What does class pointer* mean? - c++

I got this syntax I don't really understand:
class USphereComponent* ProxSphere;
I think this means create a class, but is this class a pointer?
But the result is just creating an object called ProxSphere from an existing class USphereComponent.
What does this syntax actually mean, and what is its usage?

class Someotherclass; // That has not been defined yet
class HelloWorld
{
Someotherclass* my_pointer;
};
Or an alternative:
class HelloWorld
{
class Someotherclass* my_pointer;
};
The first one is obviously the correct one if you have multiple pointers (or references) to such class that has not been defined yet.
Is the second better? (I don't know) if you only need to do it once, otherwise doing
class HelloWorld
{
class Someotherclass* my_pointer;
class Someotherclass* my_pointer2;
class Someotherclass* my_pointer3;
void func(class Someotherclass* my_pointer, class Someotherclass& my_ref);
};
may not be the best.

Jts's answer is correct. I'd like to add a use case for it:
This is mostly used when you have a circular class dependency.
Like:
class A { B* binst; };
class B { A* ainst; };
That wouldn't compile since B isn't previously known.
Therefore you would first declare class B.
class B;
class A { B* binst; };
class B { A* ainst; };
Or as mentioned, you can use syntactic sugar:
class A { class B* binst; };
class B { A* ainst; };
Such a dependency might be a code smell. It also might be ok or even necessary. If you have it, you should carefully think if you can't do it in some other yet convenient way.

That particular syntax is called a "forward declaration". It is used to declare a type that has not been defined yet.
This is basically telling the compiler "There exists a class type named USphereComponent that you haven't seen yet that will come up later in the code. Please don't yell at me if you see pointers of that type". This allows you to declare pointer and reference for that forward-declared type.
Writing:
class USphereComponent* ProxSphere;
Is really just the equivalent of writing this:
class USphereComponent;
USphereComponent* ProxSphere;
The only difference with the second syntax, is that you only need to forward-declare the type once when you do it like this class USphereComponent;, otherwise you need to use the first syntax and add the class keyword before each usage of USphereComponent.
There are two main reasons why you may want to use a forward declaration:
This is probably the most common usage of forward-declaration in Unreal Engine. In header (.h) files, forward-declaration allows you to use pointer of classes for which you did not #include the corresponding header file. In our particular example that means that forward-declaring USphereComponent means that we don't need a #include "SphereComponent.h" statement (if we're just trying to pass a USphereComponent around that is).
Typically when that happens, the #include statement is simply done in the .cpp file. There are mainly two advantages of reducing the number of includes in your header files:
Compilation times are faster. Mind you, this mostly has significant impact on a codebase as big as Unreal's.
This reduces the number of public dependencies of you module (by making them "private" since your includes are now in your .cpp). This makes your module easier to be depended upon and also makes its interface cleaner.
Like other answers have said, forward-declaration can be used to break circular dependencies when you have two types that depends on each other in the same file:
class B;
class A
{
B* foo;
};
class B
{
A* bar;
};

Related

When does an Incomplete Type error occur in C++

Can anyone tell me when does a c++ compiler throw an "incomplete type error"?
Note: I have intentionally left this question a little open ended so that I can debug my code myself.
This happens usually when the compiler has seen a forward declaration but no full definition of this type, while the type is being used somewhere. For example:
class A;
class B { A a; };
The second line will cause a compiler error and, depending on the compiler, will report an incomplete type (other compilers give you a different error, but the meaning is the same).
When you however just use a pointer to such a forward declaration no complain will come up, since the size of a pointer to a class is always known. Like this:
class A;
class B {
A *a;
std::shared_ptr<A> aPtr;
};
If you ask what could be wrong in a concrete application or library when this error comes up: that happens usually when a header is included which contains the forward declaration, but full definition hasn't been found yet. The solution is quite obvious: include also the header that gives you access to the full type. Sometimes you may also simply have no or the wrong namespace used for a type and need to correct that instead.
This happens when we try to use a class/object or its methods and they have not been defined yet. For example
class A;
class B {
class A obj;
}
or
class A;
class B {
class A *obj;
B() {
obj->some_method();
}
To resolve this, A has to be defined first or its total declaration has to given(best practice is to do it in a header file) and all methods of both the classes should be defined later(best practice is to do it in another file).
class A {
//definition
}
class B {
class A obj;
}
This also happens when you use forward declaration with std::unique_ptr (for example, to implement PIMPL idiom) in your class with a default destructor, which leads to such issue.
It is good explained here: Forward declaration with unique_ptr?
In my case, it was due to poor knowledge of templates. I declared a class between a template definition and the function which was associated with that template.
template<typename T>
class
{
foo a;
foo b;
};
function(T a,int b)
{
. . . . .
}
And this created issues as the template definition is associated with the class, in this case, an error comes in the parameter list of the function that T is not defined and also that incomplete type is not allowed. If you have to use a template for multiple entities, then you have to reuse this statement before that entities' definition:
template<typename T>

