Finding Xth term of a series - c++

I have a simple problem.
I am having an array A[] of N numbers. I have to perform this operarion:
for(i = 2; i<=N; i++)
A[i] = A[i] + A[i-1]
to the array A[] k times. And after performing this operation k times, I have to output the Xth index element.
Doing it with brute force, will lead to TLE.
I was searching for some pattern, but, I came to a solution which is not perfect as it needs to be.
Can you please help me, to find some more efficient solution to this problem.
I have an example, to clear the question.
Let's say array A is [1,2,3] and I need to perform the above operation 3 times then:
Array after 1st turn: A=[1,3,6]
Array after 2nd turn: A=[1,4,10]
Array after 3rd turn: A=[1,5,15]
So, if I am required to find the 2nd element of the array now, then it would be 5.

I you look to the Pascal's triangle (as #MBo say) you may notice that after k times the number of times each number get added in the final result is equal to a square in the triangle following the diagonals. Let see an example here:
This image correspond to iterate four times for the first three elements. So, as you can see if we have as input k equal to the number of times and n equal to the index of the element to return, all we have to do is multiply each of the numbers in the diagonal filled in blue until the red line (the image configuration correspond to k = 4 and n = 2).
After that, we have this formula:
Now, to improve the way we calculate the formula show above, we can use dynamic programming and calculate the factorial function from 0 ... k+n (note that the bigger number in the sequence is k-1+n). With this we can access to factorial(n) in a constant time. Also if we expand the combinatoric factor inside the summation we notice that the factor (k - 1 + i - i)! = (k - 1)! so, we can put this outside the summation.
Here is the code:
#include "stdafx.h"
#include "iostream"
using namespace std;
int findingXth(int a[], int n, int k, int factorial[]){
if (k == 0)
return a[n];
int result = 0;
for (int i = 0; i <= n; ++i)
{
int up = k - 1 + i;
result += (factorial[up] / factorial[i]) * a[n - i];
}
return result / factorial[k - 1];
}
int main(int argc, _TCHAR* argv[])
{
int a[3] = { 1, 2, 3 };
int n = 2;
int k = 3;
int factorial[100000]; // probably the expecification of the problem has some upper bounds for n and k (the length of the factorial array can be set to n+k+1);
factorial[0] = 1;
for (int i = 1; i < n + k; i++)
{
factorial[i] = factorial[i - 1] * i;
}
int result = findingXth(a, n, k, factorial);
std::cout << result;
return 0;
}

Related

O(n^2) algorithm to find largest 3 integer arithmetic series

The problem is fairly simple. Given an input of N (3 <= N <= 3000) integers, find the largest sum of a 3-integer arithmetic series in the sequence. Eg. (15, 8, 1) is a larger arithmetic series than (12, 7, 2) because 15 + 8 + 1 > 12 + 7 + 2. The integers apart of the largest arithmetic series do NOT have to be adjacent, and the order they appear in is irrelevant.
An example input would be:
6
1 6 11 2 7 12
where the first number is N (in this case, 6) and the second line is the sequence N integers long.
And the output would be the largest sum of any 3-integer arithmetic series. Like so:
21
because 2, 7 and 12 has the largest sum of any 3-integer arithmetic series in the sequence, and 2 + 7 + 12 = 21. It is also guaranteed that a 3-integer arithmetic series exists in the sequence.
EDIT: The numbers that make up the sum (output) have to be an arithmetic series (constant difference) that is 3 integers long. In the case of the sample input, (1 6 11) is a possible arithmetic series, but it is smaller than (2 7 12) because 2 + 7 + 12 > 1 + 6 + 11. Thus 21 would be outputted because it is larger.
