Dronekit android tower telemetry update frequency - dronekit

I've just started looking into building something using dronekit. Before I dive headfirst into this (and I fully realize this might be a difficult question to answer): What kind of telemetry update frequency can I expect from the 3DR services underlying an android app (say that I'm using a PixHawk controller with the 3DR telemetry downlink plugged into my Android's USB port). I need something as instantaneous as possible, no slower than 1Hz and optimally down to 5-10Hz (talking about both telemetry update events from the drone, and the ability to send commands to the drone). Is it possible at all to get that kind of speed using this stack?

Sending commands to the drone is not throttled at the moment, so it can be as fast as your logic and hardware allow.
The receiving update frequency is currently locked at 2Hz. We're looking into making it customizable in a future release.
For more information, feel free to ping the dev team directly on the gitter channel.

Related

How to set up cloud with application and connected IoT devices via 3G/LTE

I am a beginner at cloud computing, and I'm hoping to get some guidance or advice as to how I can set up a cloud connected to IoT devices and a running application to control the behavior of these devices.
Firstly, there are 5 devices that have to connected via 3G or LTE because of the distance among the devices, so the way I am thinking of is connecting them to the internet using dynamic public ip addresses and using a dynamic DNS server. It seems like I should be using AWS-IoT service to manage these devices. How should I go about doing that, or is there a better approach? The devices all use MQTT and/or REST API.
The next step is to write an application and I was suggested to use AWS Lambda, am I heading towards the correct direction? How do I link the connected devices on AWS-IoT to AWS Lambda?
I know the question may sound vague but I am still new and exploring different solutions. Any guidance or recommendations for the right step forward is appreciated.
I assume your devices (or, one of them) has 64-bit CPU (x86 or Arm) that run Linux.
It's a kind of 70:30 balance where:
- 70% of the work needs to focus on building and testing edge-logic.
- 30% of the work on the rest (IoT Cloud, Lambda etc).
Here is what I suggest.
1/ Code your edge-logic first! (the piece of code that you want to execute ultimately on your devices).
2/ Test it on-the-edge by logging on to the devices (if you can) via SSH and running it.
3/ Once you have that done, 70% of the job is over.
4/ Rest 30% is to complete the jigsaw in cloud. Best place to start: Lambda and Greengrass.
5/ To summarize it all, you will create greengrass components on cloud, install AWS Greengrass Core software on your device, followed by deploying your configuration on your device over-the-air (OTA).
Now, you can use any MQTT client (or) biult-in MQTTTester of AWS IoT -> Test wizard to send a message to your topic to trigger your edge-logic on the device!
Good luck!
cheers,
ram

tips to reduce message traffic and size in order to have less download amount

I have a mobile application integrated to a server where users can see tasks assigned and close the task request after work. In this project timing is very important, at least ones in a minute program should check if a task is assigned. Moreover mobile should also check the server if there is a change on the task that it already downloaded.
Because of the nature of the project download amount is high. How can we reduce it? Should we use another technology for server communication (Now we use ASP.NET Web Service Application)?
Thanks in advance.
Use JSON instead of XML Server.
Try using selective sync options like instead of complete tasks sync as it would become slow with higher number of tasks.
Mark task changes locally on mobile. mark entities dirty and then only update marked tasks to cloud/Server.
as SLaks suggested use push instead of pull it will save mobile battery and user's data package.
Here is what can help you:
Microsoft Sync Framework.
http://msdn.microsoft.com/en-us/sync/bb887608.aspx
http://weblogs.aspnet05.orcsweb.com/sbehera/archive/2009/04/10/sync-framework-for-windows-mobile-devices-amp-some-use-full-links.aspx

