I have coordinates between two points on the map. There are tools for calculating distance between them, but I want to find horizontal and vertical distance between the two places. Can someone help please?
Lets say you points A(x1/y1) and B(x2/y2).
The horizontal and vertical distances between the two are the differences of their coordinates:
x12 = x2 - x1
y12 = y2 - y1
Addition:
The total distance is
d12 = sqrt(y122 + x122)
= sqrt( (y2 - y1)2 + (x2 - x1)2)
where sqrt means "Square Root"
Let's say your 2 known points A and B have latitude and longitude latA, longA and latB, longB.
Now you could introduce two additional points C and D with latC = latA, longC = longB, and latD = latB, longD = longA, so the points A, B, C, D form a rectangle on the earth's surface.
Now you can simply use distanceBetween(A, C) and distanceBetween(A, D) to get the required distances.
Copied from: https://stackoverflow.com/a/62857233/5660341
On the northern hemisphere two positions a and b would look a bit like:
a--+
/ \
/ \
+--------b
So there is a common vertical distance, but a slightly different horizontal distance.
The shortest travel would be horizontally from a (greatest and then vertical to b.
With school math and knowing the zero-height (w.r.t. sea level) ellipse going through both poles you can easily calculate the three distances.
There are sufficient sites, search for longitude, latitude, haversine formula.
There are sufficient simplifications, around, and also one point may be on the northern and the other on the southern hemisphere. And with large values it might be better to horizontally walk left from a to the +. So you have to really dive into the calculation.
I would not dare to give an actual formula here.
Related
I am currently looking to implement an algorithm that will be able to compute the arc midpoint. From here on out, I will be referring to the diagram below. What is known are the start and end nodes (A and B respectively), the center (point C) and point P which is the intersection point of the line AB and CM (I am able to find this point without knowing point M because line AB is perpendicular to line CM and thus, the slope is -1/m). I also know the arc angle and the radius of the arc. I am looking to find point M.
I have been looking at different sources. Some suggest converting coordinates to polar, computing the mid point from the polar coordinates then reverting back to Cartesian. This involves sin and cos (and arctan) which I am a little reluctant to do since trig functions take computing time.
I have been looking to directly computing point M by treating the arc as a circle and having Line CP as a line that intersects the circle at Point M. I would then get two values and the value closest to point P would be the correct intersection point. However, this method, the algebra becomes long and complex. Then I would need to create special cases for when P = C and for when the line AB is horizontal and vertical. This method is ok but I am wondering if there are any better methods out there that can compute this point that are simpler?
Also, as a side note, I will be creating this algorithm in C++.
A circumference in polar form is expressed by
x = Cx + R cos(alpha)
y = Cy + R sin(alpha)
Where alpha is the angle from center C to point x,y. The goal now is how to get alpha without trigonometry.
The arc-midpoint M, the point S in the middle of the segment AB, and your already-calculated point P, all of them have the same alpha, they are on the same line from C.
Let's get vector vx,vy as C to S. Also calculate its length:
vx = Sx - Cx = (Ax + Bx)/2 - Cx
vy = Sy - Cy = (Ay + By)/2 - Cy
leV = sqrt(vx * vx + vy * vy)
I prefer S to P because we can avoid some issues like infinite CP slope or sign to apply to slope (towards M or its inverse).
By defintions of sin and cos we know that:
sin(alpha) = vy / leV
cos(alpha) = vx / leV
and finally we get
Mx = Cx + R * vx / leV
My = Cy + R * vy / leV
Note: To calculate Ryou need another sqrt function, which is not quick, but it's faster than sin or cos.
For better accuracy use the average of Ra= dist(AC) and Rb= dist(BC)
I would then get two values
This is algebraically unavoidable.
and the value closest to point P would be the correct intersection point.
Only if the arc covers less than 180°.
Then I would need to create special cases for when P = C
This is indeed the most tricky case. If A, B, C lie on a line, you don't know which arc is the arc, and won't be able to answer the question. Unless you have some additional information to start with, e.g. know that the arc goes from A to B in a counter-clockwise direction. In this case, you know the orientation of the triangle ABM and can use that to decide which solition to pick, instead of using the distance.
and for when the line AB is horizontal and vertical
Express a line as ax + by + c = 0 and you can treat all slopes the same. THese are homogeneous coordinates of the line, you can compute them e.g. using the cross product (a, b, c) = (Ax, Ay, 1) × (Bx, By, 1). But more detailed questions on how best to compute these lines or intersect it with the circle should probably go to the Math Stack Exchange.
if there are any better methods out there that can compute this point that are simpler?