c++ Forward Declaration design

From what i've read, i should use forward declarations whenever I can. I have classes like this ( where every fields are pointers because of forward declarations ) :
class A
{
// ...
A* a;
B* b;
C* c;
D* d;
E* e;
};
But there is problems with that.
1- This implies to call new and delete ( or at least new with smart pointers ) for every fields in constructor, while stack allocated fields don't need this.
2- I've read that stack allocation was faster than heap allocation.
3- Also that means that almost every fields on every classes should be pointers.
Am I doing the right way doing like my example class? Or am I missing something with forward declarations?
The example you've shown is an overkill. The suggestion to use forward declarations doesn't mean your code design is driven by forward declaration practices. Forward declarations are just implementation detail, the design prevails.
First decide whether you need aggregation or composition, then whether the forward declaration is appropriate.
Do prefer forward declaration over #include when the forward-declared type is part of your method signature, i.e. a parameter's type.
#include "OtherClass.h" // 'bad' practice
class OtherClass; // this is better than #include
....
class MyClass
{
void method(OtherClass *ptr);
}
It's not an absolute rule anyway as it's not always possible/convenient to use forward decls instead of includes.
The implication is inverse - you're not supposed to use pointers just in order to use forward declarations, but you're suppose to use forward declarations after you've taken a design decision (such as using pointers instead of objects as members) when you can.
So if it makes more sense to use objects, do so, and include the files you need. Don't use pointers just so you can forward-declare the classes.
If you are using pointers as members, prefer forward declaration than exposing complete class definition. Don't use pointers just to meet some rule blindly.
Technically spoken, you can (and should!) use a forward declaration, if the interface of your class doesn't depend on a fully qualified type. The compiler has to reserve enough space for members and add management functions at compile time - just using pointers or references in your class does not introduce dependencies on types.
BTW: Forward declaration isn't that new: In some C standard libraries, FILE is a typedef for a forward declared struct, which makes sense since FILE is always used for pointers in the whole public file API.
Use pointers or references for objects that the class doesn't own. But for objects that are owned by this class don't use forward declarations as a reason for choosing pointers.
If you really want to minimize compile time dependencies consider the PIMPL idom rather than turning all your members into pointers:
MyClass.h:
#include <memory>
class MyClassImpl;
class MyClass {
public:
MyClass();
~MyClass();
void doThing();
private:
std::unique_ptr<MyClassImpl> pimpl_;
};
MyClass.cpp
#include "MyClass.h"
#include "MyClassImpl.h"
MyClass::MyClass() { } // in .cpp so unique_ptr constructor has complete type
MyClass::~MyClass() { } // in .cpp so unique_ptr destructor has complete type
void MyClass::doThing(){
pimpl_->doThing();
}
MyClassImpl.h:
#include "A.h"
#include "B.h"
class MyClassImpl {
private:
A a_;
B b_;
public:
void doThing();
};
MyClassImpl.cpp:
#include "MyClassImpl.h"
void MyClassImpl::doThing() {
// Do stuff with a_, b_, etc...
}
This might not address performance concerns as you still have dynamic memory allocation but you would have to measure it to see.
In addition to the good answers already given: In cases where your class doesn't create an object but uses it privately (for instance some utility class), references can be used instead of pointers.
class UtilityClass; // forward declaration (even interfaces make sense here)
class MyClass {
public:
/// takes an UtilityClass for implementing some of its functions
MyClass(UtilityClass& u): util(u) {}
private:
UtilityClass& util;
// ...more details
};
These are cases, where forward declaration doesn't mean that objects have to be created on heap (as for your problems #1 and #2).