Here is my attempt at solving this question in C++:
#include <bits/stdc++.h>
using namespace std;
vector<int> results;
vector<int> middle;
vector<int> diff;
int main(){
int n;
cin >> n;
int sizes[n];
for (int i = 0; i < n; i++){
int size;
cin >> size;
sizes[i] = size;
}
sort(sizes, sizes + n, greater<int>());
for (int i = 0; i < n; i++){
for (int j = i+1; j < n; j++){
int difference = sizes[i] - sizes[j];
diff.insert(diff.end(), difference);
middle.insert(middle.end(), sizes[j]);
}
}
for (size_t i = 0; i < middle.size(); i++){
int difference = middle[i] - diff[i];
for (int j = 0; j < n; j++){
if (sizes[j] == difference) results.insert(results.end(), middle[i]);
}
}
int max = 0;
for (size_t i = 0; i < results.size(); i++) {
if (results[i] > max) max = results[i];
}
int answer = max * 3;
cout << answer;
return 0;
}
My approach was to record what the middle number and the difference was using separate vectors, then loop through the vectors and search if the middle number minus the difference is in the array, where it gets added to another vector. Then the largest middle number is found and multiplied by 3 to get the sum. This approach made my algorithm go from O(n^3) to roughly O(n^2). However, the algorithm doesn't always produce the correct output (and I can't think of a test case where this doesn't work) every time, and since I'm using separate vectors, I get a std::bad_alloc error for large N values because I am probably using too much memory. The time limit in this question is 1.4 sec per test case, and memory limit is 64 MB.
Since N can only be max 3000, O(n^2) is sufficient. So what is an optimal O(n^2) solution (or better) to this problem?
So, a simple solution for this problem is to put all elements into an std::map to count their frequencies, then iterate over the first and second element in the arithmetic progression, then search the map for the third.
Iterating takes O(n^2) and map lookups and find() generally takes O(logn).
include <iostream>
#include <map>
using namespace std;
const int maxn = 3000;
int a[maxn+1];
map<int, int> freq;
int main()
{
int n; cin >> n;
for (int i = 1; i <= n; i++) {cin >> a[i]; freq[a[i]]++;} // inserting frequencies
int maxi = INT_MIN;
for (int i = 1; i <= n-1; i++)
{
for (int j = i+1; j <= n; j++)
{
int first = a[i], sec = a[j]; if (first > sec) {swap(first, sec);} //ensure that first is smaller than sec
int gap = sec - first; //calculating difference
if (gap == 0 && freq[first] >= 3) {maxi = max(maxi, first*3); } //if first = sec then calculate immidiately
else
{
int third1 = first - gap; //else there're two options for the third element
if (freq.find(third1) != freq.end() && gap != 0) {maxi = max(maxi, first + sec + third1); } //finding third element
}
}
}
cout << maxi;
}
Output : 21
Another test :
6
3 4 5 7 7 7
Output : 21
Another test :
5
10 10 9 8 7
Output : 27
You can try std::unordered_map to try and reduce the complexity even more.
Also see Why is "using namespace std;" considered bad practice?
The sum of a 3-element arithmetic progression is 3-times the middle element, so I would search around a middle element, and would start the search from the "upper" end of the "array" (and have it sorted). This way the first hit is the largest one. Also, the actual array would be a frequency-map, so elements are unique, but still track if any element has 3 copies, because that can become a hit (progression by 0).
I think it may be better to create the frequency-map first, and sort it later, simply because it may result in sorting fewer elements - though they are going to be pairs of value and count in this case.
function max3(arr){
let stats=new Map();
for(let value of arr)
stats.set(value,(stats.get(value) || 0)+1);
let array=Array.from(stats); // array of [value,count] arrays
array.sort((x,y)=>y[0]-x[0]); // sort by value, descending
for(let i=0;i<array.length;i++){
let [value,count]=array[i];
if(count>=3)
return 3*value;
for(let j=0;j<i;j++)
if(stats.has(2*value-array[j][0]))
return 3*value;
}
}
console.log(max3([1,6,11,2,7,12])); // original example
console.log(max3([3,4,5,7,7,7])); // an example of 3 identical elements
console.log(max3([10,10,9,8,7])); // an example from another answer
console.log(max3([1,2,11,6,7,12])); // example with non-adjacent elements
console.log(max3([3,7,1,1,1])); // check for finding lowest possible triplet too

Speed problem for summation (sum of divisors)

I should implement this summation in C ++. I have tried with this code, but with very high numbers up to 10 ^ 12 it takes too long.