Projective geometry and homogeneous coordinates can avoid a lot of nasty corner cases, like circles of infinite radius (also known as lines) or the intersection of parallel lines. But the problem of deciding between two solutions remains, so it probably doesn't make things as simple as you'd like them to be.
Imagine that we cut a piece of pie with known fixed height (H). We cut it in such a way that the upper arc has angle A1 and the bottom arc has angle A2. However, we also know that the upper arc has two radii (R1 and R2) and the bottom arc has two different radii (R3 and R4). These four radii are not connected anyhow to each other (might be elliptic axis, but might be total random).
Technically, if not thinking about pies, we have two polygons (with the same number of points), with mass centers a bit different from each other. Taking two points from the upper polygon, we assume they form a local elliptic arc with two radii and angle A1. (The other arc from the same polygon will most likely have different radii values and angle).
We can take two points from the lower polygon which will correspond to the two points of the upper polygon (typically, using index values) and form the lower local elliptic arc with another angle and radii values.
Thus the question is how to calculate the volume of this piece? Again, two upper radii (R1 and R2), two bottom radii (R3 and R4), fixed height (H) and two angles (A1 and A2). Note: the centers of the upper and bottom parts (essentially, polygons) might be different.
Thanks in advance for help
This approximation might help (assuming A1, A2 to be given in radians):
area of top "sector" A_top ~ (R1 + R2) * A1 / 4
area of bottom "sector" A_bot ~ (R3 + R4) * A2 / 4
volume of piece of pie V ~ (A_top + A_bot) * H / 2
In a geodetic coordinate system (wgs84), i have a pair of (latitude,longitude) say (45,50) and (60,20). Also i am said that a new pair of latitude,longitude lies along the line joining these two and at an offset of say 0.1 deg lat from (45,50) i.e. (45.1, x). How do i find this new point? What i tried was to apply the straight line equation
y = mx+c
m = (lat1 - lat2)/ long1-long2)
c = lat1 - m * long1
but that seemed to give wrong results.
Your problem is the calculation of m. You have turned it around!
The normal formula is:
a = (y1 - y2) / (x1 - x2)
so in your case it is:
m = (long2 -long1) / (lat1 - lat2)
so you'll get m = -2
And you also turned the calculation of c around.
Normal is:
b = y1 - a * x1
so you should do:
c = long1 - m * lat1
So you'll get c = 140.
The formula is:
long = -2 * lat + 140
Another way to think about it is given below. The result is the same, of cause.
The surface-line between two coordinates is not a straight line. It is a line drawn on the surface of a round object, i.e. earth. It will be a circle around the earth.
However all coordinates on that line will still go through a straight line.
That is because the coordinate represents the angles of a vector from center of earth to the point you are looking at. The two angles are compared to Equator (latitude) and compared to Greenwich (longitude).
So you need to setup a formula describing all coordinates for that line.
In your case the latitude goes from 45 to 60, i.e. increases by 15.
Your longitude goes from 50 to 20, i.e. decreses by 30.
So your formula will be:
(lat(t), long(t)) = (45, 50) + (15*t, -30*t) for t in [0:1]
Now you can calculate the value of t that will hit (45.1, x) and afterwards you can calculate x.
The equations you use describe a straight line in an 2D cartesian coordinate system.
Longitude and latitude describe a point in a spherical coordinate system.
A spherical coordinate system is not cartesian.
A similar question was answered here.
This is quite complicated to explain, so I will do my best, sorry if there is anything I missed out, let me know and I will rectify it.
My question is, I have been tasked to draw this shape,
(source: learnersdictionary.com)
This is to be done using C++ to write code that will calculate the points on this shape.
Important details.
User Input - Centre Point (X, Y), number of points to be shown, Font Size (influences radius)
Output - List of co-ordinates on the shape.
The overall aim once I have the points is to put them into a graph on Excel and it will hopefully draw it for me, at the user inputted size!
