Filling an array during compilation [duplicate] - c++

Hello i'm learning C++11, I'm wondering how to make a constexpr 0 to n array, for example:
n = 5;
int array[] = {0 ... n};
so array may be {0, 1, 2, 3, 4, 5}

In C++14 it can be easily done with a constexpr constructor and a loop:
#include <iostream>
template<int N>
struct A {
constexpr A() : arr() {
for (auto i = 0; i != N; ++i)
arr[i] = i;
}
int arr[N];
};
int main() {
constexpr auto a = A<4>();
for (auto x : a.arr)
std::cout << x << '\n';
}

Unlike those answers in the comments to your question, you can do this without compiler extensions.
#include <iostream>
template<int N, int... Rest>
struct Array_impl {
static constexpr auto& value = Array_impl<N - 1, N, Rest...>::value;
};
template<int... Rest>
struct Array_impl<0, Rest...> {
static constexpr int value[] = { 0, Rest... };
};
template<int... Rest>
constexpr int Array_impl<0, Rest...>::value[];
template<int N>
struct Array {
static_assert(N >= 0, "N must be at least 0");
static constexpr auto& value = Array_impl<N>::value;
Array() = delete;
Array(const Array&) = delete;
Array(Array&&) = delete;
};
int main() {
std::cout << Array<4>::value[3]; // prints 3
}

Based on #Xeo's excellent idea, here is an approach that lets you fill an array of
constexpr std::array<T, N> a = { fun(0), fun(1), ..., fun(N-1) };
where T is any literal type (not just int or other valid non-type template parameter types), but also double, or std::complex (from C++14 onward)
where fun() is any constexpr function
which is supported by std::make_integer_sequence from C++14 onward, but easily implemented today with both g++ and Clang (see Live Example at the end of the answer)
I use #JonathanWakely 's implementation at GitHub (Boost License)
Here is the code
template<class Function, std::size_t... Indices>
constexpr auto make_array_helper(Function f, std::index_sequence<Indices...>)
-> std::array<typename std::result_of<Function(std::size_t)>::type, sizeof...(Indices)>
{
return {{ f(Indices)... }};
}
template<int N, class Function>
constexpr auto make_array(Function f)
-> std::array<typename std::result_of<Function(std::size_t)>::type, N>
{
return make_array_helper(f, std::make_index_sequence<N>{});
}
constexpr double fun(double x) { return x * x; }
int main()
{
constexpr auto N = 10;
constexpr auto a = make_array<N>(fun);
std::copy(std::begin(a), std::end(a), std::ostream_iterator<double>(std::cout, ", "));
}
Live Example

Use C++14 integral_sequence, or its invariant index_sequence
#include <iostream>
template< int ... I > struct index_sequence{
using type = index_sequence;
using value_type = int;
static constexpr std::size_t size()noexcept{ return sizeof...(I); }
};
// making index_sequence
template< class I1, class I2> struct concat;
template< int ...I, int ...J>
struct concat< index_sequence<I...>, index_sequence<J...> >
: index_sequence< I ... , ( J + sizeof...(I) )... > {};
template< int N > struct make_index_sequence_impl;
template< int N >
using make_index_sequence = typename make_index_sequence_impl<N>::type;
template< > struct make_index_sequence_impl<0> : index_sequence<>{};
template< > struct make_index_sequence_impl<1> : index_sequence<0>{};
template< int N > struct make_index_sequence_impl
: concat< make_index_sequence<N/2>, make_index_sequence<N - N/2> > {};
// now, we can build our structure.
template < class IS > struct mystruct_base;
template< int ... I >
struct mystruct_base< index_sequence< I ... > >
{
static constexpr int array[]{I ... };
};
template< int ... I >
constexpr int mystruct_base< index_sequence<I...> >::array[] ;
template< int N > struct mystruct
: mystruct_base< make_index_sequence<N > >
{};
int main()
{
mystruct<20> ms;
//print
for(auto e : ms.array)
{
std::cout << e << ' ';
}
std::cout << std::endl;
return 0;
}
output: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
UPDATE:
You may use std::array:
template< int ... I >
static constexpr std::array< int, sizeof...(I) > build_array( index_sequence<I...> ) noexcept
{
return std::array<int, sizeof...(I) > { I... };
}
int main()
{
std::array<int, 20> ma = build_array( make_index_sequence<20>{} );
for(auto e : ma) std::cout << e << ' ';
std::cout << std::endl;
}

#include <array>
#include <iostream>
template<int... N>
struct expand;
template<int... N>
struct expand<0, N...>
{
constexpr static std::array<int, sizeof...(N) + 1> values = {{ 0, N... }};
};
template<int L, int... N> struct expand<L, N...> : expand<L-1, L, N...> {};
template<int... N>
constexpr std::array<int, sizeof...(N) + 1> expand<0, N...>::values;
int main()
{
std::cout << expand<100>::values[9];
}

For std::array in C++17,
constexpr function are also accepted
Note that the var 'arr' must be initialized by constexpr required.
(initialize: same meaning with answer of #abyx)
#include <array>
constexpr std::array<int, 3> get_array()
{
std::array<int, 3> arr{0};
arr[0] = 9;
return arr;
}
static_assert(get_array().size() == 3);

