using a method declared pure virtual in derived classes [duplicate] - c++

This question already has answers here:
Pure virtual function with implementation
(10 answers)
Closed 7 years ago.
I am working with a code and I saw something odd, a method of a class "MyClass" let's call it X() :
virtual void X() = 0;
So MyClass is an abstract class and in MyClass.cpp X() has a proper implementation...
In derived classes of MyClass, this method is called via MyClass::X();
I thought that = 0 would invalidate its implementation... but it's not the case and it is, in fact, usable in derived classes.
Can you please tell what the compiler really do when he encounters = 0 ?

From the standard (9.2 Class members [class.mem]):
= 0 is the pure-specifier
It tells that compiler that:
the class is abstract
the method will be defined outside the class definition
(usually in a derived class)
Example 1 (build fails)
If I understand your question correctly, you have something like that:
class MyClass {
public:
virtual void X() = 0;
};
class MyDerivedClass : MyClass {
public:
virtual void X();
};
void MyDerivedClass::X() { MyClass::X(); }
int main()
{
MyDerivedClass mdc;
mdc.X();
return 0;
}
If so, the build should fail with:
Error:
undefined reference to 'MyClass::X()'
Example 2 (build succeeds)
However, even if the method MyClass::X() is declared as pure virtual,
you can provide a definition. The following would work. The class MyClass
is still abstract, but you can call the method MyClass::X().
#include <iostream>
class MyClass {
public:
virtual void X() = 0; // pure virtual method
};
class MyDerivedClass : MyClass {
public:
virtual void X();
};
void MyClass::X() { // pure virtual method definition
std::cout << "MyClass::X()" << std::endl;
}
void MyDerivedClass::X() {
MyClass::X();
std::cout << "MyDerivedClass::X()" << std::endl;
}
int main()
{
MyDerivedClass mdc;
mdc.X();
return 0;
}
Output:
MyClass::X()
MyDerivedClass::X()

The =0 thing tells the compiler two things:
A regular out-of-class function definition is not required (though allowed). If there is no such definition, and the function is actually called, this is a runtine error.
The class is abstract and cannot be instantiated, whether a definition from point 1 is present or not. Attempts to do so should be flagged as compile time errors. Derived classes that don't override the function are abstract too.

You could not create instance of class with pure virtual methods, but in some cases you can call pure virtual methods, and it will be an error

I think the compiler creates a vtable with NULL pointers for pure virtual methods.

Related

What are the advantages of having a definition of pure virtual method In C++? [duplicate]

