Related
I have a list of 100 random integers. Each random integer has a value from 0 to 99. Duplicates are allowed, so the list could be something like
56, 1, 1, 1, 1, 0, 2, 6, 99...
I need to find the smallest integer (>= 0) is that is not contained in the list.
My initial solution is this:
vector<int> integerList(100); //list of random integers
...
vector<bool> listedIntegers(101, false);
for (int theInt : integerList)
{
listedIntegers[theInt] = true;
}
int smallestInt;
for (int j = 0; j < 101; j++)
{
if (!listedIntegers[j])
{
smallestInt = j;
break;
}
}
But that requires a secondary array for book-keeping and a second (potentially full) list iteration. I need to perform this task millions of times (the actual application is in a greedy graph coloring algorithm, where I need to find the smallest unused color value with a vertex adjacency list), so I'm wondering if there's a clever way to get the same result without so much overhead?
It's been a year, but ...
One idea that comes to mind is to keep track of the interval(s) of unused values as you iterate the list. To allow efficient lookup, you could keep intervals as tuples in a binary search tree, for example.
So, using your sample data:
56, 1, 1, 1, 1, 0, 2, 6, 99...
You would initially have the unused interval [0..99], and then, as each input value is processed:
56: [0..55][57..99]
1: [0..0][2..55][57..99]
1: no change
1: no change
1: no change
0: [2..55][57..99]
2: [3..55][57..99]
6: [3..5][7..55][57..99]
99: [3..5][7..55][57..98]
Result (lowest value in lowest remaining interval): 3
I believe there is no faster way to do it. What you can do in your case is to reuse vector<bool>, you need to have just one such vector per thread.
Though the better approach might be to reconsider the whole algorithm to eliminate this step at all. Maybe you can update least unused color on every step of the algorithm?
Since you have to scan the whole list no matter what, the algorithm you have is already pretty good. The only improvement I can suggest without measuring (that will surely speed things up) is to get rid of your vector<bool>, and replace it with a stack-allocated array of 4 32-bit integers or 2 64-bit integers.
Then you won't have to pay the cost of allocating an array on the heap every time, and you can get the first unused number (the position of the first 0 bit) much faster. To find the word that contains the first 0 bit, you only need to find the first one that isn't the maximum value, and there are bit twiddling hacks you can use to get the first 0 bit in that word very quickly.
You program is already very efficient, in O(n). Only marginal gain can be found.
One possibility is to divide the number of possible values in blocks of size block, and to register
not in an array of bool but in an array of int, in this case memorizing the value modulo block.
In practice, we replace a loop of size N by a loop of size N/block plus a loop of size block.
Theoretically, we could select block = sqrt(N) = 12 in order to minimize the quantity N/block + block.
In the program hereafter, block of size 8 are selected, assuming that dividing integers by 8 and calculating values modulo 8 should be fast.
However, it is clear that a gain, if any, can be obtained only for a minimum value rather large!
constexpr int N = 100;
int find_min1 (const std::vector<int> &IntegerList) {
constexpr int Size = 13; //N / block
constexpr int block = 8;
constexpr int Vmax = 255; // 2^block - 1
int listedBlocks[Size] = {0};
for (int theInt : IntegerList) {
listedBlocks[theInt / block] |= 1 << (theInt % block);
}
for (int j = 0; j < Size; j++) {
if (listedBlocks[j] == Vmax) continue;
int &k = listedBlocks[j];
for (int b = 0; b < block; b++) {
if ((k%2) == 0) return block * j + b;
k /= 2;
}
}
return -1;
}
Potentially you can reduce the last step to O(1) by using some bit manipulation, in your case __int128, set the corresponding bits in loop one and call something like __builtin_clz or use the appropriate bit hack
The best solution I could find for finding smallest integer from a set is https://codereview.stackexchange.com/a/179042/31480
Here are c++ version.
int solution(std::vector<int>& A)
{
for (std::vector<int>::size_type i = 0; i != A.size(); i++)
{
while (0 < A[i] && A[i] - 1 < A.size()
&& A[i] != i + 1
&& A[i] != A[A[i] - 1])
{
int j = A[i] - 1;
auto tmp = A[i];
A[i] = A[j];
A[j] = tmp;
}
}
for (std::vector<int>::size_type i = 0; i != A.size(); i++)
{
if (A[i] != i+1)
{
return i + 1;
}
}
return A.size() + 1;
}
My goal is find how many times a complex number exists in the two vectors.
