The following code is from chapter 8.1.1 of (the second edition of) The Joy of Clojure by Fogus, Houser:
(defn contextual-eval [ctx expr]
(eval
`(let [~#(mapcat (fn [[k v]] [k `'~v]) ctx)] ; Build let bindings at compile time
~expr)))
(contextual-eval '{a 1, b 2} '(+ a b))
;;=> 3
(contextual-eval '{a 1, b 2} '(let [b 1000] (+ a b)))
;;=> 1001
I do not really understand the meaning of the construction `'~v. Can somebody please elaborate on that?
In the book, it is only said that
The bindings created use the interesting `'~v pattern to garner the value of the built
bindings at runtime.
For example
(contextual-eval '{a 1, b 2} '(+ a b))
is expanded to
(let [a '1 b '2] (+ a b)))
and I don't understand why those quotes are introduced, what they are good for.
Also, we have the following behaviour:
(contextual-eval '{a 1, b (+ a 1)} '(+ a b))
ClassCastException clojure.lang.PersistentList cannot be cast to java.lang.Number
(defn contextual-eval' [ctx expr]
(eval
`(let [~#(mapcat (fn [[k v]] [k v]) ctx)]
~expr)))
(contextual-eval' '{a 1, b (+ a 1)} '(+ a b))
;=> 3
That expression uses almost all of the special line-noise-looking symbols available in Clojure, so it's worth picking it apart:
` is a reader-macro for "syntax-quote"
"syntax-quote" is special among the reader macros because you can only call that function via it's short form. You can't for instance call something like (syntax-quote something-here ) instead you would write `something-here. It provides a rich set of options for specifying what parts of the expression after it should be evaluated and which should be taken literally.
'Is a reader-macro shortcut for the quote special form. It causes the expression that it wraps not to be evaluated, and instead to be treated as data. If you wanted to write a literal quote form without evaluating it, you could write `'something to get `(quote something) as the result. And this would cause the resulting quote expression not to be evaluated, just returned as is without running it yet.
~ is a part of the syntax of syntax-quote (it's "quote" with a syntax) that means "actually let this part run" so if you have a big list that you want taken literally (not run right now), except you have one item that you really do want evaluated right now, then you could write `(a b c ~d e f g) and d would be the only thing in that list that gets evaluated to whatever it's currently defined to be.
So now we can put it all together:
`'~ means "make a quote expression that contains the value of v as it is right now"
user> (def v 4)
#'user/v
user> `'~v
(quote 4)
And on to the motivation for this fancyness:
(contextual-eval '{a 1, b 2} '(+ a b))
seems like just adding some extra thinking without any benefit because it's basically just quoting the values 1 and 2. Since these are proper "values" they never change anyway.
Now if the expression was instead:
(contextual-eval
'{a (slurp "https://example.com/launch?getCode")
b the-big-red-button}
'(press b a))
Then it would make more sense to be careful about when that particular bit of code runs. So this pattern is about controlling which phase of a programs life actually runs the code. Clojure has several "times" when code can run:
at macro-evaluation time: while the code is being formed. (side effects here require much forethought).
when your namespaces are loading: this is when forms at the top level run. This often happens when you start you program and before main is invoked.
things that run as a result of running main
ps: the above definitions are tailored to the context of this question and not intended to use the "official" terms.
Related
Here's my failed attempt:
(defmacro until
[condition body setup increment]
`(let [c ~#condition]
(loop [i setup]
(when (not c)
(do
~#body
(recur ~#increment))))))
(def i 1)
(until (> i 5)
(println "Number " i)
0
(inc i))
I get: CompilerException java.lang.RuntimeException: Can't let qualified name: clojure-noob.core/c
I am expecting this output:
Number 1
Number 2
Number 3
Number 4
Number 5
What's wrong?
There are a few issues with the macro:
You need to generate symbols for bindings inside macros. A convenient way to do this is suffix the names with #. Otherwise the bindings in your macros could overshadow bindings elsewhere in your code.
Some of the macro inputs were unnecessarily spliced when unquoted i.e. ~# instead of ~
Here's a version of the macro that will compile/expand:
(defmacro until [condition body setup increment]
`(let [c# ~condition]
(loop [i# ~setup]
(when-not c#
~body
(recur ~increment)))))
But this will loop forever in your example because condition is only evaluated once and i's value would never change anyway. We could fix that:
(defmacro until [condition body increment]
`(loop []
(when-not ~condition
~body
~increment
(recur))))
And we need to make i mutable if we want to change its value:
(def i (atom 1))
(until (> #i 5)
(println "Number " #i)
(swap! i inc))
;; Number 1
;; Number 2
;; Number 3
;; Number 4
;; Number 5
But now until is starting to look a lot like the complement of while, and its extra complexity doesn't seem beneficial.