With C++17 this can be done easily as std::array::begin is marked constexpr.
template<std::size_t N> std::array<int, N + 1> constexpr make_array()
{
std::array<int, N + 1> tempArray{};
int count = 0;
for(int &elem:tempArray)
{
elem = count++;
}
return tempArray;
}
int main()
{
//-------------------------------vv------>pass the size here
constexpr auto arr = make_array<5>();
//lets confirm if all objects have the expected value
for(const auto &elem: arr)
{
std::cout << elem << std::endl; //prints 1 2 3 4 5 with newline in between
}
}
Demo

Using boost preprocessor, it's very simple:
#include <cstdio>
#include <cstddef>
#include <boost/preprocessor/repeat.hpp>
#include <boost/preprocessor/comma_if.hpp>
#define IDENTITY(z,n,dummy) BOOST_PP_COMMA_IF(n) n
#define INITIALIZER_n(n) { BOOST_PP_REPEAT(n,IDENTITY,~) }
int main(int argc, char* argv[])
{
int array[] = INITIALIZER_n(25);
for(std::size_t i = 0; i < sizeof(array)/sizeof(array[0]); ++i)
printf("%d ",array[i]);
return 0;
}
OUTPUT:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Consider boost::mpl::range_c<int, 0, N> instead.

Related

Cumulative Product of Template Parameter Pack

I'm trying to initialise a static and constant array with the cumulative product of a template parameter pack:
template <int ...D>
class Foo
{
static const std::array<const Size, sizeof...(D)> _array;
};
template <int...D> const std::array<const int, sizeof...(D)> Foo<D...>::_array =
{ cumulative_product<D...>() };
How do I write the function cumulative_product<>(), such that it transforms D... into the cumulative product of D...? E.g.
Foo<1,2,3,4>::_array;// = {1,1*2,1*2*3,1*2*3*4} = {1,2,6,24}.
Solution: Massive thank you to #bogdan for your excellent C++14 solution, and improvements to my C++11 solution.
#include <array>
#include <iostream>
#define CPP_VERSION 11
#if CPP_VERSION >= 14
// Credit: #bogdan at http://stackoverflow.com/q/37373602/6367128
template<int... Args> constexpr std::array<int, sizeof...(Args)> cumulative_product(int seed = 1) { return{ { seed *= Args ... } }; }
#elif CPP_VERSION == 11
// Acknowledgement: Huge thank you to #bogdan for making the code more portable, concise and readable!
namespace details
{
template<int N, int i, int j, int ...Args> struct c_product_gen // N counts down to zero
{
static constexpr std::array<int, sizeof...(Args)+1> get() { return c_product_gen<N - 1, i*j, Args..., i*j>::get(); }
};
template<int i, int j, int ...Args> struct c_product_gen<0, i, j, Args...> // The end point of the template recursion
{
static constexpr std::array<int, sizeof...(Args)+1> get() { return { { j, Args... } }; }
};
}
template<int... Args> constexpr std::array<int, sizeof...(Args)> cumulative_product() { return details::c_product_gen<sizeof...(Args), 1, Args...>::get(); }
#else // CPP_VERSION < 11
template<int... Args> constexpr std::array<int, sizeof...(Args)> cumulative_product()
{
static_assert(false, "C++ version 11 or greater is required.");
return std::array<int, sizeof...(Args)>();
}
#endif
int main()
{
constexpr auto a = cumulative_product<1,2,3,4,5>();
for(auto i : a) std::cout << i << ' '; // Output: 1 2 6 24 120
std::cout << '\n';
}
#include <array>
#include <utility>
#include <cstddef>
template <int... D, std::size_t... Is>
constexpr std::array<int, sizeof...(D)> cumulative_product(std::index_sequence<Is...>)
{
static_assert(sizeof...(D), "Missing initializers");
int a[]{ D... };
for (int i = 1; i < int(sizeof...(D)); ++i)
{
a[i] *= a[i-1];
}
return {{ a[Is]... }};
}
template <int... D>
constexpr auto cumulative_product()
{
return cumulative_product<D...>(std::make_index_sequence<sizeof...(D)>{});
}
template <int... D>
struct Foo
{
static constexpr std::array<int, sizeof...(D)> _array = cumulative_product<D...>();
};
DEMO