wr_den : vector with real part
wi_den : vector with imaginary part
ordem_den[0] : vectors number of elements (in this case is 3)
Example:
wr_den[0] = 1 wi_den[0] = 1
wr_den[1] = 1 wi_den[1] = 1
wr_den[2] = 1 wi_den[2] = 0
Result:
index 0: 2
index 1: 2
index 2: 1
My code
for (it = 0; it < ordem_den[0]; it++)
{
times = 0;
for(contador = 0; contador < ordem_den[0]; contador++)
{
p = wr_den[it];
x = wr_den[contador];
y = wi_den[it];
t = wi_den[contador];
if ((p == x) && (t == y))
{
times++;
}
}
}
A std::multiset would probably be the thing here, assuming that the perceived problem is O(n^2) time of current code.
Just first iterate throught the index positions, putting those numbers in the set. Then iterate again, now checking number of occurrences of each number at each given index position.
You don't specify the number types used. Be aware that non-integer floating point values may not compare as equal even though they look equal on output. That may or may not be a problem.
Say I have a set of numbers from [0, ....., 499]. Combinations are currently being generated sequentially using the C++ std::next_permutation. For reference, the size of each tuple I am pulling out is 3, so I am returning sequential results such as [0,1,2], [0,1,3], [0,1,4], ... [497,498,499].
Now, I want to parallelize the code that this is sitting in, so a sequential generation of these combinations will no longer work. Are there any existing algorithms for computing the ith combination of 3 from 500 numbers?
I want to make sure that each thread, regardless of the iterations of the loop it gets, can compute a standalone combination based on the i it is iterating with. So if I want the combination for i=38 in thread 1, I can compute [1,2,5] while simultaneously computing i=0 in thread 2 as [0,1,2].
EDIT Below statement is irrelevant, I mixed myself up
I've looked at algorithms that utilize factorials to narrow down each individual element from left to right, but I can't use these as 500! sure won't fit into memory. Any suggestions?
Here is my shot:
int k = 527; //The kth combination is calculated
int N=500; //Number of Elements you have
int a=0,b=1,c=2; //a,b,c are the numbers you get out
while(k >= (N-a-1)*(N-a-2)/2){
k -= (N-a-1)*(N-a-2)/2;
a++;
}
b= a+1;
while(k >= N-1-b){
k -= N-1-b;
b++;
}
c = b+1+k;
cout << "["<<a<<","<<b<<","<<c<<"]"<<endl; //The result
Got this thinking about how many combinations there are until the next number is increased. However it only works for three elements. I can't guarantee that it is correct. Would be cool if you compare it to your results and give some feedback.
If you are looking for a way to obtain the lexicographic index or rank of a unique combination instead of a permutation, then your problem falls under the binomial coefficient. The binomial coefficient handles problems of choosing unique combinations in groups of K with a total of N items.
I have written a class in C# to handle common functions for working with the binomial coefficient. It performs the following tasks:
Outputs all the K-indexes in a nice format for any N choose K to a file. The K-indexes can be substituted with more descriptive strings or letters.
Converts the K-indexes to the proper lexicographic index or rank of an entry in the sorted binomial coefficient table. This technique is much faster than older published techniques that rely on iteration. It does this by using a mathematical property inherent in Pascal's Triangle and is very efficient compared to iterating over the set.
Converts the index in a sorted binomial coefficient table to the corresponding K-indexes. I believe it is also faster than older iterative solutions.
Uses Mark Dominus method to calculate the binomial coefficient, which is much less likely to overflow and works with larger numbers.
The class is written in .NET C# and provides a way to manage the objects related to the problem (if any) by using a generic list. The constructor of this class takes a bool value called InitTable that when true will create a generic list to hold the objects to be managed. If this value is false, then it will not create the table. The table does not need to be created in order to use the 4 above methods. Accessor methods are provided to access the table.
There is an associated test class which shows how to use the class and its methods. It has been extensively tested with 2 cases and there are no known bugs.
To read about this class and download the code, see Tablizing The Binomial Coeffieicent.
The following tested code will iterate through each unique combinations:
public void Test10Choose5()
{
String S;
int Loop;
int N = 500; // Total number of elements in the set.
int K = 3; // Total number of elements in each group.
// Create the bin coeff object required to get all
// the combos for this N choose K combination.
BinCoeff<int> BC = new BinCoeff<int>(N, K, false);
int NumCombos = BinCoeff<int>.GetBinCoeff(N, K);
// The Kindexes array specifies the indexes for a lexigraphic element.
int[] KIndexes = new int[K];
StringBuilder SB = new StringBuilder();
// Loop thru all the combinations for this N choose K case.
for (int Combo = 0; Combo < NumCombos; Combo++)
{
// Get the k-indexes for this combination.