The summation is:
For any positive integer k, let d(k) denote the number of positive divisors of k (including 1 and k itself).
For example, for the number 4: 1 has 1 divisor, 2 has two divisors, 3 has two divisors, and 4 has three divisors. So the result would be 8.
This is my code:
#include <iostream>
#include <algorithm>
using namespace std;
int findDivisors(long long n)
{
int c=0;
for(int j=1;j*j<=n;j++)
{
if(n%j==0)
{
c++;
if(j!=(n/j))
{
c++;
}
}
}
return c;
}
long long compute(long long n)
{
long long sum=0;
for(int i=1; i<=n; i++)
{
sum += (findDivisors(i));
}
return sum;
}
int main()
{
int n, divisors;
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
cin >> n;
cout << compute(n);
}
I think it's not just a simple optimization problem, but maybe I should change the algorithm entirely.
Would anyone have any ideas to speed it up? Thank you.
largest_prime_is_463035818's answer shows an O(N) solution, but the OP is trying to solve this problem
with very high numbers up to 1012.
The following is an O(N1/2) algorithm, based on some observations about the sum
n/1 + n/2 + n/3 + ... + n/n
In particular, we can count the number of terms with a specific value.
Consider all the terms n/k where k > n/2. There are n/2 of those and all are equal to 1 (integer division), so that their sum is n/2.
Similar considerations hold for the other dividends, so that we can write the following function
long long count_divisors(long long n)
{
auto sum{ n };
for (auto i{ 1ll }, k_old{ n }, k{ n }; i < k ; ++i, k_old = k)
{ // ^^^^^ it goes up to sqrt(n)
k = n / (i + 1);
sum += (k_old - k) * i;
if (i == k)
break;
sum += k;
}
return sum;
}
Here it is tested against the O(N) algorithm, the only difference in the results beeing the corner cases n = 0 and n = 1.
Edit
Thanks again to largest_prime_is_463035818, who linked the Wikipedia page about the divisor summatory function, where both an O(N) and an O(sqrt(N)) algorithm are mentioned.
An implementation of the latter may look like this
auto divisor_summatory(long long n)
{
auto sum{ 0ll };
auto k{ 1ll };
for ( ; k <= n / k; ++k )
{
sum += n / k;
}
--k;
return 2 * sum - k * k;
}
They also add this statement:
Finding a closed form for this summed expression seems to be beyond the techniques available, but it is possible to give approximations. The leading behavior of the series is given by
D(x) = xlogx + x(2γ - 1) + Δ(x)
where γ is the Euler–Mascheroni constant, and the error term is Δ(x) = O(sqrt(x)).
I used your brute force approach as reference to have test cases. The ones I used are
compute(12) == 35
cpmpute(100) == 482
Don't get confused by computing factorizations. There are some tricks one can play when factorizing numbers, but you actually don't need any of that. The solution is a plain simple O(N) loop:
#include <iostream>
#include <limits>
long long compute(long long n){
long long sum = n+1;
for (long long i=2; i < n ; ++i){
sum += n/i;
}
return sum;
}
int main()
{
std::cout << compute(12) << "\n";
std::cout << compute(100) << "\n";
}
Output:
35
482
Why does this work?
The key is in Marc Glisse's comment:
As often with this kind of problem, this sum actually counts pairs x,
y where x divides y, and the sum is arranged to count first all x
corresponding to a fixed y, but nothing says you have to keep it that
way.
I could stop here, because the comment already explains it all. Though, if it didn't click yet...
The trick is to realize that it is much simpler to count divisors of all numbers up to n rather than n-times counting divisors of individual numbers and take the sum.