constexpr initialization of array to sort contents

This is a bit of a puzzle rather than a real-world problem, but I've gotten into a situation where I want to be able to write something that behaves exactly like
template<int N>
struct SortMyElements {
int data[N];
template<typename... TT>
SortMyElements(TT... tt) : data{ tt... }
{
std::sort(data, data+N);
}
};
int main() {
SortMyElements<5> se(1,4,2,5,3);
int se_reference[5] = {1,2,3,4,5};
assert(memcmp(se.data, se_reference, sizeof se.data) == 0);
}
except that I want the SortMyElements constructor to be constexpr.
Obviously this is possible for fixed N; for example, I can specialize
template<>
struct SortMyElements<1> {
int data[1];
constexpr SortMyElements(int x) : data{ x } {}
};
template<>
struct SortMyElements<2> {
int data[2];
constexpr SortMyElements(int x, int y) : data{ x>y?y:x, x>y?x:y } {}
};
But how do I generalize this into something that will work for any N?
Please notice that the array elements have to come from the actual values of the arguments, not from template non-type arguments; my elements come from constexpr expressions that, despite being evaluated at compile-time, reside firmly inside the "value system", rather than the "type system". (For example, Boost.MPL's sort works strictly within the "type system".)
I've posted a working "answer", but it's too inefficient to work for N > 6. I'd like to use this with 2 < N < 50 or thereabouts.
(P.S.— Actually what I'd really like to do is shuffle all the zeroes in an array to the end of the array and pack the nonzero values toward the front, which might be easier than full-on sorting; but I figure sorting is easier to describe. Feel free to tackle the "shuffle zeroes" problem instead of sorting.)
It's ugly, and probably not the best way to sort in a constant expression (because of the required instantiation depth).. but voilà, a merge sort:
Helper type, returnable array type with constexpr element access:
#include <cstddef>
#include <iterator>
#include <type_traits>
template<class T, std::size_t N>
struct c_array
{
T arr[N];
constexpr T const& operator[](std::size_t p) const
{ return arr[p]; }
constexpr T const* begin() const
{ return arr+0; }
constexpr T const* end() const
{ return arr+N; }
};
template<class T>
struct c_array<T, 0> {};
append function for that array type:
template<std::size_t... Is>
struct seq {};
template<std::size_t N, std::size_t... Is>
struct gen_seq : gen_seq<N-1, N-1, Is...> {};
template<std::size_t... Is>
struct gen_seq<0, Is...> : seq<Is...> {};
template<class T, std::size_t N, class U, std::size_t... Is>
constexpr c_array<T, N+1> append_impl(c_array<T, N> const& p, U const& e,
seq<Is...>)
{
return {{p[Is]..., e}};
}
template<class T, std::size_t N, class U>
constexpr c_array<T, N+1> append(c_array<T, N> const& p, U const& e)
{
return append_impl(p, e, gen_seq<N>{});
}
Merge sort:
template<std::size_t Res, class T, class It, std::size_t Accum,
class = typename std::enable_if<Res!=Accum, void>::type >
constexpr c_array<T, Res> c_merge(It beg0, It end0, It beg1, It end1,
c_array<T, Accum> const& accum)
{
return
beg0 == end0 ? c_merge<Res>(beg0 , end0, beg1+1, end1, append(accum, *beg1)) :
beg1 == end1 ? c_merge<Res>(beg0+1, end0, beg1 , end1, append(accum, *beg0)) :
*beg0 < *beg1 ? c_merge<Res>(beg0+1, end0, beg1 , end1, append(accum, *beg0))
: c_merge<Res>(beg0 , end0, beg1+1, end1, append(accum, *beg1));
}
template<std::size_t Res, class T, class It, class... Dummies>
constexpr c_array<T, Res> c_merge(It beg0, It end0, It beg1, It end1,
c_array<T, Res> const& accum, Dummies...)
{
return accum;
}
template<class T, std::size_t L, std::size_t R>
constexpr c_array<T, L+R> c_merge(c_array<T, L> const& l,
c_array<T, R> const& r)
{
return c_merge<L+R>(l.begin(), l.end(), r.begin(), r.end(),
c_array<T, 0>{});
}
template<class T>
using rem_ref = typename std::remove_reference<T>::type;
template<std::size_t dist>
struct helper
{
template < class It >
static constexpr auto merge_sort(It beg, It end)
-> c_array<rem_ref<decltype(*beg)>, dist>
{
return c_merge(helper<dist/2>::merge_sort(beg, beg+dist/2),
helper<dist-dist/2>::merge_sort(beg+dist/2, end));
}
};
template<>
struct helper<0>
{
template < class It >
static constexpr auto merge_sort(It beg, It end)
-> c_array<rem_ref<decltype(*beg)>, 0>
{
return {};
}
};
template<>
struct helper<1>
{
template < class It >
static constexpr auto merge_sort(It beg, It end)
-> c_array<rem_ref<decltype(*beg)>, 1>
{
return {*beg};
}
};
template < std::size_t dist, class It >
constexpr auto merge_sort(It beg, It end)
-> c_array<rem_ref<decltype(*beg)>, dist>
{
return helper<dist>::merge_sort(beg, end);
}
Helpers for usage example:
template<class T, std::size_t N>
constexpr std::size_t array_size(T (&arr)[N]) { return N; }
template<class T, std::size_t N>
constexpr T* c_begin(T (&arr)[N]) { return arr; }
template<class T, std::size_t N>
constexpr T* c_end(T (&arr)[N]) { return arr+N; }
Usage example:
constexpr int unsorted[] = {5,7,3,4,1,8,2,9,0,6,10}; // odd number of elements
constexpr auto sorted = merge_sort<array_size(unsorted)>(c_begin(unsorted),
c_end(unsorted));
#include <iostream>
int main()
{
std::cout << "unsorted: ";
for(auto const& e : unsorted) std::cout << e << ", ";
std::cout << '\n';
std::cout << "sorted: ";
for(auto const& e : sorted) std::cout << e << ", ";
std::cout << '\n';
}
Output:
unsorted: 5, 7, 3, 4, 1, 8, 2, 9, 0, 6, 10,
sorted: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