BC.GetKIndexes(Combo, KIndexes);
// Verify that the Kindexes returned can be used to retrive the
// rank or lexigraphic order of the KIndexes in the table.
int Val = BC.GetIndex(true, KIndexes);
if (Val != Combo)
{
S = "Val of " + Val.ToString() + " != Combo Value of " + Combo.ToString();
Console.WriteLine(S);
}
SB.Remove(0, SB.Length);
for (Loop = 0; Loop < K; Loop++)
{
SB.Append(KIndexes[Loop].ToString());
if (Loop < K - 1)
SB.Append(" ");
}
S = "KIndexes = " + SB.ToString();
Console.WriteLine(S);
}
}
You should be able to port this class over fairly easily to C++. You probably will not have to port over the generic part of the class to accomplish your goals. Your test case of 500 choose 3 yields 20,708,500 unique combinations, which will fit in a 4 byte int. If 500 choose 3 is simply an example case and you need to choose combinations greater than 3, then you will have to use longs or perhaps fixed point int.
You can describe a particular selection of 3 out of 500 objects as a triple (i, j, k), where i is a number from 0 to 499 (the index of the first number), j ranges from 0 to 498 (the index of the second, skipping over whichever number was first), and k ranges from 0 to 497 (index of the last, skipping both previously-selected numbers). Given that, it's actually pretty easy to enumerate all the possible selections: starting with (0,0,0), increment k until it gets to its maximum value, then increment j and reset k to 0 and so on, until j gets to its maximum value, and so on, until j gets to its own maximum value; then increment i and reset both j and k and continue.
If this description sounds familiar, it's because it's exactly the same way that incrementing a base-10 number works, except that the base is much funkier, and in fact the base varies from digit to digit. You can use this insight to implement a very compact version of the idea: for any integer n from 0 to 500*499*498, you can get:
struct {
int i, j, k;
} triple;
triple AsTriple(int n) {
triple result;
result.k = n % 498;
n = n / 498;
result.j = n % 499;
n = n / 499;
result.i = n % 500; // unnecessary, any legal n will already be between 0 and 499
return result;
}
void PrintSelections(triple t) {
int i, j, k;
i = t.i;
j = t.j + (i <= j ? 1 : 0);
k = t.k + (i <= k ? 1 : 0) + (j <= k ? 1 : 0);
std::cout << "[" << i << "," << j << "," << k << "]" << std::endl;
}
void PrintRange(int start, int end) {
for (int i = start; i < end; ++i) {
PrintSelections(AsTriple(i));
}
}
Now to shard, you can just take the numbers from 0 to 500*499*498, divide them into subranges in any way you'd like, and have each shard compute the permutation for each value in its subrange.
This trick is very handy for any problem in which you need to enumerate subsets.
Is there a way in linear time by which we can find which is the second largest element of an array ?
Array elements can be positive, negative or zero.
Elements can be repetitive.
No STLs allowed.
Python can be used.
Solution : Sort the array and take the second element but Sorting not allowed
Modification : By definition second largest element will be the one which is numerically smaller. Like if we have
Arr = {5,5,4,3,1}
Then second largest is 4
Addition
Lets say if i want to generalize the question to kth largest and complexity less than linear like nlogn, what can be the solution.
Go through the array, keeping 2 memory slots to record the 2 largest elements seen so far. Return the smaller of the two.
.... is there anything tricky about this question that I can't see?
You can, this is the pseudo algorithm:
max = 2max = SMALLEST_INT_VALUE;
for element in v:
if element > max:
2max = max;
max = element;
else if element > 2max:
2max = element;
2max is the value you are looking for.
The algorithm won't return a correct value for particular cases, such as an array where its elements are equal.
If you want a true O(n) algorithm, and want to find nth largest element in array then you should use quickselect (it's basically quicksort where you throw out the partition that you're not interested in), and the below is a great writeup, with the runtime analysis:
http://pine.cs.yale.edu/pinewiki/QuickSelect
Pseudo code:
int max[2] = { array[0], array[1] }
if(max[1] < max[0]) swap them
for (int i = 2; i < array.length(); i++) {
if(array[i] >= max[0]) max[1] = max[0]; max[0] = array[i]
else if(array[i] >= max[1]) max[1] = array[i];
}
Now, max array contains the max 2 elements.
create a temporary array of size 3,
copy first 3 elements there,
sort the temporary array,
replace the last one in the temporary array with the 4th element from the source array,
sort the temporary array,
replace the last one in the temporary array with the 5th element from the source array,
sort the temporary array,
etc.