Hosting a web service on a microcontroller

I saw some devices online which had wifi and exposed some information which was collected by an samrt device (iOS in this case). Do you know of any microcontrollers which would be useful to expose some data read from a sensor (by WiFi)?
Example: Expose termometer web service - if someone request for the current temperature make the reading (or pass the cached reading) and send it to the requester.
Thx for your help in advance.
The Raspberry Pi device appears to be available for cheap, has an Ethernet connection, and even has a beta Stack Exchange community. You may be able to do something cheaper -- no GPU, for example -- but this might be a reasonable starting point.
I have recently played with a http://ruggedcircuits.com/html/yellowjacket.html to do what you want to do.
I think Yoctopuce have some hardware that might allow you to do exactly that:
http://www.yoctopuce.com/EN/article/an-autonomous-solar-weather-station
This is a solar weather station, based on a temperature sensor on a WiFi module. The WiFi module reads the temperature from the temperature sensor and automatically post it on the internet. It's fully plug and play, no programming needed.

architecture and tools for a remote control application?

I'm working on the design of a remote control application. From my iPhone or a web browser, I'll send a few commands. Soon my home computer will perform the commands and send back results. I know there are remote desktop apps, but I want something programmable, something simpler, and something that I wrote.
My current direction is to use Amazon Simple Queue Service (SQS) as the message bus. The iPhone places some messages in a queue. My local Java/JRuby program notices the messages on the queue, performs the work and sends back status via a different queue.
This will be a very low-volume application. At $1.00 for a million requests (plus a handful of data transfer charges), Amazon SQS looks a lot more affordable than having my own server of any type. And super reliable, that's important for me too.
Are there better/standard toolkits or architectures for this kind of remote control? Cost is not a big issue, but I prefer the tons I learn by doing it myself.
I'm moderately concerned about security, but doubt it will be a problem. The list of commands recognized will be very short, and only recognized in specific contexts. No "erase hard drive" stuff.
update: I'll probably distribute these programs to some other people who want the same function, but who don't have Amazon SQS accounts. For now, they'll use anonymous access to my queues, with random 80-character queue names.
Well, I think it's a clever approach -- and as you said, the costs for your little traffic aren't even worth mentioning.
As I mentioned in the comment, it's a good way to leave your home machine behind your firewall and not have an open port on the internet.
I would suggest using OnlineMQ.com as a start; they have a free package.

How are Massively Multiplayer Online RPGs built?