You don't need to care about factorizations of eg 123123123 or 52323423 to count all divisors up to 10000000000. All you need is a change of perspective. Instead of trying to factorize numbers, consider the divisors. How often does the divisor 1 appear up to n? Simple: n-times. How often does the divisor 2 appear? Still simple: n/2 times, because every second number is divisible by 2. Divisor 3? Every 3rd number is divisible by 3. I hope you can see the pattern already.
You could even reduce the loop to only loop till n/2, because bigger numbers obviously appear only once as divisor. Though I didn't bother to go further, because the biggest change is from your O(N * sqrt(N)) to O(N).
Let's start off with some math and reduce the O(n * sq(n)) factorization to O(n * log(log(n))) and for counting the sum of divisors the overall complexity is O(n * log(log(n)) + n * n^(1/3)).
For instance:
In Codeforces himanshujaju explains how we can optimize the solution of finding divisors of a number.
I am simplifying it a little bit.
Let, n as the product of three numbers p, q, and r.
so assume p * q * r = n, where p <= q <= r.
The maximum value of p = n^(1/3).
Now we can loop over all prime numbers in a range [2, n^(1/3)]
and try to reduce the time complexity of prime factorization.
We will split our number n into two numbers x and y => x * y = n.
And x contains prime factors up to n^(1/3) and y deals with higher prime factors greater than n^(1/3).
Thus gcd(x, y) = 1.
Now define F(n) as the number of prime factors of n.
From multiplicative rules, we can say that
F(x * y) = F(x) * F(y), if gcd(x, y) = 1.
For finding F(n) => F(x * y) = F(x) * F(y)
So first find F(x) then F(y) will F(n/x)
And there will 3 cases to cover for y:
1. y is a prime number: F(y) = 2.
2. y is the square of a prime number: F(y) = 3.
3. y is a product of two distinct prime numbers: F(y) = 4.
So once we are done with finding F(x) and F(y), we are also done with finding F(x * y) or F(n).
In Cp-Algorithm there is also a nice explanation of how to count the number of divisors on a number. And also in GeeksForGeeks a nice coding example of how to count the number of divisors of a number in an efficient way. One can check the articles and can generate a nice solution to this problem.
C++ implementation
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e6 + 11;
bool prime[maxn];
bool primesquare[maxn];
int table[maxn]; // for storing primes
void SieveOfEratosthenes()
{
for(int i = 2; i < maxn; i++){
prime[i] = true;
}
for(int i = 0; i < maxn; i++){
primesquare[i] = false;
}
// 1 is not a prime number
prime[1] = false;
for(int p = 2; p * p < maxn; p++){
// If prime[p] is not changed, then
// it is a prime
if(prime[p] == true){
// Update all multiples of p
for(int i = p * 2; i < maxn; i += p){
prime[i] = false;
}
}
}
int j = 0;
for(int p = 2; p < maxn; p++) {
if (prime[p]) {
// Storing primes in an array
table[j] = p;
// Update value in primesquare[p * p],
// if p is prime.
if(p < maxn / p) primesquare[p * p] = true;
j++;
}
}
}
// Function to count divisors
int countDivisors(int n)
{
// If number is 1, then it will have only 1
// as a factor. So, total factors will be 1.
if (n == 1)
return 1;
// ans will contain total number of distinct
// divisors
int ans = 1;
// Loop for counting factors of n
for(int i = 0;; i++){
// table[i] is not less than cube root n
if(table[i] * table[i] * table[i] > n)
break;
// Calculating power of table[i] in n.
int cnt = 1; // cnt is power of prime table[i] in n.
while (n % table[i] == 0){ // if table[i] is a factor of n
n = n / table[i];
cnt = cnt + 1; // incrementing power
}
// Calculating the number of divisors
// If n = a^p * b^q then total divisors of n
// are (p+1)*(q+1)
ans = ans * cnt;
}
// if table[i] is greater than cube root of n
// First case
if (prime[n])
ans = ans * 2;
// Second case
else if (primesquare[n])
ans = ans * 3;
// Third case
else if (n != 1)
ans = ans * 4;
return ans; // Total divisors
}
int main()
{
SieveOfEratosthenes();
int sum = 0;
int n = 5;
for(int i = 1; i <= n; i++){
sum += countDivisors(i);
}
cout << sum << endl;
return 0;
}
Output
n = 4 => 8
n = 5 => 10
Complexity
Time complexity: O(n * log(log(n)) + n * n^(1/3))
Space complexity: O(n)
Thanks, #largest_prime_is_463035818 for pointing out my mistake.