Sorting array of size 3 is constant time and you do that once for each element of the source array, hence linear overall time.
Yep. You tagged this as C/C++ but you mentioned you could do it in Python. Anyway, here is the algorithm:
Create the array (obviously).
If the first item is greater than the second item, set first variable to the first item and second variable to second item. Otherwise, do vise-versa.
Loop through all the items (except the first two).
If the item from the array is greater than first variable, set second variable to first variable and first variable to the item. Else if the item is greater than second variable set second variable to the item.
The second variable is your answer.
list = [-1,6,9,2,0,2,8,10,8,-10]
if list[0] > list[1]:
first = list[0]
second = list[1]
else:
first = list[1]
second = list[0]
for i in range(2, len(list)):
if list[i] > first:
first, second = list[i], first
elif list[i] > second:
second = list[i]
print("First:", first)
print("Second:", second)
// assuming that v is the array and length is its length
int m1 = max(v[0], v[1]), m2 = min(v[0], v[1]);
for (int i=2; i<length; i++) {
if (likely(m2 >= v[i]))
continue;
if (unlikely(m1 < v[i]))
m2 = m1, m1 = v[i];
else
m2 = v[i];
}
The result you need is in m2 (likely and unlikely are macros defined as here for performance purposes, you can simply remove them if you don't need them).
I think the other answers have not accounted for the fact that in an array like [0, 1, 1], the second largest is 0 (according to the updated problem definition). Furthermore, all mentions of quickselect are not O(n) but rather O(n^2) and are doing much more work than necessary (on top of which that is a sorting algorithm which the problem statement disallowed). Here is a very similar algorithm to Simone's but updated to return the second largest unique element:
def find_second(numbers):
top = numbers[0]
second = None
for num in numbers[1:]:
if second is None:
if num < top: second = num
elif num > top:
second = top
top = num
else:
if num > second:
if num > top:
second = top
top = num
elif num < top: second = num
if second is not None: return second
return top
if __name__ == '__main__':
print "The second largest is %d" % find_second([1,2,3,4,4,5,5])
// Second larger element and its position(s)
int[] tab = { 12, 1, 21, 12, 8, 8, 1 };
int[] tmp = Arrays.copyOf(tab, tab.length);
int secMax = 0;
Arrays.sort(tmp);
secMax = tmp[tmp.length - 2];
System.out.println(secMax);
List<Integer> positions = new ArrayList<>();
for (int i = 0; i < tab.length; i++) {
if (tab[i] == secMax) {
positions.add(i);
}
}
System.out.println(positions);
I want to know how I can implement a better solution than O(N^3). Its similar to the knapsack and subset problems. In my question N<=8000, so i started computing sums of pairs of numbers and stored them in an array. Then I would binary search in the sorted set for each (M-sum[i]) value but the problem arises how will I keep track of the indices which summed up to sum[i]. I know I could declare extra space but my Sums array already has a size of 64 million, and hence I couldn't complete my O(N^2) solution. Please advice if I can do some optimization or if I need some totally different technique.
You could benefit from some generic tricks to improve the performance of your algorithm.
1) Don't store what you use only once
It is a common error to store more than you really need. Whenever your memory requirement seem to blow up the first question to ask yourself is Do I really need to store that stuff ? Here it turns out that you do not (as Steve explained in comments), compute the sum of two numbers (in a triangular fashion to avoid repeating yourself) and then check for the presence of the third one.
We drop the O(N**2) memory complexity! Now expected memory is O(N).
2) Know your data structures, and in particular: the hash table
Perfect hash tables are rarely (if ever) implemented, but it is (in theory) possible to craft hash tables with O(1) insertion, check and deletion characteristics, and in practice you do approach those complexities (tough it generally comes at the cost of a high constant factor that will make you prefer so-called suboptimal approaches).
Therefore, unless you need ordering (for some reason), membership is better tested through a hash table in general.
We drop the 'log N' term in the speed complexity.
With those two recommendations you easily get what you were asking for:
Build a simple hash table: the number is the key, the index the satellite data associated
Iterate in triangle fashion over your data set: for i in [0..N-1]; for j in [i+1..N-1]
At each iteration, check if K = M - set[i] - set[j] is in the hash table, if it is, extract k = table[K] and if k != i and k != j store the triple (i,j,k) in your result.