I know that this is an old question but as we have C++14 (and C++17 soon), and since C++14 constexpr rules aren't so restricted, and, for sure, couple of people will find your question in google, here is how quicksort (and of course other algorithms) can be done since C++14.
(big credits to #dyp for constexpr array)
#include <utility>
#include <cstdlib>
template<class T>
constexpr void swap(T& l, T& r)
{
T tmp = std::move(l);
l = std::move(r);
r = std::move(tmp);
}
template <typename T, size_t N>
struct array
{
constexpr T& operator[](size_t i)
{
return arr[i];
}
constexpr const T& operator[](size_t i) const
{
return arr[i];
}
constexpr const T* begin() const
{
return arr;
}
constexpr const T* end() const
{
return arr + N;
}
T arr[N];
};
template <typename T, size_t N>
constexpr void sort_impl(array<T, N> &array, size_t left, size_t right)
{
if (left < right)
{
size_t m = left;
for (size_t i = left + 1; i<right; i++)
if (array[i]<array[left])
swap(array[++m], array[i]);
swap(array[left], array[m]);
sort_impl(array, left, m);
sort_impl(array, m + 1, right);
}
}
template <typename T, size_t N>
constexpr array<T, N> sort(array<T, N> array)
{
auto sorted = array;
sort_impl(sorted, 0, N);
return sorted;
}
constexpr array<int, 11> unsorted{5,7,3,4,1,8,2,9,0,6,10}; // odd number of elements
constexpr auto sorted = sort(unsorted);
#include <iostream>
int main()
{
std::cout << "unsorted: ";
for(auto const& e : unsorted)
std::cout << e << ", ";
std::cout << '\n';
std::cout << "sorted: ";
for(auto const& e : sorted)
std::cout << e << ", ";
std::cout << '\n';
}
LIVE DEMO
A bit late to the party, but a much better and simpler implementation is the following comb_sort implementation.
template<typename Array>
constexpr void comb_sort_impl ( Array & array_ ) noexcept {
using size_type = typename Array::size_type;
size_type gap = array_.size ( );
bool swapped = false;
while ( ( gap > size_type { 1 } ) or swapped ) {
if ( gap > size_type { 1 } ) {
gap = static_cast<size_type> ( gap / 1.247330950103979 );
}
swapped = false;
for ( size_type i = size_type { 0 }; gap + i < static_cast<size_type> ( array_.size ( ) ); ++i ) {
if ( array_ [ i ] > array_ [ i + gap ] ) {
auto swap = array_ [ i ];
array_ [ i ] = array_ [ i + gap ];
array_ [ i + gap ] = swap;
swapped = true;
}
}
}
}
template<typename Array>
constexpr Array sort ( Array array_ ) noexcept {
auto sorted = array_;
comb_sort_impl ( sorted );
return sorted;
}
int main ( ) {
constexpr auto sorted = sort ( std::array<int, 8> { 6, 8, 0, 1, 5, 9, 2, 7 } );
for ( auto i : sorted )
std::cout << i << ' ';
std::cout << std::endl;
return EXIT_SUCCESS;
}
Output: 0 1 2 5 6 7 8 9
Why better, it's [the algorithm] often as good as insertion sort, but is non-recursive, which means it will work on any size arrays (at least not limited by the recursive depth).
Well, I got my inefficient version to compile, at least with Clang on OSX. Here's the code.
However, while it's tolerably fast for five elements, on my laptop it takes 0.5 seconds to sort six elements and 7 seconds to sort seven elements. (Catastrophically varying performance, too, depending on whether the items are almost-sorted or reverse-sorted.) I didn't even try timing eight. Clearly, this doesn't scale to the kind of things I want to do with it. (I'd say 50 elements is a reasonable upper bound for my contrived use-case, but 6 is unreasonably tiny.)
#include <cstring>
#include <cassert>
template<int...>
struct IntHolder {};
// Now let's make a consecutive range of ints from [A to B).
template<int A, int B, int... Accum>
struct IntRange_ : IntRange_<A+1, B, Accum..., A> {};
template<int A, int... Accum>
struct IntRange_<A, A, Accum...> {
using type = IntHolder<Accum...>;
};
template<int A, int B>
using IntRange = typename IntRange_<A,B>::type;
// And a helper function to do what std::min should be doing for us.
template<typename... TT> constexpr int min(TT...);
constexpr int min(int i) { return i; }
template<typename... TT> constexpr int min(int i, TT... tt) { return i < min(tt...) ? i : min(tt...); }
template<int N>
struct SortMyElements {
int data[N];
template<int... II, typename... TT>
constexpr SortMyElements(IntHolder<II...> ii, int minval, int a, TT... tt) : data{
( a==minval ? a : SortMyElements<N>(ii, minval, tt..., a).data[0] ),
( a==minval ? SortMyElements<N-1>(tt...).data[II] : SortMyElements<N>(ii, minval, tt..., a).data[II+1] )...
} {}
template<typename... TT>
constexpr SortMyElements(TT... tt) : SortMyElements(IntRange<0,sizeof...(tt)-1>(), min(tt...), tt...) {}
};
template<>
struct SortMyElements<1> {
int data[1];
constexpr SortMyElements(int x) : data{ x } {}
constexpr SortMyElements(IntHolder<>, int minval, int x) : SortMyElements(x) {}
};
static_assert(SortMyElements<5>(5,2,1,3,1).data[0] == 1, "");
static_assert(SortMyElements<5>(5,2,1,3,1).data[1] == 1, "");
static_assert(SortMyElements<5>(5,2,1,3,1).data[2] == 2, "");
static_assert(SortMyElements<5>(5,2,1,3,1).data[3] == 3, "");
static_assert(SortMyElements<5>(5,2,1,3,1).data[4] == 5, "");
char global_array[ SortMyElements<5>(1,4,2,5,3).data[2] ];
static_assert(sizeof global_array == 3, "");
int main() {
SortMyElements<5> se(1,4,2,5,3);
int se_reference[5] = {1,2,3,4,5};
assert(memcmp(se.data, se_reference, sizeof se.data) == 0);
}
UPDATE: I haven't figured out how to do a fast mergesort (although DyP's answer looks potentially feasible to me). However, this morning I did solve my original puzzle-problem of shuffling zeroes to the end of an array! I used a recursive partition-and-merge algorithm; the code looks like this.
Starting with C++20, all you need to change in your example is to add constexpr to the constructor. That is, in C++20, std::sort is in fact constexpr.

