In what ways are NoSQL databases be more useful in data mining than say OLAP databases or how is it less useful?
Is there an advantage in having a fast data-retrieval from gigantic volume of data but also having a schema-less database?
It's about the advanced query capabilities
And NoSQL databases are rather useless usually here.
They are designed for extremely primitive queries such as key-value storing.
But you can't do much analysis with that.
A database suitable for data mining would need to allow:
finding similar records (k nearest neighbors) with domain-specific similarity functions
nearest-neighbor self-joins, radius-self-joins
pairwise comparisons
optimization of mathematical equations and fast vector math, preferrably, with GPU offloading
As is, what people do when mining databases is ETL:
extract what they need via SELECT
transform it into the desired scheme
load it from the database into the data mining application
i.e. the database does ETL, but the data mining happens outside.
Related
In this repository, its author mentions that we can stage OLAP cubes in Cassandra or S3:
Once the data is in Redshift, our chief goal is for the BI apps to be
able to connect to Redshift cluster and do some analysis. The BI apps
can either directly connect to the Redshift cluster or go through an
intermediate stage where data is in the form of aggregations
represented by OLAP cubes.
How is it possible? How would that work? Am I missing any essential concept? As I understand OLAP cubes are a special data structure that exists in OLAP databases. Does he maybe mean specific pre-calculated combinations of dimensions and facts stored in a OLTP-oriented database, like Cassandra?
Key features of OLAP are:
pivoting
slicing
dicing
drilling
And Redshift can do this.
It's architecture is aimed to solve OLAP and BI tasks. See amazon-redshift-developer-guide
Amazon Redshift is specifically designed for online analytic processing (OLAP) and business intelligence (BI) applications, which require complex queries against large datasets. Because it addresses very different requirements, the specialized data storage schema and query execution engine that Amazon Redshift uses are completely different from the PostgreSQL implementation. For example, where online transaction processing (OLTP) applications typically store data in rows, Amazon Redshift stores data in columns, using specialized data compression encodings for optimum memory usage and disk I/O. Some PostgreSQL features that are suited to smaller-scale OLTP processing, such as secondary indexes and efficient single-row data manipulation operations, have been omitted to improve performance.
But the line between terms is very smooth.
As Diana Shealy said:
Stop Abusing OLTP as OLAP
There’s a lot of confusion in the market between OLTP and OLAP, and due to the high price of commercial OLAPs, startups and budget-constrained developers have gone on to abuse an OLTP database as an OLAP database. The abuse falls into two categories:
An often multi-shard MySQL database with application layer scripting to perform historical event data analysis. Although this setup is extremely common, it is one of the least productive ways to approach analytics. MySQL is not optimized in any way for reading large ranges of data and its support for analytic functions is weak. As there are multiple alternatives, avoid this “inexpensive” solution because you’ll be paying the price in other places eventually.
Using PostgreSQL as an OLAP layer. This is a more legitimate choice than above for starting an analytics platform because of Postgres’s solid analytic User Defined Functions (UDFs). Also, thanks to its c-store extension, PostgreSQL can be turned into a columnar database, making it an affordable alternative to commercial OLAPs.
Finally, if you are considering moving from OLTPs abused as OLAPs to “real” OLAPs like Redshift, I encourage you to learn how to use Redshift’s COPY Command so that you can start seeing your data inside Redshift.
As for your questions:
How is it possible?
It's possible due to Redshift architecture (column database) and analytical features such as:
Window functions
Data Warehouse System Architecture
Performance
Columnar Storage
Internal Architecture and System Operation
Workload Management
Aggregate functions
How would that work?
See System and Architecture Overview for a detailed explanation of the Amazon Redshift data warehouse system architecture.
(Some links are already mentioned before in this post)
Essential concept?
Am I missing any essential concept?
I'd suggest more rely on technical details of specific solution instead of marketing terms. In the end, practical tasks are not solved by software naming or marketing, but with it's real functionality.