I did a simple test today:
struct C{virtual void f()=0;};
void C::f(){printf("weird\n");}
The program is OK, but is weird to me, when we use =0 it means the function body should be defined in the inherited classes, but it seems I can still give it implementation function.
I tried both GCC and VC, both OK. So it seems to me this should be part of C++ standard.
But why this is not a syntax error?
A reason I could think of is like C# having both 'interface' and 'abstract' keywords, interface can't have an implementation, while abstract could have some implementations.
Is this the case for my confusion, that C++ should support such a kind of weird syntax?
C++ Supports pure virtual functions with an implementation so class designers can force derived classes to override the function to add specific details , but still provide a useful default implementation that they can use as a common base.
Classic example:
class PersonBase
{
private:
string name;
public:
PersonBase(string nameIn) : name(nameIn) {}
virtual void printDetails() = 0
{
std::cout << "Person name " << name << endl;
}
};
class Student : public PersonBase
{
private:
int studentId;
public:
Student(string nameIn, int idIn) : PersonBase(nameIn), studentId(idIn) { }
virtual void printDetails()
{
PersonBase::printDetails(); // call base class function to prevent duplication
std::cout << "StudentID " << studentId << endl;
}
};
Others mentioned language consistency with the destructor, so I'll go for a software engineering stand-point:
It's because the class you are defining may have a valid default implementation, but calling it is risky/expansive/whatever. If you don't define it as pure virtual, derived classes will inherit that implementation implicitly. And may never know until run-time.
If you define it as pure virtual, a derived class must implement the function. And if it's okay with the risk/cost/whatever, it can call the default implementation statically as Base::f();
What's important is that it's a conscious decision, and the call is explicit.
Basically, the best of both worlds (or the worst...).
The derived class is required to implement the pure virtual method, the designer of the base class requires this for some reason. And the base class also provides a default implementation of this method that, if the derived class desires or requires it, can be used.
So some sample code could look like;
class Base {
public:
virtual int f() = 0;
};
int Base::f() {
return 42;
}
class Derived : public Base {
public:
int f() override {
return Base::f() * 2;
}
};
So what is a common use case...
A common use case for this technique is related to the destructor - basically the designer of the base class desires that it is an abstract class, but none of the methods make much sense as being pure virtual functions. The destructor is a feasible candidate.
class Base {
public:
~Base() = 0;
};
Base::~Base() { /* destruction... */ }
A pure virtual function must be overriden in subclasses. However, you can provide a default-implementation, that will work for sub-classes, but might not be optimal.
A constructed use case is for abstract shapes, e.g.
class Shape {
public:
virtual Shape() {}
virtual bool contains(int x, int y) const = 0;
virtual int width() const = 0;
virtual int height() const = 0;
virtual int area() const = 0;
}
int Shape::area() const {
int a = 0;
for (int x = 0; x < width(); ++x) {
for (int y = 0; y < height(); ++y) {
if (contains(x,y)) a++;
}
}
return a;
}
The area method will work for any shape, but is highly inefficient. Subclassers are encouraged to provide a suitable implementation, but if there is none available, they still can explicitely call the base class's method
Pure virtual means "child must override".
So:
struct A{ virtual void foo(){}; };
struct B:A{ virtual void foo()=0; };
struct C:B{ virtual void foo(){}; };
struct D:C{ virtual void foo()=0; };
void D::foo(){};
struct E:D{ virtual void foo(){D::foo();}; };
A has a virtual foo.
B makes it abstract. Before making an instance, derived types must implement it now.
C implements it.
D makes it abstract, and adds an imllementation.
E implements it by calling D's implementation.
A, C and E can have instances created. B and D cannot.
The technique of abstract with implementation can be used to provide a partial or inefficient implementation that derived types can call explicitly when they want to use it, but do not get "by default" because that would be ill advised.
Another intersting use case is where the parent interface is in flux, and tue code base is large. It has a fully functional implementation. Children who use the default must repeat the signature and forward explicitly to it. Those that want to override simply override.
When the base class sigrnature changes, the code will fail to compile unless every child either explicitly calls the default or properly overrides. Prior to the override keyword this was the only way to ensure you did not accidentally create a new virtual function instead of overriding a parent, and it remains the only way where the policy is enforced in the parent type.
Please note that you cannot instantiate an object with pure virtual methods.
Try to instantiate:
C c;
with VC2015, there is an error as expected:
1>f:\dev\src\consoleapplication1\consoleapplication1.cpp(12): error C2259: 'C': cannot instantiate abstract class
1>f:\dev\src\consoleapplication1\consoleapplication1.cpp(12): note: due to following members:
1>f:\dev\src\consoleapplication1\consoleapplication1.cpp(12): note: 'void C::f(void)': is abstract
1>f:\dev\src\consoleapplication1\consoleapplication1.cpp(6): note: see declaration of 'C::f'
To answer your question:
The mechanisms only declares the function to be pure virtual, but there is still the virtual function table and the baseclass. It will avoid you instanciate Baseclass (C), but does not avoid using it:
struct D : public C { virtual void f(); };
void D::f() { printf("Baseclass C::f(): "); C::f(); }
...
D d;
d.f();
The destructor must be defined, even if it is pure virtual. If you don't define the destructor the compiler will generate one.
Edit: you can't leave destructor declared without define, will cause link error.
You can anyway call the body of the function from derived classes.
You can implement the body of a pure virtual function to provide a default behavior, and at the same time you want that the designer of the derived class use that function explicitly.

