C++ how are variables accessed in memory? - c++

When I create a new variable in a C++ program, eg a char:
char c = 'a';
how does C++ then have access to this variable in memory? I would imagine that it would need to store the memory location of the variable, but then that would require a pointer variable, and this pointer would again need to be accessed.

See the docs:
When a variable is declared, the memory needed to store its value is
assigned a specific location in memory (its memory address).
Generally, C++ programs do not actively decide the exact memory
addresses where its variables are stored. Fortunately, that task is
left to the environment where the program is run - generally, an
operating system that decides the particular memory locations on
runtime. However, it may be useful for a program to be able to obtain
the address of a variable during runtime in order to access data cells
that are at a certain position relative to it.
You can also refer this article on Variables and Memory
The Stack
The stack is where local variables and function parameters reside. It
is called a stack because it follows the last-in, first-out principle.
As data is added or pushed to the stack, it grows, and when data is
removed or popped it shrinks. In reality, memory addresses are not
physically moved around every time data is pushed or popped from the
stack, instead the stack pointer, which as the name implies points to
the memory address at the top of the stack, moves up and down.
Everything below this address is considered to be on the stack and
usable, whereas everything above it is off the stack, and invalid.
This is all accomplished automatically by the operating system, and as
a result it is sometimes also called automatic memory. On the
extremely rare occasions that one needs to be able to explicitly
invoke this type of memory, the C++ key word auto can be used.
Normally, one declares variables on the stack like this:
void func () {
int i; float x[100];
...
}
Variables that are declared on the stack are only valid within the
scope of their declaration. That means when the function func() listed
above returns, i and x will no longer be accessible or valid.
There is another limitation to variables that are placed on the stack:
the operating system only allocates a certain amount of space to the
stack. As each part of a program that is being executed comes into
scope, the operating system allocates the appropriate amount of memory
that is required to hold all the local variables on the stack. If this
is greater than the amount of memory that the OS has allowed for the
total size of the stack, then the program will crash. While the
maximum size of the stack can sometimes be changed by compile time
parameters, it is usually fairly small, and nowhere near the total
amount of RAM available on a machine.

Assuming this is a local variable, then this variable is allocated on the stack - i.e. in the RAM. The compiler keeps track of the variable offset on the stack. In the basic scenario, in case any computation is then performed with the variable, it is moved to one of the processor's registers and the CPU performs the computation. Afterwards the result is returned back to the RAM. Modern processors keep whole stack frames in the registers and have multiple levels of registers, so it can get quite complex.
Please note the "c" name is no more mentioned in the binary (unless you have debugging symbols). The binary only then works with the memory locations. E.g. it would look like this (simple addition):
a = b + c
take value of memory offset 1 and put it in the register 1
take value of memory offset 2 and put in in the register 2
sum registers 1 and 2 and store the result in register 3
copy the register 3 to memory location 3
The binary doesn't know "a", "b" or "c". The compiler just said "a is in memory 1, b is in memory 2, c is in memory 3". And the CPU just blindly executes the commands the compiler has generated.

C++ itself (or, the compiler) would have access to this variable in terms of the program structure, represented as a data structure. Perhaps you're asking how other parts in the program would have access to it at run time.
The answer is that it varies. It can be stored either in a register, on the stack, on the heap, or in the data/bss sections (global/static variables), depending on its context and the platform it was compiled for: If you needed to pass it around by reference (or pointer) to other functions, then it would likely be stored on the stack. If you only need it in the context of your function, it would probably be handled in a register. If it's a member variable of an object on the heap, then it's on the heap, and you reference it by an offset into the object. If it's a global/static variable, then its address is determined once the program is fully loaded into memory.
C++ eventually compiles down to machine language, and often runs within the context of an operating system, so you might want to brush up a bit on Assembly basics, or even some OS principles, to better understand what's going on under the hood.

Lets say our program starts with a stack address of 4000000
When, you call a function, depending how much stack you use, it will "allocate it" like this
Let's say we have 2 ints (8bytes)
int function()
{
int a = 0;
int b = 0;
}
then whats gonna happen in assembly is
MOV EBP,ESP //Here we store the original value of the stack address (4000000) in EBP, and we restore it at the end of the function back to 4000000
SUB ESP, 8 //here we "allocate" 8 bytes in the stack, which basically just decreases the ESP addr by 8
so our ESP address was changed from
4000000
to
3999992
that's how the program knows knows the stack addresss for the first int is "3999992" and the second int is from 3999996 to 4000000
Even tho this pretty much has nothing to do with the compiler, it's really important to know because when you know how stack is "allocated", you realize how cheap it is to do things like
char my_array[20000];
since all it's doing is just doing sub esp, 20000 which is a single assembly instruction
but if u actually use all those bytes like memset(my_array,20000) that's a different history.

how does C++ then have access to this variable in memory?
It doesn't!
Your computer does, and it is instructed on how to do that by loading the location of the variable in memory into a register. This is all handled by assembly language. I shan't go into the details here of how such languages work (you can look it up!) but this is rather the purpose of a C++ compiler: to turn an abstract, high-level set of "instructions" into actual technical instructions that a computer can understand and execute. You could sort of say that assembly programs contain a lot of pointers, though most of them are literals rather than "variables".

