Fortran: How to make multiple procedures share the same procedure interface - fortran

I have a code that looks like
subroutine sub1(f)
interface
function f(x)
(description of f)
end function f
end interface
(do something with f)
end subroutine sub1
subroutine sub2(f)
interface
function f(x)
(description of f)
end function f
end interface
(do something with f)
end subroutine sub2
However, the two subroutines sub1 and sub2 both use identical interfaces for the dummy function f. How do I make these two procedures share the same interface (e.g. using a module)? Do I have to use procedure pointers?

You can define such reusable "function types" as abstract interfaces in modules:
module m
implicit none
abstract interface
function der(x,y) result(yDot)
real, intent(in) :: x, y
real :: yDot
end function
end interface
end module
subroutine integrateEuler(derY,x0,xf,y)
use m
real, intent(in) :: x0, xf
real, intent(inout) :: y
procedure(der) :: derY
! code here
end subroutine
subroutine integrateRKF45(derY,x0,xf,y)
use m
real, intent(in) :: x0, xf
real, intent(inout) :: y
procedure(der) :: derY
! code here
end subroutine
Using function pointers is not necessary, but you can declare them in the same way: procedure(der), pointer :: funPtr => myFun

Related

Best way to generate a variable type fortran array (each element can be a different type)

Following a previous question I had (Fortran TYPE inheritance on runtime (declared by user)), I am using a factory method to generate an array of different types. Below is a simplified version of what I'm doing,
module multiarray
use iso_fortran_env, only: real64
implicit none
integer, parameter :: dp = real64
! abstract list type
type, abstract :: list
contains
procedure(in), deferred, pass(self) :: addval ! add a variable
procedure(out), deferred, pass(self) :: getval ! extract variable
end type
abstract interface
subroutine in(self,val)
import :: list
implicit none
class(list), intent(inout) :: self
class(*), intent(in) :: val
end subroutine
subroutine out(self,val)
import :: list
implicit none
class(list), intent(in) :: self
class(*), intent(out) :: val
end subroutine
end interface
! real(dp) element extension
type, extends(list) :: real_num
real(dp) :: var
contains
procedure, pass(self) :: addval => addreal
procedure, pass(self) :: getval => getreal
end type
! similar for character, logical, etc types
...
! wrapper
type wrapper
class(list), ALLOCATABLE :: arg
end type
contains
! real(dp) subroutines
subroutine addreal(self,val)
implicit none
class(real_num), intent(inout) :: self
class(*), intent(in) :: val
select type(val)
type is (real(dp))
self%var = val
end select
end subroutine
subroutine getreal(self,val)
implicit none
class(real_num), intent(in) :: self
class(*), intent(out) :: val
select type(val)
type is (real(dp))
val = self%var
end select
end subroutine
! similar for character, logical, etc types
...
! factory method
function get_list(val) result(pt)
class(*), intent(in) :: val
class(list), allocatable :: pt
select type(val)
type is (real(dp))
allocate(real_num :: pt)
type is (character(*))
...
end select
end function
end module
I use the wrapper type to generate an allocatable array of type list
type(wrapper) :: A(5)
real(dp) :: x
A(1)%arg = get_list(90.d0) ! Set A(1) as type real
call A(1)%arg%addval(90.d0) ! A(1) is a real of value 90
call A(1)%arg%getval(x) ! set x = A(1) to use elsewhere
The variable var is defined as a generic class in the abstract interface, it can be of real, character, logical, etc type. I then use a select type construct to match the addval=>addreal subroutine argument since var is of type class(*) in the abstract interface.
Is there a way to define an interface inside the abstract interface (nested), in a way that I don't need to have the select type in addreal (since I already know it's input needs to be a real type)? Or is there a better way, simpler way, to achieve what I'm trying to do with the variable type array? Thanks!