Why does C++ support pure virtual functions with an implementation?

I did a simple test today:
struct C{virtual void f()=0;};
void C::f(){printf("weird\n");}
The program is OK, but is weird to me, when we use =0 it means the function body should be defined in the inherited classes, but it seems I can still give it implementation function.
I tried both GCC and VC, both OK. So it seems to me this should be part of C++ standard.
But why this is not a syntax error?
A reason I could think of is like C# having both 'interface' and 'abstract' keywords, interface can't have an implementation, while abstract could have some implementations.
Is this the case for my confusion, that C++ should support such a kind of weird syntax?
C++ Supports pure virtual functions with an implementation so class designers can force derived classes to override the function to add specific details , but still provide a useful default implementation that they can use as a common base.
Classic example:
class PersonBase
{
private:
string name;
public:
PersonBase(string nameIn) : name(nameIn) {}
virtual void printDetails() = 0
{
std::cout << "Person name " << name << endl;
}
};
class Student : public PersonBase
{
private:
int studentId;
public:
Student(string nameIn, int idIn) : PersonBase(nameIn), studentId(idIn) { }
virtual void printDetails()
{
PersonBase::printDetails(); // call base class function to prevent duplication
std::cout << "StudentID " << studentId << endl;
}
};
Others mentioned language consistency with the destructor, so I'll go for a software engineering stand-point:
It's because the class you are defining may have a valid default implementation, but calling it is risky/expansive/whatever. If you don't define it as pure virtual, derived classes will inherit that implementation implicitly. And may never know until run-time.
If you define it as pure virtual, a derived class must implement the function. And if it's okay with the risk/cost/whatever, it can call the default implementation statically as Base::f();
What's important is that it's a conscious decision, and the call is explicit.
Basically, the best of both worlds (or the worst...).
The derived class is required to implement the pure virtual method, the designer of the base class requires this for some reason. And the base class also provides a default implementation of this method that, if the derived class desires or requires it, can be used.
So some sample code could look like;
class Base {
public:
virtual int f() = 0;
};
int Base::f() {
return 42;
}
class Derived : public Base {
public:
int f() override {
return Base::f() * 2;
}
};
So what is a common use case...
A common use case for this technique is related to the destructor - basically the designer of the base class desires that it is an abstract class, but none of the methods make much sense as being pure virtual functions. The destructor is a feasible candidate.
class Base {
public:
~Base() = 0;
};
Base::~Base() { /* destruction... */ }
A pure virtual function must be overriden in subclasses. However, you can provide a default-implementation, that will work for sub-classes, but might not be optimal.
A constructed use case is for abstract shapes, e.g.
class Shape {
public:
virtual Shape() {}
virtual bool contains(int x, int y) const = 0;
virtual int width() const = 0;
virtual int height() const = 0;
virtual int area() const = 0;
}
int Shape::area() const {
int a = 0;
for (int x = 0; x < width(); ++x) {
for (int y = 0; y < height(); ++y) {
if (contains(x,y)) a++;
}
}
return a;
}
The area method will work for any shape, but is highly inefficient. Subclassers are encouraged to provide a suitable implementation, but if there is none available, they still can explicitely call the base class's method
Pure virtual means "child must override".
So:
struct A{ virtual void foo(){}; };
struct B:A{ virtual void foo()=0; };
struct C:B{ virtual void foo(){}; };
struct D:C{ virtual void foo()=0; };
void D::foo(){};
struct E:D{ virtual void foo(){D::foo();}; };
A has a virtual foo.
B makes it abstract. Before making an instance, derived types must implement it now.
C implements it.
D makes it abstract, and adds an imllementation.
E implements it by calling D's implementation.
A, C and E can have instances created. B and D cannot.
The technique of abstract with implementation can be used to provide a partial or inefficient implementation that derived types can call explicitly when they want to use it, but do not get "by default" because that would be ill advised.
Another intersting use case is where the parent interface is in flux, and tue code base is large. It has a fully functional implementation. Children who use the default must repeat the signature and forward explicitly to it. Those that want to override simply override.
When the base class sigrnature changes, the code will fail to compile unless every child either explicitly calls the default or properly overrides. Prior to the override keyword this was the only way to ensure you did not accidentally create a new virtual function instead of overriding a parent, and it remains the only way where the policy is enforced in the parent type.
Please note that you cannot instantiate an object with pure virtual methods.
Try to instantiate:
C c;
with VC2015, there is an error as expected:
1>f:\dev\src\consoleapplication1\consoleapplication1.cpp(12): error C2259: 'C': cannot instantiate abstract class
1>f:\dev\src\consoleapplication1\consoleapplication1.cpp(12): note: due to following members:
1>f:\dev\src\consoleapplication1\consoleapplication1.cpp(12): note: 'void C::f(void)': is abstract
1>f:\dev\src\consoleapplication1\consoleapplication1.cpp(6): note: see declaration of 'C::f'
To answer your question:
The mechanisms only declares the function to be pure virtual, but there is still the virtual function table and the baseclass. It will avoid you instanciate Baseclass (C), but does not avoid using it:
struct D : public C { virtual void f(); };
void D::f() { printf("Baseclass C::f(): "); C::f(); }
...
D d;
d.f();
The destructor must be defined, even if it is pure virtual. If you don't define the destructor the compiler will generate one.
Edit: you can't leave destructor declared without define, will cause link error.
You can anyway call the body of the function from derived classes.
You can implement the body of a pure virtual function to provide a default behavior, and at the same time you want that the designer of the derived class use that function explicitly.