Related

How an CPU finds location of a variable

I am working with C++(Sorry,If my question is little bit confusing).I know how pointer works.It points to an address of a variable.
My Question is that if I have created a simple variable(not a pointer) in stack or heap.How does CPU find the address of a variable as there is no pointer is present which points to that variable.It is just a name of an address in Memory.
for e.g
int main()
{
int a=5;//Created a variable by allocating 4 bytes
return 0;
}
It created a variable but Question is how will CPU find the variable?
It seems that you have some concept misunderstanding. In every program, there is a memory area called stack where local variables are allocated. In most computer architectures, there is a register called stack pointer (rsp in the x86_64 architecture) which points at the top of the stack (which grows from higher memory addresses to lower addresses).
In execution time, the program code (generated by the compiler, and not the OS) uses this stack pointer as the base to allocate its local variables. So your code would move the number 5 itself to a location that's pointed by the current value of the stack pointer at the moment when main() was called, with an offset of 4 bytes (the location pointed by the current sp register is not known at all, because it is changing all the time with every function call).
How does CPU find the address of a variable as there is no pointer is present which points to that variable.It is just a name of an address in Memory.
This is not true. In fact it is the opposite of true.
In your executable, your compiler has written the address of the variable (or a relative offset from the current stack frame, anyway) and machine instructions that describe how to use it. The name is not present at all.
And that's how your CPU knows how to find the variable: the variable does not exist any more at runtime! It is an abstraction of C++, provided to you the programmer to make your life easier. But it bears little to no relationship to how the actual computer program actually works and how your CPU executes it.

Why can't we allocate dynamic memory on the stack?