Create N-element constexpr array in C++11

Hello i'm learning C++11, I'm wondering how to make a constexpr 0 to n array, for example:
n = 5;
int array[] = {0 ... n};
so array may be {0, 1, 2, 3, 4, 5}
In C++14 it can be easily done with a constexpr constructor and a loop:
#include <iostream>
template<int N>
struct A {
constexpr A() : arr() {
for (auto i = 0; i != N; ++i)
arr[i] = i;
}
int arr[N];
};
int main() {
constexpr auto a = A<4>();
for (auto x : a.arr)
std::cout << x << '\n';
}
Unlike those answers in the comments to your question, you can do this without compiler extensions.
#include <iostream>
template<int N, int... Rest>
struct Array_impl {
static constexpr auto& value = Array_impl<N - 1, N, Rest...>::value;
};
template<int... Rest>
struct Array_impl<0, Rest...> {
static constexpr int value[] = { 0, Rest... };
};
template<int... Rest>
constexpr int Array_impl<0, Rest...>::value[];
template<int N>
struct Array {
static_assert(N >= 0, "N must be at least 0");
static constexpr auto& value = Array_impl<N>::value;
Array() = delete;
Array(const Array&) = delete;
Array(Array&&) = delete;
};
int main() {
std::cout << Array<4>::value[3]; // prints 3
}
Based on #Xeo's excellent idea, here is an approach that lets you fill an array of
constexpr std::array<T, N> a = { fun(0), fun(1), ..., fun(N-1) };
where T is any literal type (not just int or other valid non-type template parameter types), but also double, or std::complex (from C++14 onward)
where fun() is any constexpr function
which is supported by std::make_integer_sequence from C++14 onward, but easily implemented today with both g++ and Clang (see Live Example at the end of the answer)
I use #JonathanWakely 's implementation at GitHub (Boost License)
Here is the code
template<class Function, std::size_t... Indices>
constexpr auto make_array_helper(Function f, std::index_sequence<Indices...>)
-> std::array<typename std::result_of<Function(std::size_t)>::type, sizeof...(Indices)>
{
return {{ f(Indices)... }};
}
template<int N, class Function>
constexpr auto make_array(Function f)
-> std::array<typename std::result_of<Function(std::size_t)>::type, N>
{
return make_array_helper(f, std::make_index_sequence<N>{});
}
constexpr double fun(double x) { return x * x; }
int main()
{
constexpr auto N = 10;
constexpr auto a = make_array<N>(fun);
std::copy(std::begin(a), std::end(a), std::ostream_iterator<double>(std::cout, ", "));
}
Live Example
Use C++14 integral_sequence, or its invariant index_sequence
#include <iostream>
template< int ... I > struct index_sequence{
using type = index_sequence;
using value_type = int;
static constexpr std::size_t size()noexcept{ return sizeof...(I); }
};
// making index_sequence
template< class I1, class I2> struct concat;
template< int ...I, int ...J>
struct concat< index_sequence<I...>, index_sequence<J...> >
: index_sequence< I ... , ( J + sizeof...(I) )... > {};
template< int N > struct make_index_sequence_impl;
template< int N >
using make_index_sequence = typename make_index_sequence_impl<N>::type;
template< > struct make_index_sequence_impl<0> : index_sequence<>{};
template< > struct make_index_sequence_impl<1> : index_sequence<0>{};
template< int N > struct make_index_sequence_impl
: concat< make_index_sequence<N/2>, make_index_sequence<N - N/2> > {};
// now, we can build our structure.
template < class IS > struct mystruct_base;
template< int ... I >
struct mystruct_base< index_sequence< I ... > >
{
static constexpr int array[]{I ... };
};
template< int ... I >
constexpr int mystruct_base< index_sequence<I...> >::array[] ;
template< int N > struct mystruct
: mystruct_base< make_index_sequence<N > >
{};
int main()
{
mystruct<20> ms;
//print
for(auto e : ms.array)
{
std::cout << e << ' ';
}
std::cout << std::endl;
return 0;
}
output: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
UPDATE:
You may use std::array:
template< int ... I >
static constexpr std::array< int, sizeof...(I) > build_array( index_sequence<I...> ) noexcept
{
return std::array<int, sizeof...(I) > { I... };
}
int main()
{
std::array<int, 20> ma = build_array( make_index_sequence<20>{} );
for(auto e : ma) std::cout << e << ' ';
std::cout << std::endl;
}
#include <array>
#include <iostream>
template<int... N>
struct expand;
template<int... N>
struct expand<0, N...>
{
constexpr static std::array<int, sizeof...(N) + 1> values = {{ 0, N... }};
};
template<int L, int... N> struct expand<L, N...> : expand<L-1, L, N...> {};
template<int... N>
constexpr std::array<int, sizeof...(N) + 1> expand<0, N...>::values;
int main()
{
std::cout << expand<100>::values[9];
}
For std::array in C++17,
constexpr function are also accepted
Note that the var 'arr' must be initialized by constexpr required.
(initialize: same meaning with answer of #abyx)
#include <array>
constexpr std::array<int, 3> get_array()
{
std::array<int, 3> arr{0};
arr[0] = 9;
return arr;
}
static_assert(get_array().size() == 3);
With C++17 this can be done easily as std::array::begin is marked constexpr.
template<std::size_t N> std::array<int, N + 1> constexpr make_array()
{
std::array<int, N + 1> tempArray{};
int count = 0;
for(int &elem:tempArray)
{
elem = count++;
}
return tempArray;
}
int main()
{
//-------------------------------vv------>pass the size here
constexpr auto arr = make_array<5>();
//lets confirm if all objects have the expected value
for(const auto &elem: arr)
{
std::cout << elem << std::endl; //prints 1 2 3 4 5 with newline in between
}
}
Demo
Using boost preprocessor, it's very simple:
#include <cstdio>
#include <cstddef>
#include <boost/preprocessor/repeat.hpp>
#include <boost/preprocessor/comma_if.hpp>
#define IDENTITY(z,n,dummy) BOOST_PP_COMMA_IF(n) n
#define INITIALIZER_n(n) { BOOST_PP_REPEAT(n,IDENTITY,~) }
int main(int argc, char* argv[])
{
int array[] = INITIALIZER_n(25);
for(std::size_t i = 0; i < sizeof(array)/sizeof(array[0]); ++i)
printf("%d ",array[i]);
return 0;
}
OUTPUT:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Consider boost::mpl::range_c<int, 0, N> instead.