What's the point of a final virtual function?

Wikipedia has the following example on the C++11 final modifier:
struct Base2 {
virtual void f() final;
};
struct Derived2 : Base2 {
void f(); // ill-formed because the virtual function Base2::f has been marked final
};
I don't understand the point of introducing a virtual function and immediately marking it as final. Is this simply a bad example, or is there more to it?
Typically final will not be used on the base class' definition of a virtual function. final will be used by a derived class that overrides the function in order to prevent further derived types from further overriding the function. Since the overriding function must be virtual normally it would mean that anyone could override that function in a further derived type. final allows one to specify a function which overrides another but which cannot be overridden itself.
For example if you're designing a class hierarchy and need to override a function, but you do not want to allow users of the class hierarchy to do the same, then you might mark the functions as final in your derived classes.
Since it's been brought up twice in the comments I want to add:
One reason some give for a base class to declare a non-overriding method to be final is simply so that anyone trying to define that method in a derived class gets an error instead of silently creating a method that 'hides' the base class's method.
struct Base {
void test() { std::cout << "Base::test()\n"; }
};
void run(Base *o) {
o->test();
}
// Some other developer derives a class
struct Derived : Base {
void test() { std::cout << "Derived::test()\n"; }
};
int main() {
Derived o;
o.test();
run(&o);
}
Base's developer doesn't want Derived's developer to do this, and would like it to produce an error. So they write:
struct Base {
virtual void test() final { ... }
};
Using this declaration of Base::foo() causes the definition of Derived to produce an error like:
<source>:14:13: error: declaration of 'test' overrides a 'final' function
void test() { std::cout << "Derived::test()\n"; }
^
<source>:4:22: note: overridden virtual function is here
virtual void test() final { std::cout << "Base::test()\n"; }
^
You can decide if this purpose is worthwhile for yourself, but I want to point out that declaring the function virtual final is not a full solution for preventing this kind of hiding. A derived class can still hide Base::test() without provoking the desired compiler error:
struct Derived : Base {
void test(int = 0) { std::cout << "Derived::test()\n"; }
};
Whether Base::test() is virtual final or not, this definition of Derived is valid and the code Derived o; o.test(); run(&o); behaves exactly the same.
As for clear statements to users, personally I think just not marking a method virtual makes a clearer statement to users that the method is not intended to be overridden than marking it virtual final. But I suppose which way is clearer depends on the developer reading the code and what conventions they are familiar with.
For a function to be labelled final it must be virtual, i.e., in C++11 ยง10.3 para. 2:
[...] For convenience we say that any virtual function overrides itself.
and para 4:
If a virtual function f in some class B is marked with the virt-specifier final and in a class D derived from
B a function D::f overrides B::f, the program is ill-formed. [...]
i.e., final is required to be used with virtual functions (or with classes to block inheritance) only. Thus, the example requires virtual to be used for it to be valid C++ code.
EDIT: To be totally clear: The "point" asked about concerns why virtual is even used. The bottom-line reason why it is used is (i) because the code would not otherwise compile, and, (ii) why make the example more complicated using more classes when one suffices? Thus exactly one class with a virtual final function is used as an example.
It doesn't seem useful at all to me. I think this was just an example to demonstrate the syntax.
One possible use is if you don't want f to really be overrideable, but you still want to generate a vtable, but that is still a horrible way to do things.
Adding to the nice answers above - Here is a well-known application of final (very much inspired from Java). Assume we define a function wait() in a Base class, and we want only one implementation of wait() in all its descendants. In this case, we can declare wait() as final.
For example:
class Base {
public:
virtual void wait() final { cout << "I m inside Base::wait()" << endl; }
void wait_non_final() { cout << "I m inside Base::wait_non_final()" << endl; }
};
and here is the definition of the derived class:
class Derived : public Base {
public:
// assume programmer had no idea there is a function Base::wait()
// error: wait is final
void wait() { cout << "I am inside Derived::wait() \n"; }
// that's ok
void wait_non_final() { cout << "I am inside Derived::wait_non_final(); }
}
It would be useless (and not correct) if wait() was a pure virtual function. In this case: the compiler will ask you to define wait() inside the derived class. If you do so, it will give you an error because wait() is final.
Why should a final function be virtual? (which is also confusing) Because (imo) 1) the concept of final is very close to the concept of virtual functions [virtual functions has many implementations - final functions has only one implementation], 2) it is easy to implement the final effect using vtables.
I don't understand the point of introducing a virtual function and immediately marking it as final.
The purpose of that example is to illustrate how final works, and it does just that.