Allocating stuff on the stack is awesome because than we have RAII and don't have to worry about memory leaks and such. However sometimes we must allocate on the heap:
If the data is really big (recommended) - because the stack is small.
If the size of the data to be allocated is only known at runtime (dynamic allocation).
Two questions:
Why can't we allocate dynamic memory (i.e. memory of size that is
only known at runtime) on the stack?
Why can we only refer to memory on the heap through pointers, while memory on the stack can be referred to via a normal variable? I.e. Thing t;.
Edit: I know some compilers support Variable Length Arrays - which is dynamically allocated stack memory. But that's really an exception to the general rule. I'm interested in understanding the fundamental reasons for why generally, we can't allocate dynamic memory on the stack - the technical reasons for it and the rational behind it.
Why can't we allocate dynamic memory (i.e. memory of size that is only known at runtime) on the stack?
It's more complicated to achieve this. The size of each stack frame is burned-in to your compiled program as a consequence of the sort of instructions the finished executable needs to contain in order to work. The layout and whatnot of your function-local variables, for example, is literally hard-coded into your program through the register and memory addresses it describes in its low-level assembly code: "variables" don't actually exist in the executable. To let the quantity and size of these "variables" change between compilation runs greatly complicates this process, though it's not completely impossible (as you've discovered, with non-standard variable-length arrays).
Why can we only refer to memory on the heap through pointers, while memory on the stack can be referred to via a normal variable
This is just a consequence of the syntax. C++'s "normal" variables happen to be those with automatic or static storage duration. The designers of the language could technically have made it so that you can write something like Thing t = new Thing and just use a t all day, but they did not; again, this would have been more difficult to implement. How do you distinguish between the different types of objects, then? Remember, your compiled executable has to remember to auto-destruct one kind and not the other.
I'd love to go into the details of precisely why and why not these things are difficult, as I believe that's what you're after here. Unfortunately, my knowledge of assembly is too limited.
Why can't we allocate dynamic memory (i.e. memory of size that is only known at runtime) on the stack?
Technically, this is possible. But not approved by the C++ standard. Variable length arrays(VLA) allows you to create dynamic size constructs on stack memory. Most compilers allow this as compiler extension.
example:
int array[n];
//where n is only known at run-time
Why can we only refer to memory on the heap through pointers, while memory on the stack can be referred to via a normal variable? I.e. Thing t;.
We can. Whether you do it or not depends on implementation details of a particular task at hand.
example:
int i;
int *ptr = &i;
We can allocate variable length space dynamically on stack memory by using function _alloca. This function allocates memory from the program stack. It simply takes number of bytes to be allocated and return void* to the allocated space just as malloc call. This allocated memory will be freed automatically on function exit.
So it need not to be freed explicitly. One has to keep in mind about allocation size here, as stack overflow exception may occur. Stack overflow exception handling can be used for such calls. In case of stack overflow exception one can use _resetstkoflw() to restore it back.
So our new code with _alloca would be :
int NewFunctionA()
{
char* pszLineBuffer = (char*) _alloca(1024*sizeof(char));
…..
// Program logic
….
//no need to free szLineBuffer
return 1;
}
Every variable that has a name, after compilation, becomes a dereferenced pointer whose address value is computed by adding (depending on the platform, may be "subtracting"...) an "offset value" to a stack-pointer (a register that contains the address the stack actually is reaching: usually "current function return address" is stored there).
int i,j,k;
becomes
(SP-12) ;i
(SP-8) ;j
(SP-4) ;k
To let this "sum" to be efficient, the offsets have to be constant, so that they can be encode directly in the instruction op-code:
k=i+j;
become
MOV (SP-12),A; i-->>A
ADD A,(SP-8) ; A+=j
MOV A,(SP-4) ; A-->>k
You see here how 4,8 and 12 are now "code", not "data".
That implies that a variable that comes after another requires that "other" to retain a fixed compile-time defined size.
Dynamically declared arrays can be an exception, but they can only be that last variable of a function. Otherwise, all the variables that follows will have an offset that have to be adjusted run-time after that array allocation.
This creates the complication that dereferencing the addresses requires arithmetic (not just a plain offset) or the capability to modify the opcode as variables are declared (self modifying code).
Both the solution becomes sub-optimal in term of performance, since all can break the locality of the addressing, or add more calculation for each variable access.
Why can't we allocate dynamic memory (i.e. memory of size that is only known at runtime) on the stack?
You can with Microsoft compilers using _alloca() or _malloca(). For gcc, it's alloca()
I'm not sure it's part of the C / C++ standards, but variations of alloca() are included with many compilers. If you need aligned allocation, such a "n" bytes of memory starting on a "m" byte boundary (where m is a power of 2), you can allocate n+m bytes of memory, add m to the pointer and mask off the lower bits. Example to allocate hex 1000 bytes of memory on a hex 100 boundary. You don't need to preserve the value returned by _alloca() since it's stack memory and automatically freed when the function exits.
char *p;
p = _alloca(0x1000+0x100);
(size_t)p = ((size_t)0x100 + (size_t)p) & ~(size_t)0xff;
Most important reason is that Memory used can be deallocated in any order but stack requires deallocation of memory in a fixed order i.e LIFO order.Hence practically it would be difficult to implement this.
Virtual memory is a virtualization of memory, meaning that it behaves as the resource it is virtualizing (memory). In a system, each process has a different virtual memory space:
32-bits programs: 2^32 bytes (4 Gigabytes)
64-bits programs: 2^64 bytes (16 Exabytes)
Because virtual space is so big, only some regions of that virtual space are usable (meaning that only some regions can be read/written just as if it were real memory). Virtual memory regions are initialized and made usable through mapping. Virtual memory does not consume resources and can be considered unlimited (for 64-bits programs) BUT usable (mapped) virtual memory is limited and use up resources.
For every process, some mapping is done by the kernel and other by the user code. For example, before even the code start executing, the kernel maps specific regions of the virtual memory space of a process for the code instructions, global variables, shared libraries, the stack space... etc. The user code uses dynamic allocation (allocation wrappers such as malloc and free), or garbage collectors (automatic allocation) to manage the virtual memory mapping at application-level (for example, if there is no enough free usable virtual memory available when calling malloc, new virtual memory is automatically mapped).
You should differentiate between mapped virtual memory (the total size of the stack, the total current size of the heap...) and allocated virtual memory (the part of the heap that malloc explicitly told the program that can be used)
Regarding this, I reinterpret your first question as:
Why can't we save dynamic data (i.e. data whose size is only known at runtime) on the stack?
First, as other have said, it is possible: Variable Length Arrays is just that (at least in C, I figure also in C++). However, it has some technical drawbacks and maybe that's the reason why it is an exception:
The size of the stack used by a function became unknown at compile time, this adds complexity to stack management, additional register (variables) must be used and it may impede some compiler optimizations.
The stack is mapped at the beginning of the process and it has a fixed size. That size should be increased greatly if variable-size-data is going to be placed there by default. Programs that do not make extensive use of the stack would waste usable virtual memory.
Additionally, data saved on the stack must be saved and deleted in Last-In-First-Out order, which is perfect for local variables within functions but unsuitable if we need a more flexible approach.
Why can we only refer to memory on the heap through pointers, while memory on the stack can be referred to via a normal variable?
As this answer explains, we can.
Read a bit about Turing Machines to understand why things are the way they are. Everything was built around them as the starting point.
https://en.wikipedia.org/wiki/Turing_machine
Anything outside of this is technically an abomination and a hack.