(defmacro until [test & body]
`(loop []
(when-not ~test
~#body
(recur))))
This version of until is identical to while except the test is inverted, and the sample code above with the atom still behaves correctly. We can further simplify until by using while directly, and it'll ultimately expand to the same code:
(defmacro until [test & body]
`(while (not ~test) ~#body))
Change the let line too:
...
`(let [c# ~#condition]
...
Then rename all references of c to c#. The postfix # generates a unique, non-namespaced-qualified identifier to ensure that the symbol created by the macro doesn't clash with any existing symbols in the context that the macro expands into. Whenever you bind a symbol in a quoted form, you should be using # to prevent collisions, unless you have a good reason to not use it.
Why is this necessary in this case? I can't remember exactly the reason, but if I recall correctly, any symbols bound in a syntax quoted form (`()) are namespace qualified, and you can't use a let to create namespace qualified symbols.
You can recreate the error by typing:
(let [a/a 1]
a/a)
If I have the following string containing a valid Clojure/ClojureScript form:
"(+ 1 (+ 2 (/ 6 3)))"
How would I evaluate the first "step" of this form? In other words, how would I turn the above form into this:
"(+ 1 (+ 2 2))"
and then turn that corresponding form into this:
"(+ 1 4)"
You use recursion.
You need to have a function that evaluates the numbers to themselves but if it's not a number you need to apply the operation on the evaluation of the arguments.. Thus
(evaluate '(+ 1 (+ 2 (/ 6 3))))
This should be treated as:
(+ (evaluate '1) (evaluate '(+ 2 (/ 6 3))))
When it starts doing your first step several steps are waiting for the results to be done as well.
Note I'm using list structure and not strings. With strings you would need to use some function to get it parsed.
The other answers are great if you want to execute code in steps, but I want to mention that this evaluation can also be visualized using a debugger. See below Cider's debugger in action:
By using cider-debug-defun-at-point we add a breakpoint on evaluate. Then when the evaluate definition is evaluated the breakpoint is hit, and we step through the code by pressing next repeatedly.
A debugger is very handy when you want to evaluate "steps" of forms.
Below is a very basic implementation that does what you're looking for. It would be more common to eval the entire form, but since you're wanting to just simplify the innermost expressions, this does it:
(defn leaf?
[x]
(and (list? x)
(symbol? (first x))
(not-any? list? (rest x))))
(defn eval-one
[expr]
(cond
(leaf? expr) (apply (-> (first expr) resolve var-get)
(rest expr))
(list? expr) (apply list (map eval-one expr))
:default expr
))
(read-string "(+ 1 (+ 2 (/ 6 3)))")
=> (+ 1 (+ 2 (/ 6 3)))
(eval-one *1)
=> (+ 1 (+ 2 2))
(eval-one *1)
=> (+ 1 4)
(eval-one *1)
=> 5
This is naive and for illustrative purposes only, so please don't be under the impression that a real eval would work this way.
We define a leaf as a list whose first element is a symbol and which does not contain any other lists which could be evaluated. We then process the form, evaluating leaf expressions, recursively evaluating non-leaf expressions which are lists, and for anything else, we just insert it into the resulting expression. The result is that all innermost expressions which can be evaluated, according to our definition, are evaluated.
To add to the other great answers, here is a simple function that should return the first form to evaluate in a given string:
(defn first-eval [form-str]
(let [form (read-string form-str)
tree-s (tree-seq sequential? identity form)]
(first (filter #(= % (flatten %)) tree-s))))
Usage:
(first-eval "(+ 1 (+ 2 (/ 6 3)))") ;; returns (/ 6 3)
tree-seq is fairly limited in it's ability to evalute ALL form, but it's a start.
I am programming something that doesn't have side-effects, but my code is not very readable.
Consider the following piece of code:
(let [csv_data (if header_row (cons header_row data_rows) data_rows)]
)
I'm trying to use csv_data in a block of code. What is a clean way of conditioning on the presence of a header_row? I've looked at if-let, but couldn't see how that could help here.
I have run into similar situations with functional for-loops as well where I'm binding the result to a local variable, and the code looks like a pile of expressions.
Do I really have to create a separate helper function in so many cases?
What am I missing here?
Use the cond->> macro
(let [csv_data (cond->> data_rows
header_row (cons header-row)]
)
It works like the regular ->> macro, but before each threading form a test expression has to be placed that determines whether the threading form will be used.
There is also cond->. Read more about threading macros here: Official threading macros guide
First, don't use underscore, prefer dashes.
Second, there is nothing wrong with a little helper function; after all, this seems to be a requirement for handling your particular data format.