Using multiple classes within other classes

I'm finishing up a C++ assignment and I'm running into an issue with connecting all the classes together. The classes have basic constructors, getters, setters, etc. so I'm confident the abundance of compiler errors I'm getting are due to me mix and matching all of my Classes incorrectly...
My classes are split up into cpp and h files and I've basically used the include statements every time that class needs something from another class. A basic diagram of which class needs what is shown below:
Basically what I'm trying to figure out is if having #include "Product.h" in both CustomerOrder and Retailer is messing things up or if I'm doing this all the wrong way.
Any help would be lovely!
Thanks!
EDIT:
Here's one instance of what each class is basically doing. The Customer class holds an array of CustomerOrders and CustomerOrders holds an array of Products etc. etc..
...
class Customer
{
private:
string customerName;
string customerID;
float balance;
static const int ORDERSIZE = 2;
CustomerOrder* orderList[ORDERSIZE];
Retailer retailer;
...
and Customer Order:
...
class CustomerOrder
{
private:
static const int SHOPSIZE = 20;
Product* shoppingList[SHOPSIZE];
...
First of all, your diagram is confusing. In OOP, arrows like the one you use indicate public inheritance, but that doesn't seem to be the case here (nor that it should).
Your question cannot be answered generally. You #include another class if you need the complete type. Otherwise, a forward declaration will do. That only has an impact on compilation speed. Nevertheless, the rule is to use forward declarations if you can and #includes if you must.
Here are some cases where you can get away with a forward declaration:
1.) Pointers:
class AnotherClass; // <-- forward declaration
class Example
{
// ...
AnotherClass *another_class;
};
2.) References:
class AnotherClass; // <-- forward declaration
class Example
{
// ...
void f(AnotherClass &another_class);
};
3.) Return values:
class AnotherClass; // <-- forward declaration
class Example
{
// ...
AnotherClass Get();
};
As soon as you are actually using the object of the forward-declared class, you need to have the #include. If you forget, the compiler will remind you.
Caveat 1: Pay attention when you use forward-declared (i.e. so-called "incomplete") types in standard containers. Your compiler may allow this, but it's undefined behaviour to do so!
class Example; // forward declaration
std::vector<Example> v; // undefined behaviour!
Caveat 2: Don't attempt to forward-declare standard classes. Just do #include <vector>, #include <string> and so on and let the compiler figure out how to optimize compile time.
Edit: Actually, the linker, rather than the compiler, will remind you if you forget to include a forward-declared class you cannot forward-declare, but that's just a nitpick :)