What does "Memory allocated at compile time" really mean?

In programming languages like C and C++, people often refer to static and dynamic memory allocation. I understand the concept but the phrase "All memory was allocated (reserved) during compile time" always confuses me.
Compilation, as I understand it, converts high level C/C++ code to machine language and outputs an executable file. How is memory "allocated" in a compiled file ? Isn't memory always allocated in the RAM with all the virtual memory management stuff ?
Isn't memory allocation by definition a runtime concept ?
If I make a 1KB statically allocated variable in my C/C++ code, will that increase the size of the executable by the same amount ?
This is one of the pages where the phrase is used under the heading "Static allocation".
Back To Basics: Memory allocation, a walk down the history
Memory allocated at compile-time means the compiler resolves at compile-time where certain things will be allocated inside the process memory map.
For example, consider a global array:
int array[100];
The compiler knows at compile-time the size of the array and the size of an int, so it knows the entire size of the array at compile-time. Also a global variable has static storage duration by default: it is allocated in the static memory area of the process memory space (.data/.bss section). Given that information, the compiler decides during compilation in what address of that static memory area the array will be.
Of course that memory addresses are virtual addresses. The program assumes that it has its own entire memory space (From 0x00000000 to 0xFFFFFFFF for example). That's why the compiler could do assumptions like "Okay, the array will be at address 0x00A33211". At runtime that addresses are translated to real/hardware addresses by the MMU and OS.
Value initialized static storage things are a bit different. For example:
int array[] = { 1 , 2 , 3 , 4 };
In our first example, the compiler only decided where the array will be allocated, storing that information in the executable.
In the case of value-initialized things, the compiler also injects the initial value of the array into the executable, and adds code which tells the program loader that after the array allocation at program start, the array should be filled with these values.
Here are two examples of the assembly generated by the compiler (GCC4.8.1 with x86 target):
C++ code:
int a[4];
int b[] = { 1 , 2 , 3 , 4 };
int main()
{}
Output assembly:
a:
.zero 16
b:
.long 1
.long 2
.long 3
.long 4
main:
pushq %rbp
movq %rsp, %rbp
movl $0, %eax
popq %rbp
ret
As you can see, the values are directly injected into the assembly. In the array a, the compiler generates a zero initialization of 16 bytes, because the Standard says that static stored things should be initialized to zero by default:
8.5.9 (Initializers) [Note]:
Every object of static storage duration is zero-initialized at
program startup before any other initial- ization takes place. In some
cases, additional initialization is done later.
I always suggest people to disassembly their code to see what the compiler really does with the C++ code. This applies from storage classes/duration (like this question) to advanced compiler optimizations. You could instruct your compiler to generate the assembly, but there are wonderful tools to do this on the Internet in a friendly manner. My favourite is GCC Explorer.
Memory allocated at compile time simply means there will be no further allocation at run time -- no calls to malloc, new, or other dynamic allocation methods. You'll have a fixed amount of memory usage even if you don't need all of that memory all of the time.
Isn't memory allocation by definition a runtime concept?
The memory is not in use prior to run time, but immediately prior to execution starting its allocation is handled by the system.
If I make a 1KB statically allocated variable in my C/C++ code, will that increase the size of the executable by the same amount?
Simply declaring the static will not increase the size of your executable more than a few bytes. Declaring it with an initial value that is non-zero will (in order to hold that initial value). Rather, the linker simply adds this 1KB amount to the memory requirement that the system's loader creates for you immediately prior to execution.
Memory allocated in compile time means that when you load the program, some part of the memory will be immediately allocated and the size and (relative) position of this allocation is determined at compile time.
char a[32];
char b;
char c;
Those 3 variables are "allocated at compile time", it means that the compiler calculates their size (which is fixed) at compile time. The variable a will be an offset in memory, let's say, pointing to address 0, b will point at address 33 and c at 34 (supposing no alignment optimization). So, allocating 1Kb of static data will not increase the size of your code, since it will just change an offset inside it. The actual space will be allocated at load time.
Real memory allocation always happens in run time, because the kernel needs to keep track of it and to update its internal data structures (how much memory is allocated for each process, pages and so on). The difference is that the compiler already knows the size of each data you are going to use and this is allocated as soon as your program is executed.
Remember also that we are talking about relative addresses. The real address where the variable will be located will be different. At load time the kernel will reserve some memory for the process, lets say at address x, and all the hard coded addresses contained in the executable file will be incremented by x bytes, so that variable a in the example will be at address x, b at address x+33 and so on.
Adding variables on the stack that take up N bytes doesn't (necessarily) increase the bin's size by N bytes. It will, in fact, add but a few bytes most of the time.
Let's start off with an example of how adding a 1000 chars to your code will increase the bin's size in a linear fashion.
If the 1k is a string, of a thousand chars, which is declared like so
const char *c_string = "Here goes a thousand chars...999";//implicit \0 at end
and you then were to vim your_compiled_bin, you'd actually be able to see that string in the bin somewhere. In that case, yes: the executable will be 1 k bigger, because it contains the string in full.
If, however you allocate an array of ints, chars or longs on the stack and assign it in a loop, something along these lines
int big_arr[1000];
for (int i=0;i<1000;++i) big_arr[i] = some_computation_func(i);
then, no: it won't increase the bin... by 1000*sizeof(int)
Allocation at compile time means what you've now come to understand it means (based on your comments): the compiled bin contains information the system requires to know how much memory what function/block will need when it gets executed, along with information on the stack size your application requires. That's what the system will allocate when it executes your bin, and your program becomes a process (well, the executing of your bin is the process that... well, you get what I'm saying).