Third, if you can change your data so that you can skip those decisions and have a uniform representation for all corner cases, this is even better. A header row contains a different kind of data (column names?), so you might prefer to keep them separate:
(let [csv {:header header :rows rows}]
...)
Or maybe at some point you could have "headers" and "rows" be of the same type: sequences of rows. Then you can concat them directly.
The ensure-x idiom is a very common way to normalize your data:
(defn ensure-list [data]
(and data (list data)))
For example:
user=> (ensure-list "something")
("something")
user=> (ensure-list ())
(())
user=> (ensure-list nil)
nil
And thus:
(let [csv (concat (ensure-list header) rows)]
...)
i would propose an utility macro. Something like this:
(defmacro update-when [check val-to-update f & params]
`(if-let [x# ~check]
(~f x# ~val-to-update ~#params)
~val-to-update))
user> (let [header-row :header
data-rows [:data1 :data2]]
(let [csv-data (update-when header-row data-rows cons)]
csv-data))
;;=> (:header :data1 :data2)
user> (let [header-row nil
data-rows [:data1 :data2]]
(let [csv-data (update-when header-row data-rows cons)]
csv-data))
;;=> [:data1 :data2]
it is quite universal, and lets you fulfill more complex tasks then just simple consing. Like for example you want to reverse some coll if check is trueish, and concat another list...
user> (let [header-row :header
data-rows [:data1 :data2]]
(let [csv-data (update-when header-row data-rows
(fn [h d & params] (apply concat (reverse d) params))
[1 2 3] ['a 'b 'c])]
csv-data))
;;=> (:data2 :data1 1 2 3 a b c)
update
as noticed by #amalloy , this macro should be a function:
(defn update-when [check val-to-update f & params]
(if check
(apply f check val-to-update params)
val-to-update))
After thinking about the "cost" of a one-line helper function in the namespace I've came up with a local function instead:
(let [merge_header_fn (fn [header_row data_rows]
(if header_row
(cons header_row data_rows)
data_rows))
csv_data (merge_header_fn header_row data_rows) ]
...
<use csv_data>
...
)
Unless someone can suggest a more elegant way of handling this, I will keep this as an answer.
My question is: how can I get the args list and expressions of a received function ?
I'm trying to do something like this:
(defn first-fn [[args exprs]]
(println "Args:" args)
(println "Exprs:" exprs))
(first-fn (fn [a b c] (println "something")))
So, first-fn would print:
Args: [a b c]
Exprs: (println "something")
My goal is to create a macro that can use the args list of the received function.
Thank you.
Edit:
Use case:
I'm using compojure https://github.com/weavejester/compojure
You can define routes like this:
(GET "/:id" [id] (body_here id))
But I would like to change the syntax to be:
(defn handler-fn [id] (body_here id))
...
(GET "/:id" handler-fn)
So the handler (body) can be extracted from the routes, and might be reused as well.
I tried to reuse compile-route https://github.com/weavejester/compojure/blob/master/src/compojure/core.clj#L172
(defmacro MY_GET [path fn-src]
(let [fn-fn (second fn-src)
arg-vec (nth fn-src 2)
forms (drop 3 fn-src)]
(compojure.core/compile-route :get path arg-vec forms)))
But when I call:
(MY_GET "/:id" handler-fn)
It says: Don't know how to create ISeq from: clojure.lang.Symbol
You cannot do this with functions, you directly need a macro to do this and even then it is not straight-forward. First, let's explain the difference: macros are basically evaluated at compile-time and the result of this evaluation is then evaluated at run-time. The interesting part is that the evaluation at compile-time gets the literal, unevaluated arguments to the macro as data and not, like normal functions would, the evaluated arguments at run-time. So, your approach cannot work, because at the time first-fn receives it's arguments (at run-time), they are already evaluated -- in your example, first-fn receives nil as arguments. Cf. the documentation at clojure-doc for a much better explanation.
Now, solving your request with a macro requires the macro to parse the arguments (remember: at compile time, code is data) that it receives -- i.e. in your example, it needs to parse the sequence (fn [a b c] (println "something")) that builds up the function call you hand over to it. Probably you would want to cover other cases besides the fn one (e.g. the # short-hand), that's what it makes the problem not straight-forward in the general case.
This parsing could in the end be handled by a normal function parsing, e.g. a sequence. So, try solving a different puzzle first: build a function parse-code-sequence that takes a sequence (that looks like the functions you would hand over) and returns the args and expr -- note the quote (') in front of fn.
user> (parse-code-sequence '(fn [a b c] (println "something")))
{args: [a b c], expr: (println "something")}
Some hints to this: in the example here, which is showing the most used case, the sequence just consists of three elements and you don't need the first one. But the general case is a little bit more complex, cf. the official documentation on fn.