Minimize the maximum difference between the heights

Given heights of n towers and a value k. We need to either increase or decrease height of every tower by k (only once) where k > 0. The task is to minimize the difference between the heights of the longest and the shortest tower after modifications, and output this difference.
I get the intuition behind the solution but I can not comment on the correctness of the solution below.
// C++ program to find the minimum possible
// difference between maximum and minimum
// elements when we have to add/subtract
// every number by k
#include <bits/stdc++.h>
using namespace std;
// Modifies the array by subtracting/adding
// k to every element such that the difference
// between maximum and minimum is minimized
int getMinDiff(int arr[], int n, int k)
{
if (n == 1)
return 0;
// Sort all elements
sort(arr, arr+n);
// Initialize result
int ans = arr[n-1] - arr[0];
// Handle corner elements
int small = arr[0] + k;
int big = arr[n-1] - k;
if (small > big)
swap(small, big);
// Traverse middle elements
for (int i = 1; i < n-1; i ++)
{
int subtract = arr[i] - k;
int add = arr[i] + k;
// If both subtraction and addition
// do not change diff
if (subtract >= small || add <= big)
continue;
// Either subtraction causes a smaller
// number or addition causes a greater
// number. Update small or big using
// greedy approach (If big - subtract
// causes smaller diff, update small
// Else update big)
if (big - subtract <= add - small)
small = subtract;
else
big = add;
}
return min(ans, big - small);
}
// Driver function to test the above function
int main()
{
int arr[] = {4, 6};
int n = sizeof(arr)/sizeof(arr[0]);
int k = 10;
cout << "\nMaximum difference is "
<< getMinDiff(arr, n, k);
return 0;
}
Can anyone help me provide the correct solution to this problem?
The codes above work, however I don't find much explanation so I'll try to add some in order to help develop intuition.
For any given tower, you have two choices, you can either increase its height or decrease it.
Now if you decide to increase its height from say Hi to Hi + K, then you can also increase the height of all shorter towers as that won't affect the maximum. Similarly, if you decide to decrease the height of a tower from Hi to Hi − K, then you can also decrease the heights of all taller towers.
We will make use of this, we have n buildings, and we'll try to make each of the building the highest and see making which building the highest gives us the least range of heights(which is our answer). Let me explain:
So what we want to do is - 1) We first sort the array(you will soon see why).
2) Then for every building from i = 0 to n-2[1] , we try to make it the highest (by adding K to the building, adding K to the buildings on its left and subtracting K from the buildings on its right).
So say we're at building Hi, we've added K to it and the buildings before it and subtracted K from the buildings after it. So the minimum height of the buildings will now be min(H0 + K, Hi+1 - K), i.e. min(1st building + K, next building on right - K).
(Note: This is because we sorted the array. Convince yourself by taking a few examples.)
Likewise, the maximum height of the buildings will be max(Hi + K, Hn-1 - K), i.e. max(current building + K, last building on right - K).
3) max - min gives you the range.
[1]Note that when i = n-1. In this case, there is no building after the current building, so we're adding K to every building, so the range will merely be
height[n-1] - height[0] since K is added to everything, so it cancels out.