What's really important in DB landscape - is to consider two theorems:
CAP theorem
According to Iron triangle of CAP theorem, you can choose two points of three DB architecture components:
* consistency
* availability
* persistence
PIE theorem
Rick Houlihan of Amazon had a speech on choosing the DB archotecture. In addition to the CAP theorem, he also presented PIE theorem:
The PIE theorem posits that you can choose two out of three desirable features in a data system:
Pattern Flexibility
Efficiency
Infinite Scale
And Redshift is on PI dimension of the PIE triangle
Data structure
As I understand OLAP cubes are an special data structure that exists in OLAP databases. Does he maybe mean specific pre-calculated combinations of dimensions and facts stored in a OLTP-oriented database, like Cassandra?
Both OLAP aggregated data structures and Redshift distribution styles aimed one goal: make queries faster.
Column DB, distribution, parallel queries and other features are good for analytical tasks.
UPD
In comments you asked if Cassandra can work as OLAP service.
Cassandra and S3 can be used as a storage for pre-calculated aggregated data of dimensions.
If I have a use case for both huge data storage and searchability, why would I ever choose Google Cloud Bigtable over Google Cloud Datastore?
I've seen a few questions on SO and other sides "comparing" Bigtable and Datastore, but it seems to boil down to the same non-specific answers.
Here's my current knowledge and my thoughts:
Datastore is more expensive.
In the context of this question, let's forget entirely about pricing.
Bigtable is good for huge datasets.
It seems like Datastore is, too? I'm not seeing what specifically makes Bigtable objectively superior here.
Bigtable is better than Datastore for analytics.
How? Why? It seems like I can do analytics in Datastore as well, no problem. Why is Bigtable seemingly the unanimous decision industry-wide for analytics? What value do GMail, eBay, etc. get from Bigtable that Datastore can't provide?
Bigtable is integrated with Hadoop, Spark, etc.
Is Datastore not as well, considering it's built on Bigtable?
From this question, this statement was made in an answer:
Bigtable and Datastore are extremely different. Yes, the datastore is build on top of Bigtable, but that does not make it anything like it. That is kind of like saying a car is build on top of [car] wheels, and so a car is not much different from wheels.
However, this seems analogy seems nonsensical, since the car (including the wheels) intrinsically provides more value than just the wheels of a car by themselves.
It seems at first glance that Bigtable is strictly worse than Datastore, only providing a single index and limiting quick searchability. What am I missing?
Bigtable and Datastore are optimized for slightly different use-cases, and offer different tradeoffs. The main ones are:
Data model:
Bigtable is a wide-column database -- think HBase and Cassandra
Datastore is a document database -- think MongoDB
Note that both of these can be used for key-value use cases
Cost model:
Bigtable charges per provisioned nodes
Datastore is serverless and charges per operation
In general, Bigtable is a good choice if you need:
Fast point-reads and range scans (especially at scale). Bigtable will offer lower latency for key-value lookups, as well as fast scans of contiguous rows - a powerful tool since rows are stored in lexicographic order. If you have simple, predictable query patterns and design your schema well, reading from Bigtable can be incredibly efficient.
High throughput writes (again, especially at scale). This is possible in part because Bigtable is eventually consistent - in exchange you can see big wins in price/performance.
Example use-cases that are great for Bigtable include time series data (for IoT, monitoring, and more - think extremely write heavy workloads and massive amounts of data generated over x units of time), analytics (think fraud detection, personalization, recommendations), and ad-serving (every microsecond counts).
Datastore (or Firestore) is a good choice if you need:
Query flexibility: Datastore offers document support and secondary indexes.
Strong consistency and/or transactions: Bigtable has eventually consistent replication and does not support multi-row transactions.
Mobile SDKs: Datastore and Firestore are incredibly well-integrated with firebase ecosystem.
Example use-cases include mobile and web applications, game state, user profiles, and product catalogs.
To answer a few of your questions explicitly:
Why is Bigtable used for analytics? It's mostly about performance: analytics use-cases are more likely to have large datasets and require high write throughput. It's a lot easier to run into the limits of a database if you're storing clickstream data, as opposed to something like user account information. Fast scans are also important for analytics use-cases: Bigtable allows you to retrieve all of the information you need about a user or a device extremely quickly, which you can process in a batch job or use to create recommendations and analysis on the fly.