If a single result is sufficient, you can stop iterating as soon as you get the first result, otherwise you just store all the triples.
There is a simple O(n^2) solution to this that uses only O(1)* memory if you only want to find the 3 numbers (O(n) memory if you want the indices of the numbers and the set is not already sorted).
First, sort the set.
Then for each element in the set, see if there are two (other) numbers that sum to it. This is a common interview question and can be done in O(n) on a sorted set.
The idea is that you start a pointer at the beginning and one at the end, if your current sum is not the target, if it is greater than the target, decrement the end pointer, else increment the start pointer.
So for each of the n numbers we do an O(n) search and we get an O(n^2) algorithm.
*Note that this requires a sort that uses O(1) memory. Hell, since the sort need only be O(n^2) you could use bubble sort. Heapsort is O(n log n) and uses O(1) memory.
Create a "bitset" of all the numbers which makes it constant time to check if a number is there. That is a start.
The solution will then be at most O(N^2) to make all combinations of 2 numbers.
The only tricky bit here is when the solution contains a repeat, but it doesn't really matter, you can discard repeats unless it is the same number 3 times because you will hit the "repeat" case when you pair up the 2 identical numbers and see if the unique one is present.
The 3 times one is simply a matter of checking if M is divisible by 3 and whether M/3 appears 3 times as you create the bitset.
This solution does require creating extra storage, up to MAX/8 where MAX is the highest number in your set. You could use a hash table though if this number exceeds a certain point: still O(1) lookup.
This appears to work for me...
#include <iostream>
#include <set>
#include <algorithm>
using namespace std;
int main(void)
{
set<long long> keys;
// By default this set is sorted
set<short> N;
N.insert(4);
N.insert(8);
N.insert(19);
N.insert(5);
N.insert(12);
N.insert(35);
N.insert(6);
N.insert(1);
typedef set<short>::iterator iterator;
const short M = 18;
for(iterator i(N.begin()); i != N.end() && *i < M; ++i)
{
short d1 = M - *i; // subtract the value at this location
// if there is more to "consume"
if (d1 > 0)
{
// ignore below i as we will have already scanned it...
for(iterator j(i); j != N.end() && *j < M; ++j)
{
short d2 = d1 - *j; // again "consume" as much as we can
// now the remainder must eixst in our set N
if (N.find(d2) != N.end())
{
// means that the three numbers we've found, *i (from first loop), *j (from second loop) and d2 exist in our set of N
// now to generate the unique combination, we need to generate some form of key for our keys set
// here we take advantage of the fact that all the numbers fit into a short, we can construct such a key with a long long (8 bytes)
// the 8 byte key is made up of 2 bytes for i, 2 bytes for j and 2 bytes for d2
// and is formed in sorted order
long long key = *i; // first index is easy
// second index slightly trickier, if it's less than j, then this short must be "after" i
if (*i < *j)
key = (key << 16) | *j;
else
key |= (static_cast<int>(*j) << 16); // else it's before i
// now the key is either: i | j, or j | i (where i & j are two bytes each, and the key is currently 4 bytes)
// third index is a bugger, we have to scan the key in two byte chunks to insert our third short
if ((key & 0xFFFF) < d2)
key = (key << 16) | d2; // simple, it's the largest of the three
else if (((key >> 16) & 0xFFFF) < d2)
key = (((key << 16) | (key & 0xFFFF)) & 0xFFFF0000FFFFLL) | (d2 << 16); // its less than j but greater i
else
key |= (static_cast<long long>(d2) << 32); // it's less than i
// Now if this unique key already exists in the hash, this won't insert an entry for it
keys.insert(key);
}
// else don't care...
}
}
}
// tells us how many unique combinations there are
cout << "size: " << keys.size() << endl;
// prints out the 6 bytes for representing the three numbers
for(set<long long>::iterator it (keys.begin()), end(keys.end()); it != end; ++it)
cout << hex << *it << endl;
return 0;
}
Okay, here is attempt two: this generates the output:
start: 19
size: 4
10005000c
400060008
500050008
600060006
As you can see from there, the first "key" is the three shorts (in hex), 0x0001, 0x0005, 0x000C (which is 1, 5, 12 = 18), etc.
Okay, cleaned up the code some more, realised that the reverse iteration is pointless..
My Big O notation is not the best (never studied computer science), however I think the above is something like, O(N) for outer and O(NlogN) for inner, reason for log N is that std::set::find() is logarithmic - however if you replace this with a hashed set, the inner loop could be as good as O(N) - please someone correct me if this is crap...