C++11: Compile Time Calculation of Array

Suppose I have some constexpr function f:
constexpr int f(int x) { ... }
And I have some const int N known at compile time:
Either
#define N ...;
or
const int N = ...;
as needed by your answer.
I want to have an int array X:
int X[N] = { f(0), f(1), f(2), ..., f(N-1) }
such that the function is evaluated at compile time, and the entries in X are calculated by the compiler and the results are placed in the static area of my application image exactly as if I had used integer literals in my X initializer list.
Is there some way I can write this? (For example with templates or macros and so on)
Best I have: (Thanks to Flexo)
#include <iostream>
#include <array>
using namespace std;
constexpr int N = 10;
constexpr int f(int x) { return x*2; }
typedef array<int, N> A;
template<int... i> constexpr A fs() { return A{{ f(i)... }}; }
template<int...> struct S;
template<int... i> struct S<0,i...>
{ static constexpr A gs() { return fs<0,i...>(); } };
template<int i, int... j> struct S<i,j...>
{ static constexpr A gs() { return S<i-1,i,j...>::gs(); } };
constexpr auto X = S<N-1>::gs();
int main()
{
cout << X[3] << endl;
}
There is a pure C++11 (no boost, no macros too) solution to this problem. Using the same trick as this answer we can build a sequence of numbers and unpack them to call f to construct a std::array:
#include <array>
#include <algorithm>
#include <iterator>
#include <iostream>
template<int ...>
struct seq { };
template<int N, int ...S>
struct gens : gens<N-1, N-1, S...> { };
template<int ...S>
struct gens<0, S...> {
typedef seq<S...> type;
};
constexpr int f(int n) {
return n;
}
template <int N>
class array_thinger {
typedef typename gens<N>::type list;
template <int ...S>
static constexpr std::array<int,N> make_arr(seq<S...>) {
return std::array<int,N>{{f(S)...}};
}
public:
static constexpr std::array<int,N> arr = make_arr(list());
};
template <int N>
constexpr std::array<int,N> array_thinger<N>::arr;
int main() {
std::copy(begin(array_thinger<10>::arr), end(array_thinger<10>::arr),
std::ostream_iterator<int>(std::cout, "\n"));
}
(Tested with g++ 4.7)
You could skip std::array entirely with a bit more work, but I think in this instance it's cleaner and simpler to just use std::array.
You can also do this recursively:
#include <array>
#include <functional>
#include <algorithm>
#include <iterator>
#include <iostream>
constexpr int f(int n) {
return n;
}
template <int N, int ...Vals>
constexpr
typename std::enable_if<N==sizeof...(Vals),std::array<int, N>>::type
make() {
return std::array<int,N>{{Vals...}};
}
template <int N, int ...Vals>
constexpr
typename std::enable_if<N!=sizeof...(Vals), std::array<int,N>>::type
make() {
return make<N, Vals..., f(sizeof...(Vals))>();
}
int main() {
const auto arr = make<10>();
std::copy(begin(arr), end(arr), std::ostream_iterator<int>(std::cout, "\n"));
}
Which is arguably simpler.
Boost.Preprocessor can help you. The restriction, however, is that you have to use integral literal such as 10 instead of N (even be it compile-time constant):
#include <iostream>
#include <boost/preprocessor/repetition/enum.hpp>
#define VALUE(z, n, text) f(n)
//ideone doesn't support Boost for C++11, so it is C++03 example,
//so can't use constexpr in the function below
int f(int x) { return x * 10; }
int main() {
int const a[] = { BOOST_PP_ENUM(10, VALUE, ~) }; //N = 10
std::size_t const n = sizeof(a)/sizeof(int);
std::cout << "count = " << n << "\n";
for(std::size_t i = 0 ; i != n ; ++i )
std::cout << a[i] << "\n";
return 0;
}
Output (ideone):
count = 10
0
10
20
30
40
50
60
70
80
90
The macro in the following line:
int const a[] = { BOOST_PP_ENUM(10, VALUE, ~) };
expands to this:
int const a[] = {f(0), f(1), ... f(9)};
A more detail explanation is here:
BOOST_PP_ENUM
If you want the array to live in static memory, you could try this:
template<class T> struct id { typedef T type; };
template<int...> struct int_pack {};
template<int N, int...Tail> struct make_int_range
: make_int_range<N-1,N-1,Tail...> {};
template<int...Tail> struct make_int_range<0,Tail...>
: id<int_pack<Tail...>> {};
#include <array>
constexpr int f(int n) { return n*(n+1)/2; }
template<class Indices = typename make_int_range<10>::type>
struct my_lookup_table;
template<int...Indices>
struct my_lookup_table<int_pack<Indices...>>
{
static const int size = sizeof...(Indices);
typedef std::array<int,size> array_type;
static const array_type& get()
{
static const array_type arr = {{f(Indices)...}};
return arr;
}
};
#include <iostream>
int main()
{
auto& lut = my_lookup_table<>::get();
for (int i : lut)
std::cout << i << std::endl;
}
If you want a local copy of the array to work on, simply remove the ampersand.