Here's a Java implementation based on the idea above:
class Solution {
int getMinDiff(int[] arr, int n, int k) {
Arrays.sort(arr);
int ans = arr[n-1] - arr[0];
int smallest = arr[0] + k, largest = arr[n-1]-k;
for(int i = 0; i < n-1; i++){
int min = Math.min(smallest, arr[i+1]-k);
int max = Math.max(largest, arr[i]+k);
if (min < 0) continue;
ans = Math.min(ans, max-min);
}
return ans;
}
}
int getMinDiff(int a[], int n, int k) {
sort(a,a+n);
int i,mx,mn,ans;
ans = a[n-1]-a[0]; // this can be one possible solution
for(i=0;i<n;i++)
{
if(a[i]>=k) // since height of tower can't be -ve so taking only +ve heights
{
mn = min(a[0]+k, a[i]-k);
mx = max(a[n-1]-k, a[i-1]+k);
ans = min(ans, mx-mn);
}
}
return ans;
}
This is C++ code, it passed all the test cases.
This python code might be of some help to you. Code is self explanatory.
def getMinDiff(arr, n, k):
arr = sorted(arr)
ans = arr[-1]-arr[0] #this case occurs when either we subtract k or add k to all elements of the array
for i in range(n):
mn=min(arr[0]+k, arr[i]-k) #after sorting, arr[0] is minimum. so adding k pushes it towards maximum. We subtract k from arr[i] to get any other worse (smaller) minimum. worse means increasing the diff b/w mn and mx
mx=max(arr[n-1]-k, arr[i]+k) # after sorting, arr[n-1] is maximum. so subtracting k pushes it towards minimum. We add k to arr[i] to get any other worse (bigger) maximum. worse means increasing the diff b/w mn and mx
ans = min(ans, mx-mn)
return ans
Here's a solution:-
But before jumping on to the solution, here's some info that is required to understand it. In the best case scenario, the minimum difference would be zero. This could happen only in two cases - (1) the array contain duplicates or (2) for an element, lets say 'x', there exists another element in the array which has the value 'x + 2*k'.
The idea is pretty simple.
First we would sort the array.
Next, we will try to find either the optimum value (for which the answer would come out to be zero) or at least the closest number to the optimum value using Binary Search
Here's a Javascript implementation of the algorithm:-
function minDiffTower(arr, k) {
arr = arr.sort((a,b) => a-b);
let minDiff = Infinity;
let prev = null;
for (let i=0; i<arr.length; i++) {
let el = arr[i];
// Handling case when the array have duplicates
if (el == prev) {
minDiff = 0;
break;
}
prev = el;
let targetNum = el + 2*k; // Lets say we have an element 10. The difference would be zero when there exists an element with value 10+2*k (this is the 'optimum value' as discussed in the explaination
let closestMatchDiff = Infinity; // It's not necessary that there would exist 'targetNum' in the array, so we try to find the closest to this number using Binary Search
let lb = i+1;
let ub = arr.length-1;
while (lb<=ub) {
let mid = lb + ((ub-lb)>>1);
let currMidDiff = arr[mid] > targetNum ? arr[mid] - targetNum : targetNum - arr[mid];
closestMatchDiff = Math.min(closestMatchDiff, currMidDiff);
if (arr[mid] == targetNum) break; // in this case the answer would be simply zero, no need to proceed further
else if (arr[mid] < targetNum) lb = mid+1;
else ub = mid-1;
}
minDiff = Math.min(minDiff, closestMatchDiff);
}
return minDiff;
}
Here is the C++ code, I have continued from where you left. The code is self-explanatory.
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int minDiff(int arr[], int n, int k)
{
// If the array has only one element.
if (n == 1)
{
return 0;
}
//sort all elements
sort(arr, arr + n);
//initialise result
int ans = arr[n - 1] - arr[0];
//Handle corner elements
int small = arr[0] + k;
int big = arr[n - 1] - k;
if (small > big)
{
// Swap the elements to keep the array sorted.
int temp = small;
small = big;
big = temp;
}
//traverse middle elements
for (int i = 0; i < n - 1; i++)
{
int subtract = arr[i] - k;
int add = arr[i] + k;
// If both subtraction and addition do not change the diff.
