throughout the code. All that changes is the look at point I.e. centre only. The right thing to do is to first do position += dir, which will move the camera (position) along the direction pointed to by dir. Now to update the centre, the second parameter can be left as-is: position + dir; this will work since the position was already updated to the new position and from there we've a point farther in dir direction to look at.
The issue was actually in another method. When moving the camera, I needed to do this:
void Camera::moveX(char s)
{
mPosition += s * mSpeed * mRight;
}
void Camera::moveY(char s)
{
mPosition += s * mSpeed * mUp;
}
void Camera::moveZ(chars)
{
mPosition += s * mSpeed * mDirection;
}
To make the camera move across the correct axes.

cylinder impostor in GLSL

I am developing a small tool for 3D visualization of molecules.
For my project i choose to make a thing in the way of what Mr "Brad Larson" did with his Apple software "Molecules". A link where you can find a small presentation of the technique used : Brad Larsson software presentation
For doing my job i must compute sphere impostor and cylinder impostor.
For the moment I have succeed to do the "Sphere Impostor" with the help of another tutorial Lies and Impostors
for summarize the computing of the sphere impostor : first we send a "sphere position" and the "sphere radius" to the "vertex shader" which will create in the camera-space an square which always face the camera, after that we send our square to the fragment shader where we use a simple ray tracing to find which fragment of the square is included in the sphere, and finally we compute the normal and the position of the fragment to compute lighting. (another thing we also write the gl_fragdepth for giving a good depth to our impostor sphere !)
But now i am blocked in the computing of the cylinder impostor, i try to do a parallel between the sphere impostor and the cylinder impostor but i don't find anything, my problem is that for the sphere it was some easy because the sphere is always the same no matter how we see it, we will always see the same thing : "a circle" and another thing is that the sphere was perfectly defined by Math then we can find easily the position and the normal for computing lighting and create our impostor.
For the cylinder it's not the same thing, and i failed to find a hint to modeling a form which can be used as "cylinder impostor", because the cylinder shows many different forms depending on the angle we see it !
so my request is to ask you about a solution or an indication for my problem of "cylinder impostor".
In addition to pygabriels answer I want to share a standalone implementation using the mentioned shader code from Blaine Bell (PyMOL, Schrödinger, Inc.).
The approach, explained by pygabriel, also can be improved. The bounding box can be aligned in such a way, that it always faces to the viewer. Only two faces are visible at most. Hence, only 6 vertices (ie. two faces made up of 4 triangles) are needed.
See picture here, the box (its direction vector) always faces to the viewer:
Image: Aligned bounding box
For source code, download: cylinder impostor source code
The code does not cover round caps and orthographic projections. It uses geometry shader for vertex generation. You can use the shader code under the PyMOL license agreement.
I know this question is more than one-year old, but I'd still like to give my 2 cents.
I was able to produce cylinder impostors with another technique, I took inspiration from pymol's code. Here's the basic strategy:
1) You want to draw a bounding box (a cuboid) for the cylinder. To do that you need 6 faces, that translates in 18 triangles that translates in 36 triangle vertices. Assuming that you don't have access to geometry shaders, you pass to a vertex shader 36 times the starting point of the cylinder, 36 times the direction of the cylinder, and for each of those vertex you pass the corresponding point of the bounding box. For example a vertex associated with point (0, 0, 0) means that it will be transformed in the lower-left-back corner of the bounding box, (1,1,1) means the diagonally opposite point etc..
2) In the vertex shader, you can construct the points of the cylinder, by displacing each vertex (you passed 36 equal vertices) according to the corresponding points you passed in.
At the end of this step you should have a bounding box for the cylinder.
3) Here you have to reconstruct the points on the visible surface of the bounding box. From the point you obtain, you have to perform a ray-cylinder intersection.
4) From the intersection point you can reconstruct the depth and the normal. You also have to discard intersection points that are found outside of the bounding box (this can happen when you view the cylinder along its axis, the intersection point will go infinitely far).
By the way it's a very hard task, if somebody is interested here's the source code:
https://github.com/chemlab/chemlab/blob/master/chemlab/graphics/renderers/shaders/cylinderimp.frag
https://github.com/chemlab/chemlab/blob/master/chemlab/graphics/renderers/shaders/cylinderimp.vert
A cylinder impostor can actually be done just the same way as a sphere, like Nicol Bolas did it in his tutorial. You can make a square facing the camera and colour it that it will look like a cylinder, just the same way as Nicol did it for spheres. And it's not that hard.
The way it is done is ray-tracing of course. Notice that a cylinder facing upwards in camera space is kinda easy to implement. For example intersection with the side can be projected to the xz plain, it's a 2D problem of a line intersecting with a circle. Getting the top and bottom isn't harder either, the z coordinate of the intersection is given, so you actually know the intersection point of the ray and the circle's plain, all you have to do is to check if its inside the circle. And basically, that's it, you get two points, and return the closer one (the normals are pretty trivial too).
And when it comes to an arbitrary axis, it turns out to be almost the same problem. When you solve equations at the fixed axis cylinder, you are solving them for a parameter that describes how long do you have to go from a given point in a given direction to reach the cylinder. From the "definition" of it, you should notice that this parameter doesn't change if you rotate the world. So you can rotate the arbitrary axis to become the y axis, solve the problem in a space where equations are easier, get the parameter for the line equation in that space, but return the result in camera space.