Is Bigtable strictly worse than Datastore? Datastore definitely provides more built-in functionality like secondary indexes and document support, and if you need those features, Datastore is a fantastic choice. But that functionality comes with tradeoffs. Bigtable provides perhaps lower-level, but incredibly performant APIs that allow users to make those tradeoffs for themselves: If a user values, say, write performance over secondary indexes, Bigtable is an excellent option. You can think of it as an extremely versatile and powerful infrastructural building block. I actually like the wheel/car analogy: sometimes you don't want the car -- if what you really need is a dirt bike, a set of solid wheels is much more useful :)
Amazon said
NoSQL design requires a different mindset than RDBMS design. For an RDBMS, you can create a normalized data model without thinking about access patterns. You can then extend it later when new questions and query requirements arise. For DynamoDB, by contrast, you shouldn't start designing your schema until you know the questions it needs to answer. Understanding the business problems and the application use cases up front is absolutely essential.
It seems that I should design the tables after designing the product for efficient query cost.
But a product can be pivoted or be appended new features. In early stage, nobody knows where the product goes.
Is dynamodb suitable for growing or pivotable product?
In my opinion, the main benefit of Dynamo DB over other NoSQL solutions is that it is a managed database service. You pay for reads and writes and you never worry about scaling to handle larger data, more users. If you are doing a prototype or don't have technical know-how to setup a database server and host in the cloud it could be useful and cost effective. It has its limitations however so if you do have technical resources consider another open source NoSQL option.
I think that statement by Amazon is confusing and is probably more marketing than anything else. Use NoSQL in cases where your data is only accessed in distinct elements that do no have to be combined in a complex manner. It's also helpful if you don't have an exact schema defined because NoSQL doesn't require a hard set schema you can store any fields in a table and you can always add new fields. This is helpful when things are changing rapidly and you don't want to migrate everything as strictly as an RDBMS would require. If however you're going to have to run complex logic or calculations combining data from across tables you should use an RDBMS. You could use NoSQL for some data and and RDBMS for other data in a hybrid fashion but in that case you probably wouldn't want to use Dynamo DB because you'd want full ownership to set it up properly. Hope this helps I'm sure others have more to say and I welcome comments to help me refine my answer.
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 3 years ago.
Improve this question
I've been researching different approaches to streaming data to a real-time dashboard. One way that I have done in the past is using a star schema/dimension and fact tables. This would be an implementation of aggregate tables. For example, the dashboard would contain multiple charts, one being the total sales for the day, total sales by product, total sales by manufacturer, etc. etc.
But what if this needed to be real-time? What if the data needs to stream to these charts and do the analytical processing real-time?
I've been looking into solutions like Kinesis streams and Kafka, but I may be missing something obvious. For example, consider the following example. A company runs a website where they sell pies. The company has a backend dashboard where they keep track of all data and analytics related to sales, users, orders, etc.
Custom places order through website
The relational (mysql) database receives this new order
The charts and analytical data updates real-time on the backend, for example total sales for the day, or total sales for the year by user.
If the scenario is that this data needs to be streamed, what is the best approach to this? Aggregate tables seem like the obvious but it seems that would be periodic and not real-time. Kinesis/Kafka feels like it would fit somewhere in here. The other option would be something like Redshift but it's pretty pricey and still may not be the best way to address the issue and scale.
Here is an example of a chart that would need to be updated in real-time that could suffer by just doing place aggregate SQL queries when there are tons and tons of rows to parse.
In case of "always up-to-date" reports like this (sales, users, orders etc) that don't need live updates with near-zero-latency streaming processing might be overkill, and ROLAP-like approach seems to be more optimal in meaning of efforts/result.
You mentioned Redshift, and if you already ready to mirror your data for analytics purposes and only problem is a price you can consider another free open-source alternatives that could be used for handling OLAP (aggregate) queries in the real-time (like Yandex ClickHouse, or maybe MongoDb in some cases).