Of course, I'm not painting the full picture here: The bin contains information about how big a stack the bin will actually be needing. Based on this information (among other things), the system will reserve a chunk of memory, called the stack, that the program gets sort of free reign over. Stack memory still is allocated by the system, when the process (the result of your bin being executed) is initiated. The process then manages the stack memory for you. When a function or loop (any type of block) is invoked/gets executed, the variables local to that block are pushed to the stack, and they are removed (the stack memory is "freed" so to speak) to be used by other functions/blocks. So declaring int some_array[100] will only add a few bytes of additional information to the bin, that tells the system that function X will be requiring 100*sizeof(int) + some book-keeping space extra.
On many platforms, all of the global or static allocations within each module will be consolidated by the compiler into three or fewer consolidated allocations (one for uninitialized data (often called "bss"), one for initialized writable data (often called "data"), and one for constant data ("const")), and all of the global or static allocations of each type within a program will be consolidated by the linker into one global for each type. For example, assuming int is four bytes, a module has the following as its only static allocations:
int a;
const int b[6] = {1,2,3,4,5,6};
char c[200];
const int d = 23;
int e[4] = {1,2,3,4};
int f;
it would tell the linker that it needed 208 bytes for bss, 16 bytes for "data", and 28 bytes for "const". Further, any reference to a variable would be replaced with an area selector and offset, so a, b, c, d, and e, would be replaced by bss+0, const+0, bss+4, const+24, data+0, or bss+204, respectively.
When a program is linked, all of the bss areas from all the modules are be concatenated together; likewise the data and const areas. For each module, the address of any bss-relative variables will be increased by the size of all preceding modules' bss areas (again, likewise with data and const). Thus, when the linker is done, any program will have one bss allocation, one data allocation, and one const allocation.
When a program is loaded, one of four things will generally happen depending upon the platform:
The executable will indicate how many bytes it needs for each kind of data and--for the initialized data area, where the initial contents may be found. It will also include a list of all the instructions which use a bss-, data-, or const- relative address. The operating system or loader will allocate the appropriate amount of space for each area and then add the starting address of that area to each instruction which needs it.
The operating system will allocate a chunk of memory to hold all three kinds of data, and give the application a pointer to that chunk of memory. Any code which uses static or global data will dereference it relative to that pointer (in many cases, the pointer will be stored in a register for the lifetime of an application).
The operating system will initially not allocate any memory to the application, except for what holds its binary code, but the first thing the application does will be to request a suitable allocation from the operating system, which it will forevermore keep in a register.
The operating system will initially not allocate space for the application, but the application will request a suitable allocation on startup (as above). The application will include a list of instructions with addresses that need to be updated to reflect where memory was allocated (as with the first style), but rather than having the application patched by the OS loader, the application will include enough code to patch itself.
All four approaches have advantages and disadvantages. In every case, however, the compiler will consolidate an arbitrary number of static variables into a fixed small number of memory requests, and the linker will consolidate all of those into a small number of consolidated allocations. Even though an application will have to receive a chunk of memory from the operating system or loader, it is the compiler and linker which are responsible for allocating individual pieces out of that big chunk to all the individual variables that need it.
The core of your question is this: "How is memory "allocated" in a compiled file? Isn't memory always allocated in the RAM with all the virtual memory management stuff? Isn't memory allocation by definition a runtime concept?"
I think the problem is that there are two different concepts involved in memory allocation. At its basic, memory allocation is the process by which we say "this item of data is stored in this specific chunk of memory". In a modern computer system, this involves a two step process:
Some system is used to decide the virtual address at which the item will be stored
The virtual address is mapped to a physical address
The latter process is purely run time, but the former can be done at compile time, if the data have a known size and a fixed number of them is required. Here's basically how it works:
The compiler sees a source file containing a line that looks a bit like this:
int c;
It produces output for the assembler that instructs it to reserve memory for the variable 'c'. This might look like this:
global _c
section .bss
_c: resb 4
When the assembler runs, it keeps a counter that tracks offsets of each item from the start of a memory 'segment' (or 'section'). This is like the parts of a very large 'struct' that contains everything in the entire file it doesn't have any actual memory allocated to it at this time, and could be anywhere. It notes in a table that _c has a particular offset (say 510 bytes from the start of the segment) and then increments its counter by 4, so the next such variable will be at (e.g.) 514 bytes. For any code that needs the address of _c, it just puts 510 in the output file, and adds a note that the output needs the address of the segment that contains _c adding to it later.
The linker takes all of the assembler's output files, and examines them. It determines an address for each segment so that they won't overlap, and adds the offsets necessary so that instructions still refer to the correct data items. In the case of uninitialized memory like that occupied by c (the assembler was told that the memory would be uninitialized by the fact that the compiler put it in the '.bss' segment, which is a name reserved for uninitialized memory), it includes a header field in its output that tells the operating system how much needs to be reserved. It may be relocated (and usually is) but is usually designed to be loaded more efficiently at one particular memory address, and the OS will try to load it at this address. At this point, we have a pretty good idea what the virtual address is that will be used by c.
The physical address will not actually be determined until the program is running. However, from the programmer's perspective the physical address is actually irrelevant—we'll never even find out what it is, because the OS doesn't usually bother telling anyone, it can change frequently (even while the program is running), and a main purpose of the OS is to abstract this away anyway.
An executable describes what space to allocate for static variables. This allocation is done by the system, when you run the executable. So your 1kB static variable won't increase the size of the executable with 1kB:
static char[1024];
Unless of course you specify an initializer:
static char[1024] = { 1, 2, 3, 4, ... };
So, in addition to 'machine language' (i.e. CPU instructions), an executable contains a description of the required memory layout.
Memory can be allocated in many ways:
in application heap (whole heap is allocated for your app by OS when the program starts)
in operating system heap (so you can grab more and more)
in garbage collector controlled heap (same as both above)
on stack (so you can get a stack overflow)
reserved in code/data segment of your binary (executable)
in remote place (file, network - and you receive a handle not a pointer to that memory)
Now your question is what is "memory allocated at compile time". Definitely it is just an incorrectly phrased saying, which is supposed to refer to either binary segment allocation or stack allocation, or in some cases even to a heap allocation, but in that case the allocation is hidden from programmer eyes by invisible constructor call. Or probably the person who said that just wanted to say that memory is not allocated on heap, but did not know about stack or segment allocations.(Or did not want to go into that kind of detail).
But in most cases person just wants to say that the amount of memory being allocated is known at compile time.
The binary size will only change when the memory is reserved in the code or data segment of your app.
You are right. Memory is actually allocated (paged) at load time, i.e. when the executable file is brought into (virtual) memory. Memory can also be initialized on that moment. The compiler just creates a memory map. [By the way, stack and heap spaces are also allocated at load time !]
I think you need to step back a bit. Memory allocated at compile time.... What can that mean? Can it mean that memory on chips that have not yet been manufactured, for computers that have not yet been designed, is somehow being reserved? No. No, time travel, no compilers that can manipulate the universe.
So, it must mean that the compiler generates instructions to allocate that memory somehow at runtime. But if you look at it in from the right angle, the compiler generates all instructions, so what can be the difference. The difference is that the compiler decides, and at runtime, your code can not change or modify its decisions. If it decided it needed 50 bytes at compile time, at runtime, you can't make it decide to allocate 60 -- that decision has already been made.
If you learn assembly programming, you will see that you have to carve out segments for the data, the stack, and code, etc. The data segment is where your strings and numbers live. The code segment is where your code lives. These segments are built into the executable program. Of course the stack size is important as well... you wouldn't want a stack overflow!
So if your data segment is 500 bytes, your program has a 500 byte area. If you change the data segment to 1500 bytes, the size of the program will be 1000 bytes larger. The data is assembled into the actual program.
This is what is going on when you compile higher level languages. The actual data area is allocated when it is compiled into an executable program, increasing the size of the program. The program can request memory on the fly, as well, and this is dynamic memory. You can request memory from the RAM and the CPU will give it to you to use, you can let go of it, and your garbage collector will release it back to the CPU. It can even be swapped to a hard disk, if necessary, by a good memory manager. These features are what high level languages provide you.
I would like to explain these concepts with the help of few diagrams.
This is true that memory cannot be allocated at compile time, for sure.
But, then what happens in fact at compile time.
Here comes the explanation.
Say, for example a program has four variables x,y,z and k.
Now, at compile time it simply makes a memory map, where the location of these variables with respect to each other is ascertained.
This diagram will illustrate it better.
Now imagine, no program is running in memory.
This I show by a big empty rectangle.
Next, the first instance of this program is executed.
You can visualize it as follows.
This is the time when actually memory is allocated.
When second instance of this program is running, the memory would look like as follows.
And the third ..
So on and so forth.
I hope this visualization explains this concept well.
There is very nice explanation given in the accepted answer. Just in case i will post the link which i have found useful.
https://www.tenouk.com/ModuleW.html
One among the many thing what a compiler does is that create and maintain a SYMTAB(Symbol Table under the section.symtab). This will be purely created and maintained by compilers using any Data Structure(List, Trees...etc) and not for the developers eyes. Any access request made by the developers this is where it will hit first.
Now about the Symbol Table,
We only need to know about the two columns Symbol Name and the Offset.
Symbol Name column will have the variable names and the offset column will have the offset value.
Lets see this with an example:
int a , b , c ;
Now we all know that the register Stack_Pointer(sp) points to the Top of the Stack Memory. Let that be sp = 1000.
Now the Symbol Name column will have three values in it a then b and then c. Reminding you all that variable a will be at the top of the stack memory.
So a's equivalent offset value will be 0.
(Compile Time Offset_Value)
Then b and its equivalent offset value will be 1. (Compile Time Offset_Value)
Then c and its equivalent offset value will be 2. (Compile Time Offset_Value)
Now calculating a's Physical address (or) Runtime Memory Address = (sp + offset_value of a)
= (1000 + 0) = 1000
Now calculating b's Physical address (or) Runtime Memory Address = (sp - offset_value of b)
= (1000 - 1) = 996
Now calculating c's Physical address (or) Runtime Memory Address = (sp - offset_value of c)
= (1000 - 2) = 992
Therefore at the time of the compilation we will only be having the offset values and only during the runtime the actual physical addresses are calculated.
Note:
Stack_Pointer value will be assigned only after the program is loaded. Pointer Arithmetic happens between the Stack_Pointer register and the variables offset to calculate the variables Physical Address.
"POINTERS AND POINTER ARITHMETIC, WAY OF THE PROGRAMMING WORLD"
Share what I learned about this question.
You can understand this issue in two steps:
First, the compilation step: the compiler generates the binary. In Linux system, binary is a file in ELF (Executable and Linkable Format) format. ELF file contains several sections, including .bss and .data
.data
Initialized data, with read/write access rights
.bss
Uninitialized data, with read/write access rights (=WA)
.data and .bss just map to the segments of process's memory layout, which contains static variables.
second, the loading step. When the binary file get executed, the ELF file will be loaded into process's memory. The loader can find static variables' information from ELF file.
Simply speaking, the compiler and the loader follow the same standard to communicate with each other, and the standard is ELF format.