A practical purpose might be to see how a vtable influences a class' size.
struct Base2 {
virtual void f() final;
};
struct Base1 {
};
assert(sizeof(Base2) != sizeof(Base1)); //probably
Base2 can simply be used to test platform specifics, and there's no point in overriding f() since it's there just for testing purposes, so it's marked final. Of course, if you're doing this, there's something wrong in the design. I personally wouldn't create a class with a virtual function just to check the size of the vfptr.
While refactoring legacy code (e.g. removing a method that is virtual from a mother class), this is useful to ensure none of the child classes are using this virtual function.
// Removing foo method is not impacting any child class => this compiles
struct NoImpact { virtual void foo() final {} };
struct OK : NoImpact {};
// Removing foo method is impacting a child class => NOK class does not compile
struct ImpactChildClass { virtual void foo() final {} };
struct NOK : ImpactChildClass { void foo() {} };
int main() {}
Here is why you might actually choose to declare a function both virtual and final in a base class:
class A {
void f();
};
class B : public A {
void f(); // Compiles fine!
};
class C {
virtual void f() final;
};
class D : public C {
void f(); // Generates error.
};
A function marked final has to be also be virtual. Marking a function final prevents you from declaring a function with the same name and signature in a derived class.
Instead of this:
public:
virtual void f();
I find it useful to write this:
public:
virtual void f() final
{
do_f(); // breakpoint here
}
protected:
virtual void do_f();
The main reason being that you now have a single place to breakpoint before dispatching into any of potentially many overridden implementations. Sadly (IMHO), saying "final" also requires that you say "virtual."
I found another case where for virtual function is useful to be declared as final. This case is part of SonarQube list of warnings. The warning description says:
Calling an overridable member function from a constructor or destructor could result in unexpected behavior when instantiating a subclass which overrides the member function.
For example:
- By contract, the subclass class constructor starts by calling the parent class constructor.
- The parent class constructor calls the parent member function and not the one overridden in the child class, which is confusing for child class' developer.
- It can produce an undefined behavior if the member function is pure virtual in the parent class.
Noncompliant Code Example
class Parent {
public:
Parent() {
method1();
method2(); // Noncompliant; confusing because Parent::method2() will always been called even if the method is overridden
}
virtual ~Parent() {
method3(); // Noncompliant; undefined behavior (ex: throws a "pure virtual method called" exception)
}
protected:
void method1() { /*...*/ }
virtual void method2() { /*...*/ }
virtual void method3() = 0; // pure virtual
};
class Child : public Parent {
public:
Child() { // leads to a call to Parent::method2(), not Child::method2()
}
virtual ~Child() {
method3(); // Noncompliant; Child::method3() will always be called even if a child class overrides method3
}
protected:
void method2() override { /*...*/ }
void method3() override { /*...*/ }
};
Compliant Solution
class Parent {
public:
Parent() {
method1();
Parent::method2(); // acceptable but poor design
}
virtual ~Parent() {
// call to pure virtual function removed
}
protected:
void method1() { /*...*/ }
virtual void method2() { /*...*/ }
virtual void method3() = 0;
};
class Child : public Parent {
public:
Child() {
}
virtual ~Child() {
method3(); // method3() is now final so this is okay
}
protected:
void method2() override { /*...*/ }
void method3() final { /*...*/ } // this virtual function is "final"
};
virtual + final are used in one function declaration for making the example short.
Regarding the syntax of virtual and final, the Wikipedia example would be more expressive by introducing struct Base2 : Base1 with Base1 containing virtual void f(); and Base2 containing void f() final; (see below).
Standard
Referring to N3690:
virtual as function-specifier can be part of decl-specifier-seq
final can be part of virt-specifier-seq
There is no rule having to use the keyword virtual and the Identifiers with special meaning final together. Sec 8.4, function definitions (heed opt = optional):
function-definition:
attribute-specifier-seq(opt) decl-specifier-seq(opt) declarator virt-specifier-seq(opt) function-body
Practice
With C++11, you can omit the virtual keyword when using final. This compiles on gcc >4.7.1, on clang >3.0 with C++11, on msvc, ... (see compiler explorer).
struct A
{
virtual void f() {}
};
struct B : A
{
void f() final {}
};
int main()
{
auto b = B();
b.f();
}
PS: The example on cppreference also does not use virtual together with final in the same declaration.
PPS: The same applies for override.
I think most of the answers miss an important point. final means no more override after it has been specified. Marking it on a base class is close to pointless indeed.
When a derived class might get derived further, it can use final to lock the implementation of a given method to the one it provided.
#include <iostream>
class A {
public:
virtual void foo() = 0;
virtual void bar() = 0;
};
class B : public A {
public:
void foo() final override { std::cout<<"B::foo()"<<std::endl; }
void bar() override { std::cout<<"B::bar()"<<std::endl; }
};
class C : public B {
public:
// can't do this as B marked ::foo final!
// void foo() override { std::cout<<"C::foo()"<<std::endl; }
void bar() override { std::cout<<"C::bar()"<<std::endl; }
};