c++ object of one class wants to use method of object in another class

I'm converting my old c++ program into OOP and as things grow bigger I'm splitting it per class in .h and .cpp files. The first class compiled nicely into an object file. But my second class is dependant on that first class and now I run into problems. Here my very simplified "all in a single file" code that works:
class A {
public:
void amethod(int) {
....code....
}
};
A a_obj; //object creation
class B {
public
void bmethod(void) {
a_obj.amethod(int);
}
};
B b_obj; //object creation
main() {
b_obj.bmethod();
}
After deviding the code over different files my .h files look like:
//file A.h:
class A {
public:
void amethod(int);
};
//file B.h
#include "A.h"
class B {
public
void bmethod(void);
};
In the implementation of class B there is the call to a_obj.amethod() and even I understand that g++ has no way to know that a_obj is an object of class A as I did not even include the a_obj object creating anywhere in the code.
How to solve this ? Is it something simple that I need to put the object creation somewhere in my .h or .cpp file (note that lots of other classes are using the same amethod()). I can not make everything static as I also have classes with multiple objects (in fact the same way of working is all over the program). Or is this way of working completely wrong (which would explain why I can not find any solution for this).
Is suggest you put more efforts in defining your interfaces.
If class B needs an instance of A to work, use parameters to pass an A:
class B {
public
void bmethod(A & a_obj) {
a_obj.amethod(int);
}
};
main() {
A a_obj;
B b_obj;
b_obj.bmethod(a_obj);
}
The problem is that your original code uses global data (i.e. the declarations of a_obj and b_obj are global). Globals are generally a bad idea because they can cause several problems. The 'proper' OOP way to do it would be to instantiate those objects in main(), and pass them to whatever other objects need to access them. You could pass references, pointers, or copies, depending on your needs.
With that said, if you really want to continue doing it with global data, then you can use an extern declaration. In each *.cpp file where you access a_obj, include this:
extern A a_obj;
That basically tells the compiler that there is an object with that name, but it exists somewhere else. I really don't recommend this approach if you're serious about learning OOP though.
I guess you are planning to use a_obj as global variable in other implementation file (.cpp).
So in header file B.h type extern reference to this instance.
extern A a_obj;
This declaration should help compile your B.cpp file. And ask actual instance a_obj during linking.
I didnt try this code, but telling by my experience and my practice(way) of coding. Hope this solution helps, else am sorry.
First, in order to call A::amethod() class B needs the full definition of class A and its amethod(). So you need to #include A.h before B.h in your .cpp files.
Next, if you address concrete a_obj object, you need to specify what that object is in order to link properly. In you first variant it was global object, so if it is what intended you can write: in A.cpp:
A a_obj;
in B.cpp:
extern a_obj;
// here you can call a_obj methods
But if these classes are so related that one calls methods of another, and also as I catched you need several objects of A and B, consider to connect these classes through inheritance:
class B : public A {
public:
void bMethod(int n) {
aMethod(n); // base class method call
}
// ...
or through delegation:
class B {
A m_A;
public:
void bMethod(int n) {
m_A.aMethod(n);
}
// ...
As mentioned earlier the way
void bMethod(A& a) {
a.aMethod();
}
will work, but the language has built-in means to express classes relationships.
How to implement is more design question, you can read more about this in Stroustrup 3rd edition, '24.3.5 Use Relationships'.
In C++ you can also pass a pointer to a member function of one class into the member function of another class to call a method from completely unrelated class (say, some callback), you can use boost::function and boost::bind for this. But it is advanced technique.

What does the statement class foo; mean

I have been going through the code of a project and have encountered the statement
class foo;
.
.
.
.
foo* f1;
in various places. The class has not been declared in any of the headers included either. Can anybody tell me what that means.
It is a forward declaration. It can be used for classes, structs and functions, and it tells compiler that this is defined elsewhere or later.
For classes, there are (at least) two use cases.
1. Full definition not needed
After forward declaration, compiler does not know size or members of class, only name. That is enough for pointers to the class (and references which are basically syntactic sugar around pointers). But often pointer is enough, and then you can avoid including entire header file in another. This helps compilation speed, by avoiding need to recompile everything when one header changes.
myfuncs.h
class MyClass; // forward declaration
void helpMyClass(MyClass &needy);
// here this would give compiler error about incomplete type:
//void badHelp(MyClass needy); // value needs definition
myfuncs.cpp:
#include "myclass.h" // entire MyClass definition
void helpMyClass(MyClass &needy) {
needy.helpMe(false); // needs full definition
}
Important use case for this is the so called PIMPL idiom, also well covered here at SO under pimpl-idiom tag.
2. Two classes need to refer to each others
class node; // forward declarion
class collection {
node *frist; // pointer enabled by forward declaration
}
class node {
collection *owner; // already defined above so works too
}
In this case forward declaration is required to make this work nicely. Just saying in case you see it in the wild, there's the ugly way of using void pointer and casts, sometimes used when novice programmer does not know how this should be done.
I think you're referring to a forward declaration. It tells the compiler that a class named foo will be defined later. Until then it is an "incomplete type", meaning that pointers and references to the class can be defined. Instances of the class cannot be created until it is fully defined.
Your declaration is incorrect? I'm not sure.. I do know that you can't have "any" space "name".. Perhaps you missed an underscore?
I believe you meant:
class foo any_name();
In that case, it's forward declaring a function called any_name that returns a class instance of foo.
Example:
#include <iostream>
class foo any_name(); //The forward declaration..
class foo //the foo class implementation.
{
public:
foo(){std::cout<<"hey";}
};
class foo any_name() //The implementation of the function..
{
std::cout<<"any_name";
//return {}; //Can be used to return a constructed instance of foo.
};
int main()
{
any_name();
}