A lot of depends on the dataset size; unless you have really big data that need to be aggregated (hundreds of GB) you can try to keep using mysql and use some tricks:
use separate slave mysql server with high IOPS for analytics and replicate only tables needed to build your reports; possibly use another table engine, more suitable for analytical queries. Setup indexes specially for these queries, to avoid table full scan if you need to get numbers only for last weeks.
pre-calculate metrics for previous periods (with materialized view-like approach) and refresh them on schedule (say, daily), and then combine pre-calculated aggregates with on-the-fly aggregates only for last period to get actual report data without need to scan whole facts table each time.
use data visualization backend that can efficiently cache reports data in-memory to prevent SQL DB overload because of many similar queries (and if the same report or dashboard is displayed for 100 users SQL DB load will be the same as for 1). BTW, I develop solution like that (cannot adv it here as it is commercial product).
This is a typical trade-off for most the architects. Amazon Redshift offers exemplary read optimisations but AWS stack comes for a price. You may try using Cassandra, but it comes with its own set of challenges. When it comes to analytics, I never recommend going real time for the reasons elaborated below.
Doing analytics at real time is not desired, specially using MySQL
The solution for above comes by seggregating transactional and analytical infra. This involves cost but will make sure you don't have to spend time in housekeeping once you scale. MySQL is a row based RDBMS mostly used for storing transactional data. Being row based, it optimises writes i.e. the writes are almost real time and thus, it compromises on reads. When I say this, I refer to a typical analytics dataset running into millions of records/day. If your dataset is not that voluminous, you might still be able to render a graph showing transactional status. But since you're referring to Kafka, I assume the dataset is very large.
A real-time dashboard with visualisations gives a bad customer experience
Considering the above point, even if you go for a warehouse / a read optimised infra, you need to understand how the visualisations work. If 100 people access the dashboard at the same time, 100 connections will be made to the database, all fetching the same data, putting them in memory, applying calculations, parameters and filters defined in your dashboard, adjust the refined dataset in the visualisation and then render the dashboard. Till this time, the dashboard will simply freeze. A poorly constructed query, inefficient use of indexes etc will further make the matter worse.
The above problems will amplify more and more with the increase in your dataset. Good practices to achieve what you need would be:
To have almost realtime (delay of 1hr, 30 mins, 15 mins etc) rather than an absolute real time system. This will help you to create a flat file with the data already fetched in the memory. Your dashboard will simply read this data and will be extremely fast in terms of responses to filters etc. Also, multiple connections to databases will be avoided.
Have a data structure, database/warehouse optimised for reads.
For these types of operational analytics use-cases where the real-time nature of the data is critical, you're completely correct that most "traditional" methods can be quite clumsy, especially as your data size increases. A quick overview of your options:
Historical Approach (TLDR– Meh)
Up until about 5 years ago, the de facto way to do this looked something like
Set up a primary OLTP database that will handle the data in its raw form and have stricter guarantees on performance or ACID properties. Usually this is something SQL-esque, i.e. MySQL, PostgreSQL.
Set up a secondary OLAP database that is meant for serving offline (aka non user-facing) queries. This could also be a SQL-esque db but its schema would be drastically different because it stores the data in enriched form.
Set up some mechanism by which you can keep these 2 in sync. This pretty much boils down to either a) changing your application to always write to both databases and performing the necessary data enrichment or b) building a stand-alone application that reads from your OLTP database, performs the necessary transformations and enrichment and writes to your OLAP database
Plug your dashboard into your OLAP database which will have a schema and indexes optimized for the kind of queries you want.
Using your example about the pie store, the OLTP database would be used to store the purchases of all the pies and reference things like customer ids, billing information, delivery information, etc. In contrast, the OLAP database might just maintain a table with a schema
purchase_totals(day: Date, weekNumber: int, dayOfWeek: int, year: int, total: float)
While the weekNumber, dayOfWeek, and year and technically redundant they make your queries faster! With the proper indexes on these fields, your dashboard has turned into 5 simple (and fast!) aggregation queries with a group by and sum, and then the differences week-over-week or year-over-year can be computed on the client-side. As long as your dashboard refreshes every minute or so you have near-real-time data at your fingertips.
Current Approach (TLDR– Ok)
The recent trends in computing, database technologies, and data science/analytics have led to improvements to the above process, namely by replacing certain components of it. The changes include
Making the OLTP db, the OLAP db, or both a NoSQL database (Mongo usually being the most popular). The pro here is that you have a more flexible schema which won't break if something upstream changes (say, you start selling cakes in addition to pies).