// Subtraction does not give new minimum.
// Addition does not give new maximum.
if (subtract >= small or add <= big)
{
continue;
}
// Either subtraction causes a smaller number or addition causes a greater number.
//Update small or big using greedy approach.
// if big-subtract causes smaller diff, update small Else update big
if (big - subtract <= add - small)
{
small = subtract;
}
else
{
big = add;
}
}
return min(ans, big - small);
}
int main(void)
{
int arr[] = {1, 5, 15, 10};
int n = sizeof(arr) / sizeof(arr[0]);
int k = 3;
cout << "\nMaximum difference is: " << minDiff(arr, n, k) << endl;
return 0;
}
class Solution {
public:
int getMinDiff(int arr[], int n, int k) {
sort(arr, arr+n);
int diff = arr[n-1]-arr[0];
int mine, maxe;
for(int i = 0; i < n; i++)
arr[i]+=k;
mine = arr[0];
maxe = arr[n-1]-2*k;
for(int i = n-1; i > 0; i--){
if(arr[i]-2*k < 0)
break;
mine = min(mine, arr[i]-2*k);
maxe = max(arr[i-1], arr[n-1]-2*k);
diff = min(diff, maxe-mine);
}
return diff;
}
};
class Solution:
def getMinDiff(self, arr, n, k):
# code here
arr.sort()
res = arr[-1]-arr[0]
for i in range(1, n):
if arr[i]>=k:
# at a time we can increase or decrease one number only.
# Hence assuming we decrease ith elem, we will increase i-1 th elem.
# using this we basically find which is new_min and new_max possible
# and if the difference is smaller than res, we return the same.
new_min = min(arr[0]+k, arr[i]-k)
new_max = max(arr[-1]-k, arr[i-1]+k)
res = min(res, new_max-new_min)
return res

Given number N eliminate K digits to get maximum possible number

As the title says, the task is:
Given number N eliminate K digits to get maximum possible number. The digits must remain at their positions.
Example: n = 12345, k = 3, max = 45 (first three digits eliminated and digits mustn't be moved to another position).
Any idea how to solve this?
(It's not homework, I am preparing for an algorithm contest and solve problems on online judges.)
1 <= N <= 2^60, 1 <= K <= 20.
Edit: Here is my solution. It's working :)
#include <iostream>
#include <string>
#include <queue>
#include <vector>
#include <iomanip>
#include <algorithm>
#include <cmath>
using namespace std;
int main()
{
string n;
int k;
cin >> n >> k;
int b = n.size() - k - 1;
int c = n.size() - b;
int ind = 0;
vector<char> res;
char max = n.at(0);
for (int i=0; i<n.size() && res.size() < n.size()-k; i++) {
max = n.at(i);
ind = i;
for (int j=i; j<i+c; j++) {
if (n.at(j) > max) {
max = n.at(j);
ind = j;
}
}
b--;
c = n.size() - 1 - ind - b;
res.push_back(max);
i = ind;
}
for (int i=0; i<res.size(); i++)
cout << res.at(i);
cout << endl;
return 0;
}
Brute force should be fast enough for your restrictions: n will have max 19 digits. Generate all positive integers with numDigits(n) bits. If k bits are set, then remove the digits at positions corresponding to the set bits. Compare the result with the global optimum and update if needed.
Complexity: O(2^log n * log n). While this may seem like a lot and the same thing as O(n) asymptotically, it's going to be much faster in practice, because the logarithm in O(2^log n * log n) is a base 10 logarithm, which will give a much smaller value (1 + log base 10 of n gives you the number of digits of n).
You can avoid the log n factor by generating combinations of n taken n - k at a time and building the number made up of the chosen n - k positions as you generate each combination (pass it as a parameter). This basically means you solve the similar problem: given n, pick n - k digits in order such that the resulting number is maximum).