There are quite a few great answers here. The question and tags specify c++11, but as a few years have passed, some (like myself) stumbling upon this question may be open to using c++14. If so, it is possible to do this very cleanly and concisely using std::integer_sequence; moreover, it can be used to instantiate much longer arrays, since the current "Best I Have" is limited by recursion depth.
constexpr std::size_t f(std::size_t x) { return x*x; } // A constexpr function
constexpr std::size_t N = 5; // Length of array
using TSequence = std::make_index_sequence<N>;
static_assert(std::is_same<TSequence, std::integer_sequence<std::size_t, 0, 1, 2, 3, 4>>::value,
"Make index sequence uses std::size_t and produces a parameter pack from [0,N)");
using TArray = std::array<std::size_t,N>;
// When you call this function with a specific std::integer_sequence,
// the parameter pack i... is used to deduce the the template parameter
// pack. Once this is known, this parameter pack is expanded in
// the body of the function, calling f(i) for each i in [0,N).
template<std::size_t...i>
constexpr TArray
get_array(std::integer_sequence<std::size_t,i...>)
{
return TArray{{ f(i)... }};
}
int main()
{
constexpr auto s = TSequence();
constexpr auto a = get_array(s);
for (const auto &i : a) std::cout << i << " "; // 0 1 4 9 16
return EXIT_SUCCESS;
}
I slightly extended the answer from Flexo and Andrew Tomazos so that the user can specify the computational range and the function to be evaluated.
#include <array>
#include <iostream>
#include <iomanip>
template<typename ComputePolicy, int min, int max, int ... expandedIndices>
struct ComputeEngine
{
static const int lengthOfArray = max - min + sizeof... (expandedIndices) + 1;
typedef std::array<typename ComputePolicy::ValueType, lengthOfArray> FactorArray;
static constexpr FactorArray compute( )
{
return ComputeEngine<ComputePolicy, min, max - 1, max, expandedIndices...>::compute( );
}
};
template<typename ComputePolicy, int min, int ... expandedIndices>
struct ComputeEngine<ComputePolicy, min, min, expandedIndices...>
{
static const int lengthOfArray = sizeof... (expandedIndices) + 1;
typedef std::array<typename ComputePolicy::ValueType, lengthOfArray> FactorArray;
static constexpr FactorArray compute( )
{
return FactorArray { { ComputePolicy::compute( min ), ComputePolicy::compute( expandedIndices )... } };
}
};
/// compute 1/j
struct ComputePolicy1
{
typedef double ValueType;
static constexpr ValueType compute( int i )
{
return i > 0 ? 1.0 / i : 0.0;
}
};
/// compute j^2
struct ComputePolicy2
{
typedef int ValueType;
static constexpr ValueType compute( int i )
{
return i * i;
}
};
constexpr auto factors1 = ComputeEngine<ComputePolicy1, 4, 7>::compute( );
constexpr auto factors2 = ComputeEngine<ComputePolicy2, 3, 9>::compute( );
int main( void )
{
using namespace std;
cout << "Values of factors1" << endl;
for ( int i = 0; i < factors1.size( ); ++i )
{
cout << setw( 4 ) << i << setw( 15 ) << factors1[i] << endl;
}
cout << "------------------------------------------" << endl;
cout << "Values of factors2" << endl;
for ( int i = 0; i < factors2.size( ); ++i )
{
cout << setw( 4 ) << i << setw( 15 ) << factors2[i] << endl;
}
return 0;
}
Here's a more concise answer where you explicitly declare the elements in the original sequence.
#include <array>
constexpr int f(int i) { return 2 * i; }
template <int... Ts>
struct sequence
{
using result = sequence<f(Ts)...>;
static std::array<int, sizeof...(Ts)> apply() { return {{Ts...}}; }
};
using v1 = sequence<1, 2, 3, 4>;
using v2 = typename v1::result;
int main()
{
auto x = v2::apply();
return 0;
}
How about this one?
#include <array>
#include <iostream>
constexpr int f(int i) { return 2 * i; }
template <int N, int... Ts>
struct t { using type = typename t<N - 1, Ts..., 101 - N>::type; };
template <int... Ts>
struct t<0u, Ts...>
{
using type = t<0u, Ts...>;
static std::array<int, sizeof...(Ts)> apply() { return {{f(Ts)...}}; }
};
int main()
{
using v = typename t<100>::type;
auto x = v::apply();
}
I don't think that's the best way to do this, but one can try somewhat like this:
#include <array>
#include <iostream>
#include <numbers>
constexpr auto pi{std::numbers::pi_v<long double>};
template <typename T>
struct fun
{
T v;
explicit constexpr fun(T a) : v{a * a} {}
};
template <size_t N, typename T, typename F>
struct pcl_arr
{
std::array<T, N> d;
explicit constexpr pcl_arr()
: d{}
{
for (size_t i{}; i < N; d[i] = !i ? 0. : F(pi + i).v, ++i);
}
};
int main()
{
using yummy = pcl_arr<10, long double, fun<long double>>;
constexpr yummy pies;
std::array cloned_pies{pies.d};
// long double comparison is unsafe
// it's just for the sake of example
static_assert(pies.d[0] == 0.);
for (const auto & pie : pies.d) { std::cout << pie << ' '; } std::cout << '\n';
for (const auto & pie : cloned_pies) { std::cout << pie << ' '; } std::cout << '\n';
return 0;
}
godbolt.org x86-x64 gcc 11.2 -Wall -O3 -std=c++20 output:
0 17.1528 26.436 37.7192 51.0023 66.2855 83.5687 102.852 124.135 147.418
0 17.1528 26.436 37.7192 51.0023 66.2855 83.5687 102.852 124.135 147.418