I know that the maximum Radius is 165mm and the minimum is 35mm. I have decided that my base Font Size shall be 20. I then did some thinking and came up with the equation.
Radius = (Chosen Font Size/20)*130. This is just an estimation, I realise it probably not right, but I thought it could work at least as a template.
I then decided that I should create two different circles, with two different centre points, then link them together to create the shape. I thought that the INSIDE line will have to have a larger Radius and a centre point further along the X-Axis (Y staying constant), as then it could cut into the outside line.
So I defined 2nd Centre point as (X+4, Y). (Again, just estimation, thought it doesn't really matter how far apart they are).
I then decided Radius 2 = (Chosen Font Size/20)*165 (max radius)
So, I have my 2 Radii, and two centre points.
Now to calculate the points on the circles, I am really struggling. I decided the best way to do it would be to create an increment (here is template)
for(int i=0; i<=n; i++) //where 'n' is users chosen number of points
{
//Equation for X point
//Equation for Y Point
cout<<"("<<X<<","<<Y<<")"<<endl;
}
Now, for the life of me, I cannot figure out an equation to calculate the points. I have found equations that involve angles, but as I do not have any, I'm struggling.
I am, in essence, trying to calculate Point 'P' here, except all the way round the circle.
(source: tutorvista.com)
Another point I am thinking may be a problem is imposing limits on the values calculated to only display the values that are on the shape.? Not sure how to chose limits exactly other than to make the outside line a full Half Circle so I have a maximum radius?
So. Does anyone have any hints/tips/links they can share with me on how to proceed exactly?
Thanks again, any problems with the question, sorry will do my best to rectify if you let me know.
Cheers
UPDATE;
R1 = (Font/20)*130;
R2 = (Font/20)*165;
for(X1=0; X1<=n; X1++)
{
Y1 = ((2*Y)+(pow(((4*((pow((X1-X), 2)))+(pow(R1, 2)))), 0.5)))/2;
Y2 = ((2*Y)-(pow(((4*((pow((X1-X), 2)))+(pow(R1, 2)))), 0.5)))/2;
cout<<"("<<X1<<","<<Y1<<")";
cout<<"("<<X1<<","<<Y2<<")";
}
Opinion?
As per Code-Guru's comments on the question, the inner circle looks more like a half circle than the outer. Use the equation in Code-Guru's answer to calculate the points for the inner circle. Then, have a look at this question for how to calculate the radius of a circle which intersects your circle, given the distance (which you can set arbitrarily) and the points of intersection (which you know, because it's a half circle). From this you can draw the outer arc for any given distance, and all you need to do is vary the distance until you produce a shape that you're happy with.
This question may help you to apply Code-Guru's equation.
The equation of a circle is
(x - h)^2 + (y - k)^2 = r^2
With a little bit of algebra, you can iterate x over the range from h to h+r incrementing by some appropriate delta and calculate the two corresponding values of y. This will draw a complete circle.
The next step is to find the x-coordinate for the intersection of the two circles (assuming that the moon shape is defined by two appropriate circles). Again, some algebra and a pencil and paper will help.
More details:
To draw a circle without using polar coordinates and trig, you can do something like this:
for x in h-r to h+r increment by delta
calculate both y coordinates
To calculate the y-coordinates, you need to solve the equation of a circle for y. The easiest way to do this is to transform it into a quadratic equation of the form A*y^2+B*y+C=0 and use the quadratic equation:
(x - h)^2 + (y - k)^2 = r^2
(x - h)^2 + (y - k)^2 - r^2 = 0
(y^2 - 2*k*y + k^2) + (x - h)^2 - r^2 = 0
y^2 - 2*k*y + (k^2 + (x - h)^2 - r^2) = 0
So we have
A = 1
B = -2*k
C = k^2 + (x - h)^2 - r^2
Now plug these into the quadratic equation and chug out the two y-values for each x value in the for loop. (Most likely, you will want to do the calculations in a separate function -- or functions.)
As you can see this is pretty messy. Doing this with trigonometry and angles will be much cleaner.
More thoughts:
Even though there are no angles in the user input described in the question, there is no intrinsic reason why you cannot use them during calculations (unless you have a specific requirement otherwise, say because your teacher told you not to). With that said, using polar coordinates makes this much easier. For a complete circle you can do something like this:
for theta = 0 to 2*PI increment by delta
x = r * cos(theta)
y = r * sin(theta)
To draw an arc, rather than a full circle, you simply change the limits for theta in the for loop. For example, the left-half of the circle goes from PI/2 to 3*PI/2.