I combined the suggestions by #Matthieu M. and #Chris Hopman, and (after much trial and error) I came up with this algorithm that should be O(n log n + log (n-k)! + k) in time and O(log(n-k)) in space (the stack). That should be O(n log n) overall. It's in Python, but it doesn't use any Python-specific features.
import bisect
def binsearch(r, q, i, j): # O(log (j-i))
return bisect.bisect_left(q, r, i, j)
def binfind(q, m, i, j):
while i + 1 < j:
r = m - (q[i] + q[j])
if r < q[i]:
j -= 1
elif r > q[j]:
i += 1
else:
k = binsearch(r, q, i + 1, j - 1) # O(log (j-i))
if not (i < k < j):
return None
elif q[k] == r:
return (i, k, j)
else:
return (
binfind(q, m, i + 1, j)
or
binfind(q, m, i, j - 1)
)
def find_sumof3(q, m):
return binfind(sorted(q), m, 0, len(q) - 1)
Not trying to boast about my programming skills or add redundant stuff here.
Just wanted to provide beginners with an implementation in C++.
Implementation based on the pseudocode provided by Charles Ma at Given an array of numbers, find out if 3 of them add up to 0.
I hope the comments help.
#include <iostream>
using namespace std;
void merge(int originalArray[], int low, int high, int sizeOfOriginalArray){
// Step 4: Merge sorted halves into an auxiliary array
int aux[sizeOfOriginalArray];
int auxArrayIndex, left, right, mid;
auxArrayIndex = low;
mid = (low + high)/2;
right = mid + 1;
left = low;
// choose the smaller of the two values "pointed to" by left, right
// copy that value into auxArray[auxArrayIndex]
// increment either left or right as appropriate
// increment auxArrayIndex
while ((left <= mid) && (right <= high)) {
if (originalArray[left] <= originalArray[right]) {
aux[auxArrayIndex] = originalArray[left];
left++;
auxArrayIndex++;
}else{
aux[auxArrayIndex] = originalArray[right];
right++;
auxArrayIndex++;
}
}
// here when one of the two sorted halves has "run out" of values, but
// there are still some in the other half; copy all the remaining values
// to auxArray
// Note: only 1 of the next 2 loops will actually execute
while (left <= mid) {
aux[auxArrayIndex] = originalArray[left];
left++;
auxArrayIndex++;
}
while (right <= high) {
aux[auxArrayIndex] = originalArray[right];
right++;
auxArrayIndex++;
}
// all values are in auxArray; copy them back into originalArray
int index = low;
while (index <= high) {
originalArray[index] = aux[index];
index++;
}
}
void mergeSortArray(int originalArray[], int low, int high){
int sizeOfOriginalArray = high + 1;
// base case
if (low >= high) {
return;
}
// Step 1: Find the middle of the array (conceptually, divide it in half)
int mid = (low + high)/2;
// Steps 2 and 3: Recursively sort the 2 halves of origianlArray and then merge those
mergeSortArray(originalArray, low, mid);
mergeSortArray(originalArray, mid + 1, high);
merge(originalArray, low, high, sizeOfOriginalArray);
}
//O(n^2) solution without hash tables
//Basically using a sorted array, for each number in an array, you use two pointers, one starting from the number and one starting from the end of the array, check if the sum of the three elements pointed to by the pointers (and the current number) is >, < or == to the targetSum, and advance the pointers accordingly or return true if the targetSum is found.
bool is3SumPossible(int originalArray[], int targetSum, int sizeOfOriginalArray){
int high = sizeOfOriginalArray - 1;
mergeSortArray(originalArray, 0, high);
int temp;
for (int k = 0; k < sizeOfOriginalArray; k++) {
for (int i = k, j = sizeOfOriginalArray-1; i <= j; ) {
temp = originalArray[k] + originalArray[i] + originalArray[j];
if (temp == targetSum) {
return true;
}else if (temp < targetSum){
i++;
}else if (temp > targetSum){
j--;
}
}
}
return false;
}
int main()
{
int arr[] = {2, -5, 10, 9, 8, 7, 3};
int size = sizeof(arr)/sizeof(int);
int targetSum = 5;
//3Sum possible?
bool ans = is3SumPossible(arr, targetSum, size); //size of the array passed as a function parameter because the array itself is passed as a pointer. Hence, it is cummbersome to calculate the size of the array inside is3SumPossible()
if (ans) {
cout<<"Possible";
}else{
cout<<"Not possible";
}
return 0;
}