I think you don't want to have both class(*) inputs and an abstract base class. I think you want to have either one:
a non-polymorphic container class that can contain any (class(*)) element types, for example, a key-value pair in a dictionary;
a polymorphic container class if a limited set of types should later have a shared API.
In your case it seems you want maximum flexibility, I would vote for having a unique container class and making usage of class(*), like in the following example I've just made up:
! FP 2022-07-25
module myList
use iso_fortran_env
implicit none
type, public :: listElement
class(*), allocatable :: x
contains
procedure :: set
procedure :: get_any
procedure :: get_typed
procedure, private :: print
generic :: write(formatted) => print
end type listElement
contains
! Map accepted types
elemental logical function isAccepted(val)
class(*), intent(in) :: val
select type (input=>val)
type is (real(real32)); isAccepted = .true.
type is (character(*)); isAccepted = .true.
class default; isAccepted = .false.
end select
end function isAccepted
! Print value
subroutine print(this, unit, iotype, v_list, iostat, iomsg)
class(listElement), intent(in) :: this
integer, intent(in) :: unit
character(*), intent(in) :: iotype
integer, intent(in) :: v_list(:)
integer, intent(out) :: iostat
character(*), intent(inout) :: iomsg
if (.not.allocated(this%x)) then
write(unit,*,iostat=iostat) 'null'
else
select type (myVar => this%x)
type is (real(real32)); write(unit,*,iostat=iostat) myVar
type is (character(*)); write(unit,*,iostat=iostat) myVar
class default; write(unit,*,iostat=iostat) "ERROR"
end select
endif
end subroutine print
subroutine set(this,val)
class(listElement), intent(inout) :: this
class(*), intent(in) :: val
integer :: ierr
deallocate(this%x,stat=ierr) ! force deallocate
allocate(this%x,source=val)
end subroutine set
! Can be anything, but "val" must be declared "class(*), allocatable"
subroutine get_any(this,val)
class(listElement), intent(in) :: this
class(*), intent(out), allocatable :: val
allocate(val,source=this%x)
end subroutine get_any
subroutine get_typed(this,val)
class(listElement), intent(in) :: this
class(*), intent(out) :: val ! has a type that can't change
if (.not.isAccepted(val)) stop ' trying to return value to a class thats not supported '
if (.not.allocated(this%x)) return ! will return garbage
select type (outVal => val)
type is (real(real32));
select type (thisVal => this%x)
type is (real(real32)); outVal = thisVal
type is (real(real64)); outVal = real(thisVal,real32)
class default; stop 'error trying to convert list element to real32'
end select
type is (character(*));
select type (thisVal => this%x)
type is (character(*)); outVal = trim(thisVal)
class default; stop 'error trying to convert list element to character'
end select
class default
stop 'trying to return value to a class thats not accepted '
end select
end subroutine get_typed
end module myList
program tryList
use myList
implicit none
type(listElement) :: A(5)
integer :: i
character(255) myChar
real(real32) :: r32
real(real64) :: r64
call A(1)%set(123.45)
call A(2)%set("hello world!")
call A(3)%set(123.45d0)
do i=1,3
print *, 'A(',i,')=',A(i)
end do
call A(1)%get_typed(r64); print *, 'r64=',r64
call A(1)%get_typed(r32); print *, 'r32=',r32
call A(2)%get_typed(myChar); print *, 'myChar=',myChar
call A(2)%get_typed(r32) ! stop on error
end program
Notice that:
In general, this should work with any variables (class(*)), but if you want to use the fully polymorphic interface, the input variable must be defined as class(*), allocatable anywhere else, so, not exactly handy.
You want to have some helper routines and/or an enumerator type that help you map/handle all types you want to be contained, this example is just a stub.

Number of subscripts is incorrect - Fortran [duplicate]