Keeping the SQL db but shifting to cloud provider solution like AWS RDS or Google Cloud SQL. This fundamentally doesn't change anything about the architecture, but it does significantly reduce your operational burden.
Using hard-to-maintain ETL pipelines on top of streaming platforms like Kafka or AWS Kinesis to act as the middle layer between OLAP and OLTP.
Using dedicated tools for data cleaning and transformation as you plan out how to do your ETL
Using dedicated visualization tools on top of your OLAP db (think Tableau)
Using a pull-based approach for getting data out of your OLTP db or your application directly instead of waiting for it to eventually reach your OLAP db. This is helpful for online services because it actually gives you both the data you want AND confirmation that the service is alive and running well (because it just served your request for data). Systems like Prometheus are quite popular for this now.
I am building an application (using Django's ORM) that will ingest a lot of events, let's say 50/s (1-2k per msg). Initially some "real time" processing and monitoring of the events is in scope so I'll be using redis to keep some of that data to make decisions, expunging them when it makes sense. I was going to persist all of the entities, including events in Postgres for "at rest" storage for now.
In the future I will need "analytical" capability for dashboards and other features. I want to use Amazon Redshift for this. I considered just going straight for Redshift and skipping Postgres. But I also see folks say that it should play more of a passive role. Maybe I could keep a window of data in the SQL backend and archive to Redshift regularly.
My question is:
Is it even normal to use something like Redshift as a backend for web applications or does it typically play more of a passive role? If not is it realistic to think I can scale the Postgres enough for the event data to start with only that? Also if not, does the "window of data and archival" method make sense?
EDIT Here are some things I've seen before writing the post:
Some say "yes go for it" regarding the should I use Redshift for this question.
Some say "eh not performant enough for most web apps" and support the front it with a postgres database camp.
Redshift (ParAccel) is an OLAP-optimised DB, based on a fork of a very old version of PostgreSQL.
It's good at parallelised read-mostly queries across lots of data. It's bad at many small transactions, especially many small write transactions as seen in typical OLTP workloads.
You're partway in between. If you don't mind a data loss window, then you could reasonably accumulate data points and have a writer thread or two write batches of them to Redshift in decent sized transactions.
If you can't afford any data loss window and expect to be processing 50+ TPS, then don't consider using Redshift directly. The round-trip costs alone would be horrifying. Use a local database - or even a file based append-only journal that you periodically rotate. Then periodically upload new data to Redshift for analysis.
A few other good reasons you probably shouldn't use Redshift directly:
OLAP DBs with column store designs often work best with star schemas or similar structures. Such schemas are slow and inefficient for OLTP workloads as inserts and updates touch many tables, but they make querying the data along various axes for analysis much more efficient.
Using an ORM to talk to an OLAP DB is asking for trouble. ORMs are quite bad enough on OLTP-optimised DBs, with their unfortunate tendency toward n+1 SELECTs and/or wasteful chained left joins, tendency to do many small inserts instead of a few big ones, etc. This will be even worse on most OLAP-optimised DBs.
Redshift is based on a painfully old PostgreSQL with a bunch of limitations and incompatibilities. Code written for normal PostgreSQL may not work with it.
Personally I'd avoid an ORM entirely for this - I'd just accumulate data locally in an SQLite or a local PostgreSQL or something, sending multi-valued INSERTs or using PostgreSQL's COPY to load chunks of data as I received it from an in-memory buffer. Then I'd use appropriate ETL tools to periodically transform the data from the local DB and merge it with what was already on the analytics server.
Now forget everything I just said and go do some benchmarks with a simulation of your app's workload. That's the only really useful way to tell.
In addition to Redshift's slow transaction processing (by modern DB standards) there's another big challenge:
Redshift only supports serializable transaction isolation, most likely as a compromise to support ACID transactions while also optimizing for parallel OLAP mostly-read workload.
That can result in all kinds of concurrency-related failures that would not have been failures on typical DB that support read-committed isolation by default.