A final remark: when you implement the macro, you need to think about what it resolves to -- just adding the print-statements is easy, but do you also want to evaluate the arguments normally (so your macro becomes something like a debugging aid) or do you want to do something else?
Update to reflect your use-case
Your MY-GET macro is not doing what you think it's doing.
Take a look at the arguments that the macro gets: why do you think it can magically retrieve the function definition of handler-fn, when all that you give as argument to MY_GET is the symbol/var handler-fn? You would need to retrieve the source, but this usually will not be possible (cf. this SO question on retrieving the source of a function definition).
You are also missing a backquote before the call to compile-route: you want the call to compile-route to happen at run-time, not at compile time. Currently, the result of the macro evaluation is the result of the call to compile-route (at compile-time). Take a look at macroexpand which would show you the result of the macro-expansion. Basically, you want the macro to return the call to compile-route.
I don't see any easy way that you could accomplish what you look for. The argument vector of a route definition is defining what needs to be handed over. Even if you extract that to a function definition, compojure still needs to know what to hand over to that function.
Here is an example of what you could do.
(ns xyz
(:require
[tupelo.core :as t]
))
(t/refer-tupelo)
(spyx *clojure-version*)
(defmacro dissect [ fn-src ]
(let [fn-fn (first fn-src)
arg-vec (second fn-src)
forms (drop 2 fn-src) ]
(spyx fn-fn)
(spyx arg-vec)
(spyx forms)
; Here is the return value; ie the transformed code
`(defn my-fn
~arg-vec
(apply + ~arg-vec))))
; show the result
(newline)
(println
(macroexpand-1
'(dissect
(fn [a b c]
(println "the answer is")
42))))
; call it for real
(newline)
(dissect
(fn [a b c]
(println "the answer is")
42))
; use the generated function
(newline)
(spyx (my-fn 1 2 3))
with result:
*clojure-version* => {:major 1, :minor 8, :incremental 0, :qualifier nil}
fn-fn => fn
arg-vec => [a b c]
forms => ((println "the answer is") 42)
(clojure.core/defn tst.clj.core/my-fn [a b c] (clojure.core/apply clojure.core/+ [a b c]))
fn-fn => fn
arg-vec => [a b c]
forms => ((println "the answer is") 42)
(my-fn 1 2 3) => 6
Your project.clj needs the following to make spyx work:
:dependencies [
[tupelo "0.9.11"]
So I thought it would be a nice idea to name a function that calculates the exponential ^, but it seems like the caret actually does something special, as the Clojure REPL generates an error when evaluating '^. Googling mostly gave me this, so I was wondering what the actualy use for the caret in Clojure is.
(Also, would it be possible after all to name a function ^?)
^ is "the meta character" it tells the reader to add the symbol starting with ^ as metadata to the next symbol (provided it is something that implements IMetas)
user=> (def x ^:IamMeta [1 2 3])
#'user/x
user=> x
[1 2 3]
user=> (meta x)
{:tag :IamMeta}
user=>
You can learn a lot about how clojure works under the hood by looking at the meta of things, for instance functions:
user=> (meta foo)
{:ns #<Namespace user>,
:name foo, :file "NO_SOURCE_PATH",
:line 5, :arglists ([s])}
this is very often used for type hints
(defn foo [^String s] (.charAt s 1))
it is generally a good idea to turn on reflection warnings (set! *warn-on-reflection* true) and then add type hints until the warnings go away. without these Clojure will look up the type of the function operands at run-time, which saves you the trouble of fussing with types though at a slight cost.
PS: My next favorite reader character is the "dispatch" character #, it is well worth learning about it next :)
PPS: this is different in clojure 1.2.x vs clojure 1.3.x
in Clojure 1.2.1 metadata does not compose when you use the meta-character:
user=> (def foo ^:foo ^:bar [1 2 3])
#'user/foo
user=> (meta foo)
{:tag :foo}
and in 1.3 it "does the right thing" and also keywords are options instead of "tags":
user=> (def foo ^:foo ^:bar [1 2 3])
#'user/foo
user=> (meta foo)
{:foo true, :bar true}
It seems to me that the answer to your question is, unfortunately, no. In Clojure, you cannot name a function ^.
I tried the following in the REPL:
user=> (println \^)
^
nil
This seems to imply that you can escape the carat (^) with a backslash. However, if I try to declare a function using \^ as a name then I get an error message:
user=> (defn \^ [n e] (cond (= e 0) 1 :else (* n (\^ n (- e 1)))))
IllegalArgumentException First argument to defn must be a symbol
clojure.core/defn (core.clj:277)
The same code works with a regular text name:
user=> (defn exp [n e] (cond (= e 0) 1 :else (* n (exp n (- e 1)))))
#'user/exp
user=> (exp 3 3)
27
I would be delighted if someone with better Clojure-fu than mine could prove me wrong! :)