c/c++ allocate on stack

I was reading [1) about stack pointers and the need of knowing both ebp (start of the stack for the function) and esp (end). The article said that you need to know both because the stack can grow, but I don't see how this can be possible in c/c++. (Im not talking about another function call because to my mind this would make the stack grow, do some stuff, then recursively be popped and back to state before call)
I have done a little bit of research and only saw people saying that new allocates on the heap. But the pointer will be a local variable, right ? And this is known at compile time and reserved in the stack at the time the function is called.
I started to think that maybe with loops you have an uncontrolled number of local variables
int a;
for (int i = 0; i < n; ++i)
int b = i + 3;
but no, this doesn't allocate n times b, and only 1 int is reserved just as it is for a.
So... any example ?
[1): http://en.wikibooks.org/wiki/X86_Disassembly/Functions_and_Stack_Frames
You can allocate memory on the stack with alloca function from stdlib. I don't recommend to use this function in production code. It's to easy to corrupt your stack or get stack overflow.
The use of EBP is more for convenience. It is possible to just use ESP. The problem with that is, as parameters to functions are pushed onto the stack, the address relative to ESP of all the variables and parameters changes.
By setting EBP to a fixed, known position on the stack, usually between the function parameters and the local variables, the address of all these elements remains constant relative to EBP throughout the lifetime of the function. It can also help with debugging, as the value of ESP at the end of the function should equal the value of EBP.
The only way I know of to grow the stack in an indeterminate way at compile time, is to use alloca repeatedly.
A pointer is indeed allocated on the stack. And the size is usually 4 or 8 bytes on 32 and 64bit architectures respectively. So you know the size of a pointer statically, at compile time, and you can keep them on the stack if you choose to do so.
This pointer can point to free store, and you can allocate memory to it dynamically - without having to know the size beforehand. Moreover, it is usually a good idea to keep stack frames empty, and compilers will even "enforce" this with (adjustable) limits. MSVC has 1MB if I recall correctly.
So no, there is no way you can create a stack frame of size that is unknown at compile time. Your stack frame of the code you posted will have room for 3 integers (a, b, i). (And possibly some padding, shadow space, etc, not relevant.) (It is TECHNICALLY possible to extend the size of stackframes at run time but you just don't want to do that almost never.)