I have function that returns an array, say
function f(A)
implicit none
real, intent(in) :: A(5)
real, intent(out) :: f(5)
f = A+1
end
My question is, how can I define f in the main program unit? E.g.
program main
implicit none
real :: A(5)
real, dimension(5), external :: f ! does not work
...
end
You need an explicit interface. You can do this in a few ways.
Explicitly in the scoping unit that calls f:
interface
function f(A)
implicit none
real, intent(in) :: A(5)
real :: f(5)
end function
end interface
Place the function in your program host scope as an internal function:
program main
...
contains
function f(A)
implicit none
real, intent(in) :: A(5)
real :: f(5)
f = A+1
end
end program
Place the function in a module:
module A
contains
function f(A)
implicit none
real, intent(in) :: A(5)
real :: f(5)
f = A+1
end
end module
program main
use A
...
end program
Use the explicit interface from a different procedure with the same arguments and return type, kind and rank.
program main
interface
function r5i_r5o(r5)
implicit none
real, intent(in) :: r5(5)
real :: r5i_r5o(5)
end function
end interface
procedure(r5i_r5o) :: f
...
end program
function f(A)
implicit none
real, intent(in) :: A(5)
real :: f(5)
f = A+1
end
The cleanest way of doing this is option #3 using modules. This gives you the benefit of an automatic explicit interface (not needing to do option #1 everywhere you call f) and makes your function available everywhere the module is used rather than limited to a specific scoping unit as in option #2. Option #4 can be handy if you have many procedures with the same argument and return types since one explicit interface can be re-used for all of them.
This shows three different ways to specify function results, and how to use modules to organize your functions:
module so_func
INTEGER, PARAMETER :: MAX_SIZE = 5
TYPE MY_DATA
INTEGER :: SIZE
REAL, DIMENSION(MAX_SIZE) :: DATA
ENDTYPE
contains
FUNCTION f1(A,N) RESULT(X)
implicit none
INTEGER, INTENT(IN) :: N
REAL, INTENT(IN) :: A(N)
REAL :: X(N)
! ....
X = 1.0+A
END FUNCTION f1
TYPE(MY_DATA) FUNCTION f2(A,N)
implicit none
INTEGER, INTENT(IN) :: N
REAL, INTENT(IN) :: A(N)
! ....
f2%SIZE = N
f2%DATA(1:N) = 1.0+A
END FUNCTION f2
FUNCTION f3(A,N)
implicit none
INTEGER, INTENT(IN) :: N
REAL, INTENT(IN) :: A(N)
REAL :: f3(N)
! ....
f3 = 1.0+A
END FUNCTION f3
end module
program SO_RESULT
use so_func
implicit none
integer, parameter :: n=5
REAL :: A(n), y1(n), y3(n)
TYPE(MY_DATA) :: y2
INTEGER :: i
! Variables
A =(/ (i, i=1,n) /)
y1 = f1(A,n)
y2 = f2(A,n)
y3 = f3(A,n)
end program SO_RESULT

Type bound procedure as arguments

I want to pass a type bound procedures (as an external function) to another function as follows:
module mod1
implicit none
type type1
real :: a
contains
procedure,pass :: f
end type
contains
real function f(y,e)
class(type1), intent(in) :: y
real,intent(in) :: e
f=y%a+e
end function
end module
program test
use mod1
type(type1) :: t
t%a=3e0
write(*,*) s(t%f)
contains
real function s(g)
real,external :: g
s=g(5e0)+2e0
end function
end program
gfortran produces gives this error :
write(*,*) s(t%f)
1
Error: Expected argument list at (1)
But what I can do is:
program test
t%a=3e0
write(*,*) s(k)
contains
real function s(g)
real,external :: g
s=g(5e0)+2e0
end function
real function k(e)
real,intent(in) :: e
k=3e0+e
end function
end program
I think the problem is related to Passing type bound procedures as arguments, but I don't see at the moment how the answers there can help me.
EDIT:
A better example which (hopefully) shows the difficulty:
module mod2
implicit none
contains
real function s(g)
interface
real function g(x)
real, intent(in) :: x
end function
end interface
s=g(5e0)+2e0
end function
end module
module mod1
use mod2
type type1
real :: a
contains
procedure,pass :: f
procedure,pass :: h
end type
contains
real function f(y,e)
class(type1), intent(in) :: y
real,intent(in) :: e
f=y%a+e
end function
real function h(y)
class(type1), intent(inout) :: y
h=s(y%f)
end function
end module
program test
use mod1
type(type1) :: t
t%a=3e0
write(*,*) t%h
end program
EDIT II:
Ok, the wrappers still work in combination with a pointer:
module mod2
implicit none
contains
real function s(g)
interface
real function g(x)
real, intent(in) :: x
end function
end interface
s=g(5e0)+2e0
end function
end module
module mod1
use mod2
type type1
real :: a
contains
procedure,pass :: f
procedure,pass :: h
end type
class(type1),pointer :: help_w
contains
real function f(y,e)
class(type1), intent(in) :: y
real,intent(in) :: e
f=y%a+e
end function
real function h(y)
class(type1), intent(inout),target :: y
help_w => y
h=s(wrap)
end function
function wrap(x)
real,intent(in) :: x
wrap=help_w%f(x)
end function
end module
program test
use mod1
type(type1) :: t
t%a=3e0
write(*,*) t%h()
end program
This is certainly not a beautiful solution but at least it works.
You can write a wrapper. This is the most straightforward version. Requires passing internal function as a dummy argument (F2008), but you could declare the wrapper in a module too, if the t can bee there.
Note I changed the declaration of the procedure argument in s to something more modern - the interface block.
program test
use mod1
type(type1) :: t
t%a=3e0
write(*,*) s(wrap)
contains
real function s(g)
interface
real function g(x)
real, intent(in) :: x
end function
end interface
s=g(5e0)+2e0
end function
function wrap(x)
real, intent(in) :: x
wrap = t%f(x)
end function
end program
The reason for your error is well described in the answers to the linked question, you cannot pass type bound procedures the way you tried.