How are Massively Multiplayer Online RPG games built?
What server infrastructure are they built on? especially with so many clients connected and communicating in real time.
Do they manage with scripts that execute on page requests? or installed services that run in the background and manage communication with connected clients?
Do they use other protocols? because HTTP does not allow servers to push data to clients.
How do the "engines" work, to centrally process hundreds of conflicting gameplay events?
Thanks for your time.
Many roads lead to Rome, and many architectures lead to MMORPG's.
Here are some general thoughts to your bullet points:
The server infrastructure needs to support the ability to scale out... add additional servers as load increases. This is well-suited to Cloud Computing by the way. I'm currently running a large financial services app that needs to scale up and down depending on time of day and time of year. We use Amazon AWS to almost instantly add and remove virtual servers.
MMORPG's that I'm familiar with probably don't use web services for communication (since they are stateless) but rather a custom server-side program (e.g. a service that listens for TCP and/or UDP messages).
They probably use a custom TCP and/or UDP based protocol (look into socket communication)
Most games are segmented into "worlds", limiting the number of players that are in the same virtual universe to the number of game events that one server (probably with lots of CPU's and lots of memory) can reasonably process. The exact event processing mechanism depends on the requirements of the game designer, but generally I expect that incoming events go into a priority queue (prioritized by time received and/or time sent and probably other criteria along the lines of "how bad is it if we ignore this event?").
This is a very large subject overall. I would suggest you check over on Amazon.com for books covering this topic.
What server infrastructure are they built on? especially with so many clients connected and communicating in real time.
I'd guess the servers will be running on Linux, BSD or Solaris almost 99% of the time.
Do they manage with scripts that execute on page requests? or installed services that run in the background and manage communication with connected clients?
The server your client talks to will be a server running a daemons or service that sits idle listening for connections. For instances (dungeons), usually a new process is launched for each group, which would mean there is a dispatcher service somewhere mananging this (analogous to a threadpool)
Do they use other protocols? because HTTP does not allow servers to push data to clients.
UDP is the protocol used. It's fast as it makes no guarantees the packet will be received. You don't care if a bit of latency causes the client to lose their world position.
How do the "engines" work, to centrally process hundreds of conflicting gameplay events?
Most MMOs have zones which limit this to a certain amount of people. For those that do have 100s of people in one area, there is usually high latency. The server is having to deal with 100s of spells being sent its way, which it must calculate damage amounts for each one. For the big five MMOs I imagine there are teams of 10-20 very intelligent, mathematically gifted developers working on this daily and there isn't a MMO out there that has got it right yet, most break after 100 players.
--
Have a look for Wowemu (there's no official site and I don't want to link to a dodgy site). This is based on ApireCore which is an MMO simulator, or basically a reverse engineer of the WoW protocol. This is what the private WoW servers run off. From what I recall Wowemu is
mySQL
Python
However ApireCore is C++.
The backend for Wowemu is amazingly simple (I tried it in 2005 however) and probably a complete over simplification of the database schema. It does gives you a good idea of what's involved.
Because MMOs by and large require the resources of a business to develop and deploy, at which point they are valuable company IP, there isn't a ton of publicly available information about implementations.
One thing that is fairly certain is that since MMOs by and large use a custom client and 3D renderer they don't use HTTP because they aren't web browsers. Online games are going to have their own protocols built on top of TCP/IP or UDP.
The game simulations themselves will be built using the same techniques as any networked 3D game, so you can look towards resources for that problem domain to learn more.
For the big daddy, World of Warcraft, we can guess that their database is Oracle because Blizzard's job listings frequently cite Oracle experience as a requirement/plus. They use Lua for user interface scripting. C++ and OpenGL (for Mac) and Direct3D (for PC) can be assumed as the implementation languages for the game clients because that's what games are made with.
One company that is cool about discussing their implementation is CCP, creators of Eve online. They have published a number of presentations and articles about Eve's infrastructure, and it is a particularly interesting case because they use Stackless Python for a lot of Eve's implementation.
http://www.disinterest.org/resource/PyCon2006-StacklessInEve.wmv
http://us.pycon.org/2009/conference/schedule/event/91/
There was also a recent Game Developer Magazine article on Eve's architecture:
https://store.cmpgame.com/product/3359/Game-Developer-June%7B47%7DJuly-2009-Issue---Digital-Edition
The Software Engineering radio podcast had an episode with Jim Purbrick about Second Life which discusses servers, worlds, scaling and other MMORPG internals.
Traditionally MMOs have been based on C++ server applications running on Linux communicating with a database for back end storage and fat client applications using OpenGL or DirectX.
In many cases the client and server embed a scripting engine which allows behaviours to be defined in a higher level language. EVE is notable in that it is mostly implemented in Python and runs on top of Stackless rather than being mostly C++ with some high level scripts.
Generally the server sits in a loop reading requests from connected clients, processing them to enforce game mechanics and then sending out updates to the clients. UDP can be used to minimize latency and the retransmission of stale data, but as RPGs generally don't employ twitch gameplay TCP/IP is normally a better choice. Comet or BOSH can be used to allow bi-directional communications over HTTP for web based MMOs and web sockets will soon be a good option there.
If I were building a new MMO today I'd probably use XMPP, BOSH and build the client in JavaScript as that would allow it to work without a fat client download and interoperate with XMPP based IM and voice systems (like gchat). Once WebGL is widely supported this would even allow browser based 3D virtual worlds.
Because the environments are too large to simulate in a single process, they are normally split up geographically between processes each of which simulates a small area of the world. Often there is an optimal population for a world, so multiple copies (shards) are run which different sets of people use.
There's a good presentation about the Second Life architecture by Ian Wilkes who was the Director of Operations here: http://www.infoq.com/presentations/Second-Life-Ian-Wilkes
Most of my talks on Second Life technology are linked to from my blog at: http://jimpurbrick.com
Take a look at Erlang. It's a concurrent programming language and runtime system, and was designed to support distributed, fault-tolerant, soft-real-time, non-stop applications.