Have I implemented a pure virtual function wrong?

EDIT:
I have no updated the question, whilst doing so I realized the scope of the question has completely changed, so I apologize for this. I am dealing with Threads so that static function has to be there. I have tried to abstract the Threading stuff out of the question as much as possible.
I am getting a pure virtual function call error, so I thought maybe I have the implementation wrong. Here is what I have:
class Base
{
protected:
virtual int f(void) = 0;
static void baseFunction(void* param);
};
static void Base::baseFunction (void* param)
{
Base *parent = (Base*) parameter;
int i = parent->f();
}
class Derived : public Base
{
private:
int _memeber;
int f(void);
};
int Derived::f(void)
{
_member = 0;
cout << "Derived _memeber is: " << _member << endl;
return 0;
}
void main ()
{
Derived d;
d.baseFunction(d);
}
I need the function Derived::f(void) to have access to the Derived class members.
The definition looks fine, but I will hazard a guess that you're calling the virtual function from the constructor or destructor of Base. In that case, virtual dispatch is done as if the dynamic type were Base, not Derived, and if the function is pure virtual then you get undefined behaviour.
UPDATE: You also say "I am dealing with threads". In that case, it's possible that a data race could cause one thread to call the function while another is still constructing the object - again, giving undefined behaviour. You need to make sure all data accesses are correctly synchronised.
It's OK, just missing semicolons after the class declarations.
Add return type to the Derived method. Also add semicolons after class definitions
You are missing the return type for f and ; after class definitions
Change your code to
class Base
{
protected:
virtual int f(void) = 0;
};
class Derived : public Base
{
public:
int f(void);
};
int Derived::f(void)
{
// do something here
}
Further, post runnable code if possible. Iow add
int main()
{
Derived d;
d.f();
}
to your code sample
Make all your functions in your two classes public. And why are you declaring int i? it's not used at all.
you need to declare
class Derived : public Base
{
protected:
virtual int f(void);
}
I suppose your pure virtual function call comes from Base class using f in another of it's methods.

Why might my virtual function call be failing?