Set std::vector<int> to a range

What's the best way for setting an std::vector<int> to a range, e.g. all numbers between 3 and 16?
You could use std::iota if you have C++11 support or are using the STL:
std::vector<int> v(14);
std::iota(v.begin(), v.end(), 3);
or implement your own if not.
If you can use boost, then a nice option is boost::irange:
std::vector<int> v;
boost::push_back(v, boost::irange(3, 17));
std::vector<int> myVec;
for( int i = 3; i <= 16; i++ )
myVec.push_back( i );
See e.g. this question
#include <algorithm>
#include <iostream>
#include <iterator>
#include <vector>
template<class OutputIterator, class Size, class Assignable>
void iota_n(OutputIterator first, Size n, Assignable value)
{
std::generate_n(first, n, [&value]() {
return value++;
});
}
int main()
{
std::vector<int> v; // no default init
v.reserve(14); // allocate 14 ints
iota_n(std::back_inserter(v), 14, 3); // fill them with 3...16
std::for_each(v.begin(), v.end(), [](int const& elem) {
std::cout << elem << "\n";
});
return 0;
}
Output on Ideone
std::iota - is useful, but it requires iterator, before creation vector, .... so I take own solution.
#include <iostream>
#include <vector>
template<int ... > struct seq{ typedef seq type;};
template< typename I, typename J> struct add;
template< int...I, int ...J>
struct add< seq<I...>, seq<J...> > : seq<I..., (J+sizeof...(I)) ... >{};
template< int N>
struct make_seq : add< typename make_seq<N/2>::type,
typename make_seq<N-N/2>::type > {};
template<> struct make_seq<0>{ typedef seq<> type; };
template<> struct make_seq<1>{ typedef seq<0> type; };
template<int start, int step , int ... I>
std::initializer_list<int> range_impl(seq<I... > )
{
return { (start + I*step) ...};
}
template<int start, int finish, int step = 1>
std::initializer_list<int> range()
{
return range_impl<start, step>(typename make_seq< 1+ (finish - start )/step >::type {} );
}
int main()
{
std::vector<int> vrange { range<3, 16>( )} ;
for(auto x : vrange)std::cout << x << ' ';
}
Output:
3 4 5 6 7 8 9 10 11 12 13 14 15 16
Try to use std::generate. It can generate values for a container based on a formula
std::vector<int> v(size);
std::generate(v.begin(),v.end(),[n=0]()mutable{return n++;});