Why does a C/C++ compiler need know the size of an array at compile time?

I know C standards preceding C99 (as well as C++) says that the size of an array on stack must be known at compile time. But why is that? The array on stack is allocated at run-time. So why does the size matter in compile time? Hope someone explain to me what a compiler will do with size at compile time. Thanks.
The example of such an array is:
void func()
{
/*Here "array" is a local variable on stack, its space is allocated
*at run-time. Why does the compiler need know its size at compile-time?
*/
int array[10];
}
To understand why variably-sized arrays are more complicated to implement, you need to know a little about how automatic storage duration ("local") variables are usually implemented.
Local variables tend to be stored on the runtime stack. The stack is basically a large array of memory, which is sequentially allocated to local variables and with a single index pointing to the current "high water mark". This index is the stack pointer.
When a function is entered, the stack pointer is moved in one direction to allocate memory on the stack for local variables; when the function exits, the stack pointer is moved back in the other direction, to deallocate them.
This means that the actual location of local variables in memory is defined only with reference to the value of the stack pointer at function entry1. The code in a function must access local variables via an offset from the stack pointer. The exact offsets to be used depend upon the size of the local variables.
Now, when all the local variables have a size that is fixed at compile-time, these offsets from the stack pointer are also fixed - so they can be coded directly into the instructions that the compiler emits. For example, in this function:
void foo(void)
{
int a;
char b[10];
int c;
a might be accessed as STACK_POINTER + 0, b might be accessed as STACK_POINTER + 4, and c might be accessed as STACK_POINTER + 14.
However, when you introduce a variably-sized array, these offsets can no longer be computed at compile-time; some of them will vary depending upon the size that the array has on this invocation of the function. This makes things significantly more complicated for compiler writers, because they must now write code that accesses STACK_POINTER + N - and since N itself varies, it must also be stored somewhere. Often this means doing two accesses - one to STACK_POINTER + <constant> to load N, then another to load or store the actual local variable of interest.
1. In fact, "the value of the stack pointer at function entry" is such a useful value to have around, that it has a name of its own - the frame pointer - and many CPUs provide a separate register dedicated to storing the frame pointer. In practice, it is usually the frame pointer from which the location of local variables is calculated, rather than the stack pointer itself.
It is not an extremely complicated thing to support, so the reason C89 doesn't allow this is not because it was impossible back then.
There are however two important reasons why it is not in C89:
The runtime code will get less efficient if the array size is not known at compile-time.
Supporting this makes life harder for compiler writers.
Historically, it has been very important that C compilers should be (relatively) easy to write. Also, it should be possible to make compilers simple and small enough to run on modest computer systems (by 80s standards). Another important feature of C is that the generated code should consistently be extremely efficient, without any surprises,
I think it is unfortunate that these values no longer hold for C99.
The compiler has to generate the code to create the space for the frame on the stack to hold the array and other local local variables. For this it needs the size of the array.
Depends on how you allocate the array.
If you create it as a local variable, and specify a length, then it matters because the compiler needs to know how much space to allocate on the stack for the elements of the array. If you don't specify a size of the array, then it doesn't know how much space to set aside for the array elements.
If you create just a pointer to an array, then all you need to do is allocate the space for the pointer itself, and then you can dynamically create array elements during run time. But in this form of array creation, you're allocating space for the array elements in the heap, not on the stack.
In C++ this becomes even more difficult to implement, because variables stored on the stack must have their destructors called in the event of an exception, or upon returning from a given function or scope. Keeping track of the exact number/size of variables to be destroyed adds additional overhead and complexity. While in C it's possible to use something like a frame pointer to make freeing of the VLA implicit, in C++ that doesn't help you, because those destructors need to be called.
Also, VLAs can cause Denial of Service security vulnerabilities. If the user is able to supply any value which is eventually used as the size for a VLA, then they could use a sufficiently large value to cause a stack overflow (and therefore failure) in your process.
Finally, C++ already has a safe and effective variable length array (std::vector<t>), so there's little reason to implement this feature for C++ code.
Let's say you create a variable sized array on the stack. The size of the stack frame needed by the function won't be known at compile time. So, C assumed that some run time environments require this to be known up front. Hence the limitation. C goes back to the early 1970's. Many languages at the time had a "static" look and feel (like Fortran)