Note: there is a method to solve this that does not involve brute force, but I wanted to show the OP this solution as well, since he asked how it could be brute forced in the comments. For the optimal method, investigate what would happen if we built our number digit by digit from left to right, and, for each digit d, we would remove all currently selected digits that are smaller than it. When can we remove them and when can't we?
In the leftmost k+1 digits, find the largest one (let us say it is located at ith location. In case there are multiple occurrences choose the leftmost one). Keep it. Repeat the algorithm for k_new = k-i+1, newNumber = i+1 to n digits of the original number.
Eg. k=5 and number = 7454982641
First k+1 digits: 745498
Best number is 9 and it is located at location i=5.
new_k=1, new number = 82641
First k+1 digits: 82
Best number is 8 and it is located at i=1.
new_k=1, new number = 2641
First k+1 digits: 26
Best number is 6 and it is located at i=2
new_k=0, new number = 41
Answer: 98641
Complexity is O(n) where n is the size of the input number.
Edit: As iVlad mentioned, in the worst case complexity can be quadratic. You can avoid that by maintaining a heap of size at most k+1 which will increase complexity to O(nlogk).
Following may help:
void removeNumb(std::vector<int>& v, int k)
{
if (k == 0) { return; }
if (k >= v.size()) {
v.clear();
return;
}
for (int i = 0; i != v.size() - 1; )
{
if (v[i] < v[i + 1]) {
v.erase(v.begin() + i);
if (--k == 0) { return; }
i = std::max(i - 1, 0);
} else {
++i;
}
}
v.resize(v.size() - k);
}

How to reduce complexity of this code

Please can any one provide with a better algorithm then trying all the combinations for this problem.
Given an array A of N numbers, find the number of distinct pairs (i,
j) such that j >=i and A[i] = A[j].
First line of the input contains number of test cases T. Each test
case has two lines, first line is the number N, followed by a line
consisting of N integers which are the elements of array A.
For each test case print the number of distinct pairs.
Constraints:
1 <= T <= 10
1 <= N <= 10^6
-10^6 <= A[i] <= 10^6 for 0 <= i < N
I think that first sorting the array then finding frequency of every distinct integer and then adding nC2 of all the frequencies plus adding the length of the string at last. But unfortunately it gives wrong ans for some cases which are not known help. here is the implementation.
code:
#include <iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
long fun(long a) //to find the aC2 for given a
{
if (a == 1) return 0;
return (a * (a - 1)) / 2;
}
int main()
{
long t, i, j, n, tmp = 0;
long long count;
long ar[1000000];
cin >> t;
while (t--)
{
cin >> n;
for (i = 0; i < n; i++)
{
cin >> ar[i];
}
count = 0;
sort(ar, ar + n);
for (i = 0; i < n - 1; i++)
{
if (ar[i] == ar[i + 1])
{
tmp++;
}
else
{
count += fun(tmp + 1);
tmp = 0;
}
}
if (tmp != 0)
{
count += fun(tmp + 1);
}
cout << count + n << "\n";
}
return 0;
}
Keep a count of how many times each number appears in an array. Then iterate over the result array and add the triangular number for each.
For example(from the source test case):
Input:
3
1 2 1
count array = {0, 2, 1} // no zeroes, two ones, one two
pairs = triangle(0) + triangle(2) + triangle(1)
pairs = 0 + 3 + 1
pairs = 4
Triangle numbers can be computed by (n * n + n) / 2, and the whole thing is O(n).
Edit:
First, there's no need to sort if you're counting frequency. I see what you did with sorting, but if you just keep a separate array of frequencies, it's easier. It takes more space, but since the elements and array length are both restrained to < 10^6, the max you'll need is an int[10^6]. This easily fits in the 256MB space requirements given in the challenge. (whoops, since elements can go negative, you'll need an array twice that size. still well under the limit, though)
For the n choose 2 part, the part you had wrong is that it's an n+1 choose 2 problem. Since you can pair each one by itself, you have to add one to n. I know you were adding n at the end, but it's not the same. The difference between tri(n) and tri(n+1) is not one, but n.