Update: This issue is caused by bad memory usage, see solution at the bottom.
Here's some semi-pseudo code:
class ClassA
{
public:
virtual void VirtualFunction();
void SomeFunction();
}
class ClassB : public ClassA
{
public:
void VirtualFunction();
}
void ClassA::VirtualFunction()
{
// Intentionally empty (code smell?).
}
void ClassA::SomeFunction()
{
VirtualFunction();
}
void ClassB::VirtualFunction()
{
// I'd like this to be called from ClassA::SomeFunction()
std::cout << "Hello world!" << endl;
}
The C# equivalent is as follows: Removed C# example, as it's not relevant to the actual problem.
Why isn't the ClassB::VirtualFunction function being called when called from ClassA::SomeFunction? Instead ClassA::VirtualFunction is being called...
When I force implementation of the virtual function ClassA::VirtualFunction, like so:
class ClassA
{
public:
virtual void VirtualFunction() = 0;
void SomeFunction();
}
class ClassB : public ClassA
{
public:
void VirtualFunction();
}
void ClassA::SomeFunction()
{
VirtualFunction();
}
void ClassB::VirtualFunction()
{
// I'd like this to be called from ClassA::SomeFunction()
std::cout << "Hello world!" << endl;
}
The following error occurs at runtime, despite the derrived function deffinately being declared and defined.
pure virtual method called
terminate called without an active exception
Note: It seems like the error can be caused even by bad memory usage. See self-answer for details.
Update 1 - 4:
Comments removed (not releavnt).
Solution:
Posted as an answer.
class Base {
public:
virtual void f() { std::cout << "Base" << std::endl; }
void call() { f(); }
};
class Derived : public Base {
public:
virtual void f() { std::cout << "Derived" << std::endl; }
};
int main()
{
Derived d;
Base& b = d;
b.call(); // prints Derived
}
If in the Base class you do not want to implement the function you must declare so:
class Base {
public:
virtual void f() = 0; // pure virtual method
void call() { f(); }
};
And the compiler won't allow you to instantiate the class:
int main() {
//Base b; // error b has a pure virtual method
Derived d; // derive provides the implementation: ok
Base & b=d; // ok, the object is Derived, the reference is Base
b.call();
}
As a side note, be careful not to call virtual functions from constructors or destructors as you might get unexpected results.
If you're getting that 'pure virtual method called
terminate called without an active exception' error message, that means you're calling the virtual function from the constructor or destructor of classA (the base class), which you should not do.
on the pure virtual method called error:
You should create a different question as it is in fact different than the other. The answer to this question is on the very last paragraph of my previous answer to your initial question:
Do not call virtual functions from constructors or destructors
class Base
{
public:
Base() { f(); }
virtual void f() = 0;
};
class Derived : public Base
{
public:
virtual void f() {}
};
int main()
{
Derived d; // crashes with pure virtual method called
}