Optional subroutines in Fortran 90

How can I achieve this objective in fortran 90 ? I have a routine accepting a function
subroutine foo(bar, mysub)
integer, intent(in) :: bar
interface
subroutine mysub(x)
integer :: x
end subroutine
end interface
call mysub(bar)
end subroutine
Now I want the routine to be optional
subroutine foo(bar, mysub)
integer, intent(in) :: bar
interface
subroutine mysub(x)
integer :: x
end subroutine
end interface
optional :: mysub
call mysub(bar)
end subroutine
Now, if mysub were a standard variable var I could do something like
if (present(var)) then
l_var = var
else
l_var = <default value>
endif
but as far as I know, I cannot perform the same for an optional subroutine. In practice this is not possible
subroutine foo(bar, mysub)
integer, intent(in) :: bar
interface
subroutine mysub(x)
integer :: x
end subroutine
end interface
optional :: mysub
if (present(mysub)) then
l_mysub = mysub
else
l_mysub = default
endif
call mysub(bar)
end subroutine
because you cannot declare l_mysub. Is it possible through some trick I am not aware of ? Yes, of course I can do
if (present(mysub)) then
call mysub(bar)
else
call default(bar)
endif
but my case is more complex and I would have to put this check everywhere. Consider that I have three optional subroutines I may pass.
My first thought was to use a procedure pointer, but then I noticed you specified fortran 90, so that's not an option.
How about making a wrapper subroutine for your original foo, which calls it with the given subroutine if it is specified, or else with default? Something like this (untested):
subroutine foo_wrap(bar, mysub)
integer, intent(in) :: bar
interface
subroutine mysub(x)
integer :: x
end subroutine mysub
end interface
optional :: mysub
if (present(mysub)) then
call foo(bar, mysub)
else
call foo(bar, default)
endif
end subroutine foo_wrap
With multiple optional subroutines it might become a little complex, but not impossible, I think.

Store a "pointer to function" in Fortran?