I calculated the histogram(a simple 1d array) for an 3D grayscale Image.
Now I would like to calculate the gradient for the this histogram at each point. So this would actually mean I have to calculate the gradient for a 1D function at certain points. However I do not have a function. So how can I calculate it with concrete x and y values?
For the sake of simplicity could you probably explain this to me on an example histogram - for example with the following values (x is the intensity, and y the frequency of this intensity):
x1 = 1; y1 = 3
x2 = 2; y2 = 6
x3 = 3; y3 = 8
x4 = 4; y4 = 5
x5 = 5; y5 = 9
x6 = 6; y6 = 12
x7 = 7; y7 = 5
x8 = 8; y8 = 3
x9 = 9; y9 = 5
x10 = 10; y10 = 2
I know that this is also a math problem, but since I need to solve it in c++ I though you could help me here.
Thank you for your advice
Marc
I think you can calculate your gradient using the same approach used in image border detection (which is a gradient calculus). If your histogram is in a vector you can calculate an approximation of the gradient as*:
for each point in the histogram compute
gradient[x] = (hist[x+1] - hist[x])
This is a very simple way to do it, but I'm not sure if is the most accurate.
approximation because you are working with discrete data instead of continuous
Edited:
Other operators will may emphasize small differences (small gradients will became more emphasized). Roberts algorithm derives from the derivative calculus:
lim delta -> 0 = f(x + delta) - f(x) / delta
delta tends infinitely to 0 (in order to avoid 0 division) but is never zero. As in computer's memory this is impossible, the smallest we can get of delta is 1 (because 1 is the smallest distance from to points in an image (or histogram)).
Substituting
lim delta -> 0 to lim delta -> 1
we get
f(x + 1) - f(x) / 1 = f(x + 1) - f(x) => vet[x+1] - vet[x]
Two generally approaches here:
a discrete approximation to the derivative
take the real derivative of a fitted function
In the first case try:
g = (y_(i+1) - y_(i-1))/2*dx
at all the points except the ends, or one of
g_left-end = (y_(i+1) - y_i)/dx
g_right-end = (y_i - y_(i-1))/dx
where dx is the spacing between x points. (Unlike the equally correct definition Andres suggested, this one is symmetric. Whether it matters or not depends on you use case.)
In the second case, fit a spline to your data[*], and ask the spline library the derivative at the point you want.
[*] Use a library! Do not implement this yourself unless this is a learning project. I'd use ROOT because I already have it on my machine, but it is a pretty heavy package just to get a spline...
Finally, if you data is noisy, you ma want to smooth it before doing slope detection. That was you avoid chasing the noise, and only look at large scale slopes.
Take some squared paper and draw on it your histogram. Draw also vertical and horizontal axes through the 0,0 point of your histogram.
Take a straight edge and, at each point you are interested in, rotate the straight edge until it accords with your idea of what the gradient at that point is. It is most important that you do this, your definition of gradient is the one you want.
Once the straight edge is at the angle you desire draw a line at that angle.
Drop perpendiculars from any 2 points on the line you just drew. It will be easier to take the following step if the horizontal distance between the 2 points you choose is about 25% or more of the width of your histogram. From the same 2 points draw horizontal lines to intersect the vertical axis of your histogram.
Your lines now define an x-distance and a y-distance, ie the length of the horizontal/ vertical (respectively) axes marked out by their intersections with the perpendiculars/horizontal lines. The gradient you want is the y-distance divided by the x-distance.
Now, to translate this into code is very straightforward, apart from step 2. You have to define what the criteria are for determining what the gradient at any point on the histogram is. Simple choices include:
a) at each point, set down your straight edge to pass through the point and the next one to its right;
b) at each point, set down your straight edge to pass through the point and the next one to its left;
c) at each point, set down your straight edge to pass through the point to the left and the point to the right.
You may want to investigate more complex choices such as fitting a curve (such as a quadratic or higher-order polynomial) through a number of points on your histogram and using the derivative of that to represent the gradient.
Until you understand the question on paper avoid coding in C++ or anything else. Once you do understand it, coding should be trivial.