You can download the shaderfiles from here. Just an image of it in action:
The code where the magic happens (It's only long 'cos it's full of comments, but the code itself is max 50 lines):
void CylinderImpostor(out vec3 cameraPos, out vec3 cameraNormal)
{
// First get the camera space direction of the ray.
vec3 cameraPlanePos = vec3(mapping * max(cylRadius, cylHeight), 0.0) + cameraCylCenter;
vec3 cameraRayDirection = normalize(cameraPlanePos);
// Now transform data into Cylinder space wherethe cyl's symetry axis is up.
vec3 cylCenter = cameraToCylinder * cameraCylCenter;
vec3 rayDirection = normalize(cameraToCylinder * cameraPlanePos);
// We will have to return the one from the intersection of the ray and circles,
// and the ray and the side, that is closer to the camera. For that, we need to
// store the results of the computations.
vec3 circlePos, sidePos;
vec3 circleNormal, sideNormal;
bool circleIntersection = false, sideIntersection = false;
// First check if the ray intersects with the top or bottom circle
// Note that if the ray is parallel with the circles then we
// definitely won't get any intersection (but we would divide with 0).
if(rayDirection.y != 0.0){
// What we know here is that the distance of the point's y coord
// and the cylCenter is cylHeight, and the distance from the
// y axis is less than cylRadius. So we have to find a point
// which is on the line, and match these conditions.
// The equation for the y axis distances:
// rayDirection.y * t - cylCenter.y = +- cylHeight
// So t = (+-cylHeight + cylCenter.y) / rayDirection.y
// About selecting the one we need:
// - Both has to be positive, or no intersection is visible.
// - If both are positive, we need the smaller one.
float topT = (+cylHeight + cylCenter.y) / rayDirection.y;
float bottomT = (-cylHeight + cylCenter.y) / rayDirection.y;
if(topT > 0.0 && bottomT > 0.0){
float t = min(topT,bottomT);
// Now check for the x and z axis:
// If the intersection is inside the circle (so the distance on the xz plain of the point,
// and the center of circle is less than the radius), then its a point of the cylinder.
// But we can't yet return because we might get a point from the the cylinder side
// intersection that is closer to the camera.
vec3 intersection = rayDirection * t;
if( length(intersection.xz - cylCenter.xz) <= cylRadius ) {
// The value we will (optianally) return is in camera space.
circlePos = cameraRayDirection * t;
// This one is ugly, but i didn't have better idea.
circleNormal = length(circlePos - cameraCylCenter) <
length((circlePos - cameraCylCenter) + cylAxis) ? cylAxis : -cylAxis;
circleIntersection = true;
}
}
}
// Find the intersection of the ray and the cylinder's side
// The distance of the point and the y axis is sqrt(x^2 + z^2), which has to be equal to cylradius
// (rayDirection.x*t - cylCenter.x)^2 + (rayDirection.z*t - cylCenter.z)^2 = cylRadius^2
// So its a quadratic for t (A*t^2 + B*t + C = 0) where:
// A = rayDirection.x^2 + rayDirection.z^2 - if this is 0, we won't get any intersection
// B = -2*rayDirection.x*cylCenter.x - 2*rayDirection.z*cylCenter.z
// C = cylCenter.x^2 + cylCenter.z^2 - cylRadius^2
// It will give two results, we need the smaller one
float A = rayDirection.x*rayDirection.x + rayDirection.z*rayDirection.z;
if(A != 0.0) {
float B = -2*(rayDirection.x*cylCenter.x + rayDirection.z*cylCenter.z);
float C = cylCenter.x*cylCenter.x + cylCenter.z*cylCenter.z - cylRadius*cylRadius;
float det = (B * B) - (4 * A * C);
if(det >= 0.0){
float sqrtDet = sqrt(det);
float posT = (-B + sqrtDet)/(2*A);
float negT = (-B - sqrtDet)/(2*A);
float IntersectionT = min(posT, negT);
vec3 Intersect = rayDirection * IntersectionT;
if(abs(Intersect.y - cylCenter.y) < cylHeight){
// Again it's in camera space
sidePos = cameraRayDirection * IntersectionT;
sideNormal = normalize(sidePos - cameraCylCenter);
sideIntersection = true;
}
}
}
// Now get the results together:
if(sideIntersection && circleIntersection){
bool circle = length(circlePos) < length(sidePos);
cameraPos = circle ? circlePos : sidePos;
cameraNormal = circle ? circleNormal : sideNormal;
} else if(sideIntersection){
cameraPos = sidePos;
cameraNormal = sideNormal;
} else if(circleIntersection){
cameraPos = circlePos;
cameraNormal = circleNormal;
} else
discard;
}
From what I can understand of the paper, I would interpret it as follows.
An impostor cylinder, viewed from any angle has the following characteristics.
From the top, it is a circle. So considering you'll never need to view a cylinder top down, you don't need to render anything.
From the side, it is a rectangle. The pixel shader only needs to compute illumination as normal.
From any other angle, it is a rectangle (the same one computed in step 2) that curves. Its curvature can be modeled inside the pixel shader as the curvature of the top ellipse. This curvature can be considered as simply an offset of each "column" in texture space, depending on viewing angle. The minor axis of this ellipse can be computed by multiplying the major axis (thickness of the cylinder) with a factor of the current viewing angle (angle / 90), assuming that 0 means you're viewing the cylinder side-on.
Viewing angles. I have only taken the 0-90 case into account in the math below, but the other cases are trivially different.
Given the viewing angle (phi) and the diameter of the cylinder (a) here's how the shader needs to warp the Y-Axis in texture space Y = b' sin(phi). And b' = a * (phi / 90). The cases phi = 0 and phi = 90 should never be rendered.
Of course, I haven't taken the length of this cylinder into account - which would depend on your particular projection and is not an image-space problem.