In Fortran, you can pass a function/subroutine A as an argument to another function/subroutine B, but can you store A for later retrieval and use?
for example, this is allowed in C
int foo(float, char, char) { /*whatever*/};
int (*pointerToFunction)(float, char, char);
pointerToFunction = foo;
In Fortran you can pass a subroutine as an argument
subroutine foo
! whatever
end subroutine foo
subroutine bar(func)
call func
end subroutine bar
program x
call bar(foo)
end program
but how can you store the address of foo in a similar way to C ?
Starting from so-called "Fortran 2003" (ISO/IEC 1539-2004) procedure pointers is a part of the Fortran language. It's definitely of the major new features of Fortran language.
Usage example from Fortran Wiki.
Stefano, you mentioned strategy design pattern. In Fortran 2003 you can use pure OOP way to implement it (without procedure pointers). Offhand example:
strategies.f90
module strategies
implicit none
private
public :: strategies_transportation_strategy, &
strategies_by_taxi_strategy, &
strategies_by_bus_strategy
type, abstract :: strategies_transportation_strategy
contains
procedure(transportation_strategy_go), deferred :: go
end type strategies_transportation_strategy
type, extends(strategies_transportation_strategy) :: strategies_by_taxi_strategy
contains
procedure :: go => strategies_by_taxi_strategy_go
end type strategies_by_taxi_strategy
type, extends(strategies_transportation_strategy) :: strategies_by_bus_strategy
contains
procedure :: go => strategies_by_bus_strategy_go
end type strategies_by_bus_strategy
abstract interface
subroutine transportation_strategy_go(this)
import strategies_transportation_strategy
class(strategies_transportation_strategy), intent(in) :: this
end subroutine transportation_strategy_go
end interface
contains
subroutine strategies_by_taxi_strategy_go(this)
class(strategies_by_taxi_strategy), intent(in) :: this
print *, "We are using taxi."
end subroutine strategies_by_taxi_strategy_go
subroutine strategies_by_bus_strategy_go(this)
class(strategies_by_bus_strategy), intent(in) :: this
print *, "We are using public transport."
end subroutine strategies_by_bus_strategy_go
end module strategies
vehicles.f90
module vehicles
use strategies
implicit none
private
public :: vehicles_vehicle, &
vehicles_taxi, &
vehicles_bus
type, abstract :: vehicles_vehicle
private
class(strategies_transportation_strategy), allocatable :: transportation_strategy
contains
procedure :: set_transportation_strategy => vehicle_set_transportation_strategy
procedure :: go => vehicle_go
end type vehicles_vehicle
type, extends(vehicles_vehicle) :: vehicles_taxi
contains
procedure :: init => taxi_init
end type vehicles_taxi
type, extends(vehicles_vehicle) :: vehicles_bus
contains
procedure :: init => bus_init
end type vehicles_bus
contains
subroutine vehicle_go(this)
class(vehicles_vehicle), intent(in) :: this
call this%transportation_strategy%go()
end subroutine vehicle_go
subroutine vehicle_set_transportation_strategy(this, new_transportation_strategy)
class(vehicles_vehicle), intent(inout) :: this
class(strategies_transportation_strategy), intent(in) :: new_transportation_strategy
if (allocated(this%transportation_strategy)) then
deallocate (this%transportation_strategy)
end if
allocate (this%transportation_strategy, source=new_transportation_strategy)
end subroutine vehicle_set_transportation_strategy
subroutine taxi_init(this)
class(vehicles_taxi), intent(out) :: this
type(strategies_by_taxi_strategy) :: by_taxi_strategy
call this%set_transportation_strategy(by_taxi_strategy)
end subroutine taxi_init
subroutine bus_init(this)
class(vehicles_bus), intent(out) :: this
type(strategies_by_bus_strategy) :: by_bus_strategy
call this%set_transportation_strategy(by_bus_strategy)
end subroutine bus_init
end module vehicles
main.f90
program main
use vehicles
implicit none
type(vehicles_taxi) :: taxi
type(vehicles_bus) :: bus
call taxi%init()
call bus%init()
call taxi%go()
call bus%go()
end program main
At least works using gfortran 4.6 (20100925).
The following codes demonstrate how to use procedure pointers:
module my_mod
implicit none
contains
subroutine sub1()
write(*,*) 'the first suboutine is being used'
end subroutine sub1
subroutine sub2()
write(*,*) 'the second subroutine is being used'
end subroutine sub2
end module my_mod
program procTest
use my_mod
implicit none
integer :: n
procedure(sub1), pointer:: funPointer => NULL()
write(*,'(A)') "Please enter your option"
read(*,*) n
select case( n )
case( 1 )
funPointer => sub1
case( 2 )
funPointer => sub2
case DEFAULT
funPointer => sub1
end select
call funPointer()
end program procTest