The problem in the code above is that the compiler will allow you to instantiate an object of type Derived (as it is not abstract: all virtual methods are implemented). The construction of a class starts with the construction of all the bases, in this case Base. The compiler will generate the virtual method table for type Base, where the entry for f() is 0 (not implemented in base). The compiler will execute the code in the constructor then. After the Base part has completely been constructed, construction of the Derived element part starts. The compiler will change the virtual table so that the entry for f() points to Derived::f().
If you try calling the method f() while still constructing Base, the entry in the virtual method table is still null and the application crashes.
When A calls VirtualFunction() it will automatically call the version on B. That is the point of virtual functions.
I am not as familiar with the C++ syntax tho. Do you have to declare the function to be virtual at the point of the body as well as in the header?
Alsop, in class B you probably need to mark it as override
in C# its easy. I just don't know the c++ syntax.
public class ClassA
{
public **virtual** void VirtualFunction(){}
public void FooBar()
{
// Will call ClassB.VirtualFunction()
VirtualFunction();
}
}
public class ClassB
{
public **overide** void VirtualFunction()
{
// hello world
}
}
If you want to force the derived classes to implement the VirtualFunction:
class ClassA
{
public:
virtual void VirtualFunction()=0;
void SomeFunction();
}
This is C++. Default the derived function will be called.
If you want to call the base-class function do:
void ClassA::SomeFunction()
{
// ... various lines of code ...
ClassA::VirtualFunction();
}
There's nothing wrong with your code but your sample is incomplete. You do not state where you are calling SomeFunction from.
As has already been pointed out by dribeas you must be careful calling virtual functions from your constructor as the virtual tables are only built up as each class in the hierarchy completes construction.
Edit: The following paragraph of my reply was incorrect. Apologies. It is fine to call SomeFunction from the constructor of ClassB as the vtable is in place (at least) by the end of the initialiser list i.e. once you are in the body of the constructor. It is not fine to call it from ClassA's constructor of course.
Original paragraph:
I suspect you must be calling SomeFunction from the constructor of ClassB at which point only the vtable up to type ClassA will be complete i.e. to the virtual dispatch mechanism your class is still of type ClassA. It only becomes an object of type ClassB when the constructor completes.
To call a virutal function function you need to call via a pointer or a reference.
void ClassA::SomeFunction()
{
VirtualFunction(); // Call ClassA::VirtualFunction
this->VirtualFunction(); // Call Via the virtual dispatch mechanism
// So in this case call ClassB::VirtualFunction
}
You need to be able to distinguish the two different types of call otherwise the classA::VirtualFunction() becomes inaccessible when it is overridden.
As pointed out by others if you want to make the base class version abstract then use the = 0 rather than {}
class A
{
virtual void VirtualFunction() =0;
....
But sometimes it is legitimate to have an empty definition. This will depend on your exact usage.
You aren't defining the function in ClassB correctly, it should be:
public class ClassB
{
public void override AbstractFunction()
{
// hello world
}
}
Then, any call from the base class to virtual/abstract methods will call the implementation on the derived instance.